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Why should we care who wrote the text?

LLMs are now used almost everywhere—but this raises concerns about authorship,
accountability, and trust.

Education: Students may use LLMs for homework or essays—teachers want to
know who did the work.
Science: Papers or reviews may be (partly) machine-written—can we trust the
content?
Media: Fake news or spam can be mass-produced—platforms need to detect
AI-written content.
Art and writing: Readers and publishers care whether a story or article came
from a human.
Transparency: If LLMs are used to help write something, readers may want to be
informed.
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An intuitive solution

Train classifiers [GPTZero, 2023, ZeroGPT, 2023, ...].

These methods are inaccurate, unreliable [Weber-Wulff et al., 2023], and often
biased [Krishna et al., 2024, Sadasivan et al., 2023, Liang et al., 2023].
Worse, as AI models evolve, LLM-generated text increasingly resembles
human-written text!
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Watermarking is a provable and practical solution!

Key insight
LLMs are probabilistic machines, and we control how they generate texts.

A watermark embeds subtle and recoverable statistical signals into LLM-generated
texts [Kirchenbauer et al., 2023].

Creates a statistical dependency between the visible text and a hidden information.
Unlikely to appear in human-written text.
Applies not only to text but also to images, tables, and other data modalities.
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An active research area with practical importance

A Zoo of Watermarking Schemes (since Jan 2023):
[Kirchenbauer et al., 2023, Aaronson, 2023, Kuditipudi et al., 2024, Zhao et al., 2024b,
Christ et al., 2024, Wu et al., 2023, Hu et al., 2024, Kirchenbauer et al., 2024, Zhao
et al., 2024a, Xie et al., 2024, Fu et al., 2024, Dathathri et al., 2024, Gloaguen et al.,
2025, Abdalla and Vershynin, 2025, ...].

Open-source toolkits have been developed to support research [Pan et al., 2024].
Large-scale empirical studies benchmark watermarking methods [Fernandez
et al., 2023, Gloaguen et al., 2025, Piet et al., 2023, ...].
Industry commitment: OpenAI, Google, Meta, and others pledge to watermark
AI-generated content.
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Questions we study

Previous study often assumes full detection where the text is either whole
human-written or fully LLM-generated.
A student might modify the text generated by an LLM—either to personalize it or
to avoid detection.

Core questions
Given a potentially modified text, can we detect whether it is partially
watermarked?
If it is partially watermarked, can we estimate how much of it—i.e., what
proportion—was generated by the LLM?
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Preliminaries



Autoregresive generation: How LLMs combine tokens
Denote the vocabulary by W = {1, . . . ,K}, a token therein by wt , and a text by
w<t := w1 · · ·wt−1.

Large vocabulary: W is large in practice; K = 50, 257 for GPT-2/3.5, = 32, 000
for LLaMa models, and = 128, 000 for DeepSeek-R1.

Autoregresiveness: An LLM generates each token sequentially by sampling from
a probability distribution conditioned on previous tokens:

wt ∼ Pt where Pt = LLM(w<t) is a distribution on W.

Preceding text w<t LLM NTP distribution Pt = LLM(w<t) Output token wt
Sample

Append

Limited access: The distribution Pt is referred to next-token prediction (NTP)
distribution, which is unknown since it depends on unknown system/user prompts.
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Watermarked generation: Procedure

Preceding text w<t LLM Pt = LLM(w<t) Sampling algorithm
(Decoder S) Output token wt

Append

Random seed generator
(Hash function A)

Random seed ζt
(Pseudorandom numbers)

Watermarking key

Mathematical speaking: ζt = A(w<t ,Key) and wt = S(Pt , ζt).
A watermark is defined by (A,S,Key).
Watermark signal is the dependence of each wt on ζt .
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Watermarked generation: Example

I saw a cat on a

Mat       25%

Carpet  13%

Boat      5%

Plane     3%

….         …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

 

w7 = "(P7, ζ7)
carpet

Compute

ζ7 = #(w3:6, Key)

P7 = (P7,1, ⋯, P7,K)

pseudorandom
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A high-level intro of watermark detection

H0 : w≤n is human written v.s. H0 : w≤n is LLM-generated.

Human-written text: wt is independent of ζt as humans don’t know A and Key.
LLM-generated text: wt depends on ζt via the decoder function S.

