Research

* denotes equal contribution and ** denotes alphabet order. An up-to-date list is available on Google Scholar.

2025

  1. Evaluating the unseen capabilities: How many theorems do LLMs know?
    Xiang Li, Jiayi Xin, Qi Long, and Weijie J. Su
    arXiv preprint arXiv:2506.02058, 2025
  2. Optimal estimation of watermark proportions in hybrid AI-human texts
    Xiang Li, Garrett G. Wen, Weiqing He, Jiayuan Wu, Qi Long, and Weijie J. Su
    arXiv preprint arXiv:2506.22343, 2025
  3. On the empirical power of goodness-of-fit tests in watermark detection
    Weiqing He*, Xiang Li*, Tianqi Shang, Li Shen, Weijie J. Su, and Qi Long
    In Advances in Neural Information Processing Systems, 2025, 🌟 Spotlight
  4. Mitigating the privacy–utility trade-off in decentralized federated learning via f-differential privacy
    Xiang LiChendi Wang, Buxin Su, Qi Long, and Weijie J. Su
    In Advances in Neural Information Processing Systems, 2025, 🌟 Spotlight
  5. Corruption-robust variance-aware algorithms for generalized linear bandits under heavy-tailed rewards
    Qingyuan Yu, Euijin Baek, Xiang Li, and Qiang Sun
    In Conference on Uncertainty in Artificial Intelligence, 2025

2024

  1. A statistical framework of watermarks for large language models: Pivot, detection efficiency and optimal rules
    Xiang LiFeng RuanHuiyuan WangQi Long, and Weijie J. Su
    The Annals of Statistics, 2025, 🏛️ Invited talk at AoS invited paper session, JSM 2025
  2. Robust detection of watermarks in large language models under human edits
    Xiang LiFeng RuanHuiyuan WangQi Long, and Weijie J. Su
    Journal of the Royal Statistical Society: Series B, 2025, 🏆 IMS New Researcher Travel Award
  3. Debiasing watermarks for large language models via maximal coupling
    Yangxinyu XieXiang Li, Tanwi Mallick, Weijie J. Su, and Ruixun Zhang
    Journal of the American Statistical Association, 2025
  4. Decoupled functional central limit theorems for two-time-scale stochastic approximation
    Yuze Han, Xiang LiJiadong Liang, and Zhihua Zhang
    arXiv preprint arXiv:2412.17070, 2024
  5. Finite-time decoupled convergence in nonlinear two-time-scale stochastic approximation
    Yuze Han, Xiang Li, and Zhihua Zhang
    arXiv preprint arXiv:2401.03893, 2024
  6. Uncertainty quantification of data shapley via statistical inference
    Mengmeng Wu, Zhihong Liu, Xiang Li, Ruoxi Jia, and Xiangyu Chang
    arXiv preprint arXiv:2407.19373, 2024

2023

  1. Variance-aware decision making with linear function approximation with heavy-tailed rewards
    Xiang Li, and Qiang Sun
    Transactions on Machine Learning Research, 2024, 🏛️ Invited to present in ICLR 2025
  2. Online statistical inference for nonlinear stochastic approximation with Markovian data
    Xiang LiJiadong Liang, and Zhihua Zhang
    arXiv preprint arXiv:2302.07690, 2023
  3. Convergence and inference of Stream SGD, with applications to queueing systems and inventory control
    Xiang Li*Jiadong Liang*Xinyun Chen, and Zhihua Zhang
    arXiv preprint arXiv:2309.09545, 2023
  4. Asymptotic behaviors and phase transitions in projected stochastic approximation: A jump diffusion approach
    Jiadong Liang, Yuze Han, Xiang Li, and Zhihua Zhang
    Technical report, arXiv preprint arXiv:2304.12953, 2023

2022

  1. A random projection approach to personalized federated learning: Enhancing communication efficiency, robustness, and fairness
    Yuze Han**, Shiyun Lin**, Xiang Li**, and Zhihua Zhang**
    Journal of Machine Learning Research, 2024, Extended version of the conference paper: Personalized federated learning towards communication efficiency, robustness and fairness
  2. Asymptotic behaviors of projected stochastic approximation: A jump diffusion perspective
    Jiadong Liang, Yuze Han, Xiang Li, and Zhihua Zhang
    In Advances in Neural Information Processing Systems, 2022, 🌟 Spotlight
  3. Personalized federated learning towards communication efficiency, robustness and fairness
    Shiyun Lin*, Yuze Han*, Xiang Li, and Zhihua Zhang
    In Neural Information Processing Systems, 2022
  4. Statistical analysis of Karcher means for random restricted PSD matrices
    Hengchao Chen, Xiang Li, and Qiang Sun
    In International Conference on Artificial Intelligence and Statistics, 2023

2021

  1. Statistical estimation and online inference via Local SGD
    In Conference on Learning Theory, 2022
  2. Fedpower: Privacy‑preserving distributed eigenspace estimation
    Xiao Guo, Xiang LiXiangyu ChangShusen Wang, and Zhihua Zhang
    Machine Learning, 2024, Extended version of the conference paper: Communication-efficient distributed SVD via local power iterations
  3. A statistical analysis of Polyak-Ruppert averaged Q-learning
    In International Conference on Artificial Intelligence and Statistics, 2023

2020

  1. Communication-efficient distributed SVD via local power iterations
    Xiang LiShusen Wang, Kun Chen, and Zhihua Zhang
    In International Conference on Machine Learning, 2021
  2. Finding near optimal policies via reducive regularization in Markov decision processes
    Wenhao YangXiang Li, Guangzeng Xie, and Zhihua Zhang
    In Workshop on Reinforcement Learning Theory, ICML, 2021

2019

  1. On the convergence of FedAvg on non-iid data
    Xiang Li*, Kaixuan Huang*, Wenhao Yang*Shusen Wang, and Zhihua Zhang
    In International Conference on Learning Representations, 2020, 🎤 Oral presentation
  2. A regularized approach to sparse optimal policy in reinforcement learning
    Wenhao Yang*Xiang Li*, and Zhihua Zhang
    In Advances in Neural Information Processing Systems, 2019
  3. Do subsampled Newton methods work for high-dimensional data?
    Xiang LiShusen Wang, and Zhihua Zhang
    In AAAI Conference on Artificial Intelligence, 2020
  4. Communication efficient decentralized training with multiple local updates
    Xiang LiWenhao YangShusen Wang, and Zhihua Zhang
    Technical report, arXiv preprint arXiv:1910.09126, 2019