Take-away
Watermarking couples each token wt and a psedorandom ζt , altering their joint
distribution. Watermarking detection tries to detect this coupling.

Scoring
function

Text w≤n := w1 . . .wn

Watermarking key
Score(w≤n)

Decision:
Watermarked/
not watermarked

Apply threshold
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Hypothesis testing via pivoting
Find a pivotal statistic Yt = Y (wt , ζt) such that

Under H0, Yt ∼ µ0, regardless of Pt

Under H1, Yt ∼ Y (S(ζt ,Pt), ζt), whose distribution is denoted µ1,Pt

Hypothesis testing via pivoting

H0 : Yt
iid∼ µ0, t = 1, . . . , n vs H1 : Yt |Pt ∼ µ1,Pt , t = 1, . . . , n

Not unique, may lead to information loss, but convenient.
A good choice of Y should have a similar distributional shift for any Pt .
Test distributional difference rather than independence using test score
Th =

∑n
t=1 h(Yt) for some score function h. Reject H0 if Th is larger than a

threshold.
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Gumbel-max watermark [Aaronson, 2023]
Definition (Gumbel-max trick [Gumbel, 1948])
Let U1, . . . ,UK be i.i.d. copies of U(0, 1). Then,

arg max
w∈W

log Uw
Pw

∼ P ≡ (Pw )w∈W .

Definition (Gumbel-max watermark)
With ζt = (Ut , . . . ,UK ) = A(w<t ,Key) (often depending on the last 5 tokens),

wt = Sgum(Pt , ζt) = arg max
w∈W

log Ut,w
Pt,w

.

It is unbiased as the marginal dist. of w (first arg.) in (S(P, ζ), ζ) is still P.
Implemented internally at OpenAI.
Embedded signal: selected Uwt tends to be larger.
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Pivot for Gumbel-max watermark
The pivotal statistic is Y ars

t = Ut,wt .

Under H0, Y ars
t

iid∼ µ0 = U(0, 1).
Under H1, the CDF of µ1,Pt is P1(Y ars

t ≤ r |Pt) =
∑K

k=1 Pt,k r1/Pt,k .
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Recall: Questions we study

Core questions
Given a potentially modified text, can we detect whether it is partially
watermarked?
If it is partially watermarked, can we estimate how much of it—i.e., what
proportion—was generated by the LLM?
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Watermark detection under text modification

To cope with modification, practice often uses a few tokens to compute
pseudorandom numbers

For example, ζt = A(w(t−5):(t−1),Key), using the last 5 tokens.
A modified token will turn the watermark signals in the next few 5 tokens to noise.

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t vs Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t

εn ∈ [0, 1] denote the proportion of watermark signals.
When εn ≡ 1, it reduced to the full detection setting in [Li et al., 2025a].
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How to solve the mixture detection

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t vs Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t

Difficulties: We know nothing about εn or Pt .

Key insight
We know everything about the null H0 which always assume Y≤n iid from µ0.

Focus to determine whether the observed Y1, . . . ,Yn follows µ0.
Tr-GoF [Li et al., 2024] checks the deviation between the empirical CDF of Y≤n
and µ0 via an f -divergence.
Too large deviation indicate the existence of watermarked subtexts.
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Tr-GoF [Li et al., 2024]
The empirical CDF of p-values: Fn(r) = 1

n
∑n

t=1 1pt≤r where pt = 1− F0(Yt).
Under H0, we must have p1, . . . , pn i.i.d. from U(0, 1).
Tr-GoF rejects H0 if sup

r∈(0,1)
nKs(Fn(r), r) is larger than expected for s ∈ [−1, 2]

where
Ks(u, v) = 1

s(1− s)
[
1− usv1−s − (1− u)s(1− v)1−s

]
.

One can show that Ks is the φs -divergence between two Bernoulli variables:

Ks(u, v) = Dφs (Ber(u) ‖ Ber(v)) = vφs

(u
v

)
+ (1− v)φs

(1− u
1− v

)
,

where φs is a scalar convex function indexed by s:

φs(x) =


x log x − x + 1, if s = 1,
1−s+sx−x s

s(1−s) , if s 6= 0, 1,
− log x + x − 1, if s = 0.
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Better performance of Tr-GoF

On C4 news-like dataset [Raffel et al., 2020] and OPT-1.3B model [Zhang et al.,
2022] (temperature 0.3).
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Why the Tr-GoF test performs so well?

A question
Why the Tr-GoF test performs so well in the watermark detection problem?

We focus on the Gumbel-max watermark. Similar analysis could be paralleled to
other watermarks.

High-level answers
The Tr-GoF test achieves optimal robustness in two senses:

1. Optimal detection boundary in a decaying watermark-signal case.
2. Optimal detection efficiency rate in a constant corruption case.

!!! No knowledge about the proportion εn and NTP distributions.
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When the robust detection is possible? Optimal detection boundary

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t versus Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t.

Definition (A difficult case)
We consider an extreme case where

εn � n−p for all t and p ∈ (0, 1].
1−maxw∈W Pt,w = ∆n for all t with ∆n � n−q and q ∈ (0, 1).

Motivated by sparse detection problem [Donoho and Jin, 2004, 2015].
If εn = 0 or 1−maxw∈W Pt,w = 0, (1− εn)µ0 + εnµ1,Pt = µ0, i.e., H0 merges
with Hmix

1 .
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When the robust detection is possible? Optimal detection boundary

Theorem (Optimal detection boundary on the (p, q)-plane)

If q + 2p > 1, H0 and Hmix
1 merge asymptotically.

If q + 2p < 1, H0 and Hmix
1 separate asymptotically.

Proof based on Donoho and Jin [2004].
How to achieve robust detection in the regime q + 2p < 1? LRT is impractical
since it requires knowing Pt ’s.

Theorem (Adaptive optimality)
The Type I and II errors of the Tr-GoF test → 0 if n→∞ as long as q + 2p < 1.
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Empirical detection boundaries of Tr-GoF Optimal detection boundary
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Suboptimality of sum-based tests
Consider the sum-based test that rejects H0 if

n∑
t=1

h(Y ars
t ) ≥ n · E0[h(Y ars)] + Θ(1) · n

1
2 · poly(log n).

Theorem (Suboptimality of sum-based tests)
When ε < 1, the detection boundary for general (∆, ε)-agnostic sum-based tests is
q + p = 1/2 (which include h ∈ {hars, hlog, hopt,∆}).
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What about constant corruption? Optimal detection efficiency

Practical settings meet with the constant corruption case, i.e., εn ≡ ε.
The problem is detectable because p = q = 0 (within q + 2p < 1).

Li et al. [2025a] introduces a detection efficiency motion where all NTP
distributions fall within a belief set P:

Definition (P-efficiency Li et al. [2025a])

RP(detection rule) := lim
n→∞

sup
P≤n∈P

−1
n log(Type II error) s.t. Type I error fixed.
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What about constant corruption? Optimal detection efficiency

Theorem (Optimal P∆-efficiency)

Let s ∈ (0, 1), εn ≡ ε ∈ (0, 1] and ∆n ≡ ∆ ∈ (0, 1).

RP∆(any detection rule) = DKL(µ0, (1− ε)µ0 + εµ1,P?
∆

) = RP∆(Tr−GoF)

∆-regular class: P∆ := {P = (P1, · · · ,PK ) : maxk Pk ≤ 1−∆}.
P?

∆ is the least-favorable NTP in P∆.
Optimal efficiency without any prior knowledge.
When ε = 1, this rate is obtained by the sum-based test in [Li et al., 2025a].
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Theoretical P∆-efficiency comparison Optimal detection efficiency
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Proportion estimation

Hypothesis testing under constant mixtures
H0 : Yt ∼ µ0 ∀t versus Hmix

1 : Yt |Pt ∼ (1− ε)µ0 + εµ1,Pt ∀t.

Once we have confirmed that w≤n was generated by the LLM (i.e. reject Hmix
1 ),

how many were produced by the model?
Application: Measure LLMs’ intellectual contribution.

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])
Given independent data Yt ∼ (1− ε)F0 + εFPt for all t, how to estimate ε accurately?
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When ε is identifiable?

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])
Given independent data Yt ∼ (1− ε)F0 + εFPt for all t, how to estimate ε accurately?

ε is not identifiable for green-red list watermark.

Lemma
If Y1:n are i.i.d. from the binary mixture (1− ε)Ber(γ) + εBer(µ) where both ε and µ
are unknown with γ known, ε is not identifiable (as Yt

iid∼ Ber((1− ε)γ) + εµ)).

ε is identifiable for Gumbel-max watermark (and other wm with continuous Y ).

Lemma

If Yt ∼ (1− ε)F0 + εFPt and lim
x→0

F̄P(x)
F0(x) = 0, then ε is identifiable (as

ε = 1− limx→0
F̄ (x)
F0(x) is well-defined).
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How to estimate ε when possible?

Some notations
F̄ (y) = (1− ε)F0(y) + εF̄P(y) for all y ,

F̄ (y) = 1
n
∑n

t=1 P(Yt ≤ y)
F0(y) = µ0(Y ≤ y)
F̄P(y) = 1

n
∑n

t=1 µ1,Pt (Y ≤ y)

Key idea: “Moment” matching
For any weight function v : R 7→ R,

ε =
EF0 [v ]− EF̄ [v ]
EF0 [v ]− EF̄P

[v ] .

Two difficulties: (1) no access to F̄P and (2) which v to use.
Estimate F̄P : collect water-marked outputs from similar LLMs ⇒ empirical F̂P .
Choose v : set heuristically or optimize against a clear performance criterion.
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Proportion estimators

Key observation
For any weight function v : R 7→ R,

ε =
EF0 [v ]− EF̄ [v ]
EF0 [v ]− EF̄P

[v ] .

Collected data
Let F̂ denote the empirical CDF of
observed Y≤n.
Let F̂P approximate the alternative
CDF F̄P (no accuracy guarantees).

Our method: Use F̂P & optimal v

Fixed point of ε̂opt = T̂ (ε̂opt) where

T̂ (ε) =
∫

v̂opt(ε, y)
[
dF0(y)− dF̂ (y)

]
∫

v̂opt(ε, y)
[
dF0(y)− dF̂P(y)

]
v̂opt(ε, y) = 1− ĝ(y)

(1− ε) + εĝ(y) , ĝ(y) = dF̂P(y)
dF0(y) .
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Why optimal?

Lemma (Optimal estimator variance)

If F̂P = F̄P , it follows that

Var
(

EF0 [v ]− EF̂ [v ]
EF0 [v ]− EF̄P

[v ]

)
≤

VarF̄ (v)
n(EF0 [v ]− EF̄P

[v ])2

Lemma (Optimal weight function)

min
v

VarF̄ (v)
[EF0 [v ]− EF̄P

[v ]]2 =
[∫ [1− g(x)]2

(1− ε) + εg(x)dF0(x)
]−1

where the optimal solution (up to constant factors) is

vopt(x) = 1− g(x)
(1− ε) + εg(x) , with g(x) = dF̄P(x)

dF0(x) .
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Why optimal?

Lemma (Optimal weight function)

min
v

VarF̄ (v)
[EF0 [v ]− EF̄P

[v ]]2 =
[∫ [1− g(x)]2

(1− ε) + εg(x)dF0(x)
]−1

=: [τ?n ]2,

where the optimal solution (up to constant factors) is

vopt(x) = 1− g(x)
(1− ε) + εg(x) , with g(x) = dF̄P(x)

dF0(x) .

Theorem (Minimax optimality)

ε̂opt is the minimax optimal estimator up to the estimation error in F̂P , i.e.,

E|ε̂opt − ε| .
τ?n + o(1)√

n + estimation errors due to F̂P
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Empirical performance [Li et al., 2025b]
On arXiv dataset [Cohan et al., 2018] and OPT-13B model [Zhang et al., 2022]
(temperature 1.0).
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Table: Averaged MAEs calculated over 10 ground truth ε values on open-sources model
experiments. Standard deviations are provided in parentheses, and all values are reported in
units of 10−3. Bold numbers denote the best performance.

Models Datasets T Gumbel-max Inverse transform

WPL INI IND OPT WPL INI IND OPT

OPT-1.3B
C4 0.7 123(62) 77(59) 51(28) 39(20) 214(125) 52(52) 43(17) 35(21)
C4 1 254(167) 65(40) 6(4) 4(3) 247(142) 31(31) 5(3) 4(3)

Arxiv 1 275(184) 70(105) 19(8) 11(6) 286(174) 17(14) 18(8) 12(8)

OPT-13B
C4 0.7 119(90) 122(94) 34(19) 26(15) 212(135) 49(28) 25(12) 20(12)
C4 1 195(156) 56(40) 8(5) 5(3) 250(143) 94(43) 70(48) 68(40)

Arxiv 1 253(162) 51(27) 26(9) 17(10) 262(140) 27(15) 21(12) 16(8)

LLaMA-8B
C4 0.7 82(71) 60(34) 90(42) 75(37) 160(113) 60(34) 90(42) 75(37)
C4 1 263(178) 45(22) 6(3) 4(2) 148(77) 30(32) 2(1) 5(4)

Arxiv 1 236(201) 44(18) 18(9) 15(7) 291(176) 32(32) 19(11) 16(6)
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Table: Average MAEs under common modifications, computed over 11 ground-truth ε values
on the C4 dataset with temperature 1. Standard deviations are shown in parentheses, and all
values are scaled by 10−3. Boldface denotes the best performance.

Models Edit types Gumbel-max Inverse transform

WPL INI IND OPT WPL INI IND OPT

OPT-1.3B
Substitution 103(63) 56(24) 3(2) 1(1) 275(109) 46(35) 5(3) 2(1)
Insertion 105(66) 70(35) 8(5) 8(5) 282(84) 38(23) 9(8) 9(5)
Deletion 170(88) 38(27) 71(19) 66(18) 268(108) 35(27) 68(18) 65(19)

OPT-13B
Substitution 64(33) 78(55) 5(5) 1(1) 262(85) 52(28) 4(2) 1(1)
Insertion 60(33) 61(32) 12(4) 8(5) 244(95) 50(40) 8(7) 8(5)
Deletion 100(56) 49(38) 63(15) 66(18) 259(89) 26(23) 72(17) 68(17)

LLaMA-8B
Substitution 127(70) 54(28) 6(5) 1(1) 236(127) 50(37) 3(4) 2(1)
Insertion 126(73) 46(22) 7(4) 2(1) 243(121) 18(15) 8(6) 3(2)
Deletion 201(60) 34(22) 56(24) 38(20) 270(109) 54(47) 54(21) 36(19)
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Concluding remarks

Robust Detection of Watermarks for Large Language Models Under Human Edits
(https://arxiv.org/abs/2411.13868)
Optimal Estimation of Watermark Proportions in Hybrid AI-Human Texts
(https://arxiv.org/abs/2506.22343)

The Tr-GoF test achieves adaptive optimality for robust detection, whereas
existing sum-based tests fail to do so.
It also achieves the highest P∆-efficiency without requiring any prior knowledge.
The watermark proportion is not estimable for every watermark—for example, it
is not identifiable under the green–red list watermark.
When it is estimable, the watermark proportion can be accurately
recovered—even without access to next-token prediction (NTP) distributions.
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Backup Slides



Green-red list watermark [Kirchenbauer et al., 2023]
Randomly split vocabulary in to green (favored) and red (disfavored) parts.
Secretly boost the prob. of green tokens, i.e., Pwm

green ∝ eδPgreen and Pwm
red ∝ Pred.

If the observed frequency of green tokens is larger than expected, claim
watermarked.

Figure from the tutorial: https://leililab.github.io/llm_watermark_tutorial/
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Detection for Gumbel-max watermark

Definition (Default detection for Gumbel-max)
Aaronson [2023] rejects H0 if the following Thars is larger than a given threshold:

Thars =
n∑

t=1
hars(Y ars

t ) where hars(y) = − log(1− y).

Under H0, hars(Y ars
t ) iid∼ Exp(1) so that E0[Tars] = n.

Under H1, E1[Tars] ≥ n +
(
π2

6 − 1
)∑n

t=1 E1Ent(Pt) where Ent(Pt) is Shannon
entropy defined by −

∑K
k=1 Pt,k log Pt,k .

Using the same Y ars
t , Fernandez et al. [2023] finds that − log(1− y) works better

than the variant log y . Li et al. [2025a] proposes log(y
1−∆

∆ + y
∆

1−∆ ) when ∆ < 0.5.
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