
Optimal Robust Detection for Gumbel-Max Watermarks
Under Modification

Xiang Li

University of Pennsylvania

Oct. 9, 2024



Do you trust the students?
Did the student complete the homework independently, or did an LLM assist?
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Peer review or LLM-assisted review?

I Liang et al. [2024]: 6.5% to
16.9% of some ML conference
reviews substantially modified by
LLMs.

I Is the review genuinely authored
by the reviewer or significantly
contributed by an LLM?
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An emerging academic integrity issue
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Is it possible to (reliably) detect LLM-generated text?

Applications
I Fostering original work in education and maintaining academic integrity
I Preventing fraud and deception
I Preserving the quality of data for training future AI models

I Ad hoc methods leverage context, linguistic patterns, and other markers:
I Classifiers using synthetic and human text data [GPTZero, 2023, ZeroGPT, 2023]
I Log probability curvature [Mitchell et al., 2023, Bao et al., 2023]
I Divergent n-gram analysis [Yang et al., 2023]

I These methods are inaccurate, unreliable [Weber-Wulff et al., 2023], and often
biased [Krishna et al., 2024, Sadasivan et al., 2023, Liang et al., 2023]

I Worse, as AI models evolve, LLM-generated text increasingly resembles
human-written text!
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A principled approach: Watermarking LLM-generated text

Hope: LLMs are probabilistic machines, and we control how they generate text.

Watermarking embeds subtle statistical signals into LLM-generated text [Kirchenbauer
et al., 2023a]
I Signal: Dependence between observed text and certain hidden information for

generating text.
I These signal patterns are unlikely to appear in human-written text.
I Watermarking enables provable detection of LLM-generated text.
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A (very) active research area with practical importance
A Zoo of Watermarking Schemes (since January 2023):

Kirchenbauer et al. [2023a], Aaronson [2023], Kuditipudi et al. [2023], Zhao et al. [2024b],
Fernandez et al. [2023], Christ et al. [2023], Wu et al. [2023], Hu et al. [2023], Kirchenbauer
et al. [2023b], Zhao et al. [2024a]......

I Biden AI executive order.
I OpenAI, Google, Meta, and

other tech giants have pledged
to watermark AI content.
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Statistical challenges/opportunities in watermark research

Control/estimation of errors
I False positive rate/Type I error:

Mistakenly detecting human-written
text as LLM-generated.

I False negative rate/Type II error:
Incorrectly classifying LLM-generated
text as human-written.

Evaluation of watermarks
1© Comparing efficiency of different

watermarking schemes.
2© Finding more or (most) powerful

detection rules.
3© Robust watermark detection.
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Our previous work

On Goal 1© and 2©
https://arxiv.org/pdf/2404.01245

What we did previously
I A framework unifying

different watermarks.
I Efficiency notions.
I Optimal sum-based rules.
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This talk (On Goal 3©, coming soon)
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Outline

Preliminaries on Gumbel-max watermarks

Robust detection under modification

Robust detection method

Theoretical investigation

Summary
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Autoregressive generation

I LLMs are probabilistic machines.
I Let W be the vocabulary and w a token therein.
I An LLMM generates each token sequentially by sampling from a probability

distribution conditioned on previous tokens:

wt ∼ Pt where Pt =M(w1:(t−1)) is a distribution on W.

I The categorical distribution Pt is referred to next-token prediction (NTP)
distribution.
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Autoregressive generation: An illustration

I saw a cat on a

Mat       25%

Carpet  13%

Boat      5%

Plane     3%

….         …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

 

w7
carpet

Sampling

P7 = (P7,1, ⋯, P7,K)
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Watermarked generation

I saw a cat on a

Mat       25%

Carpet  13%

Boat      5%

Plane     3%

….         …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

 

w7 = "(P7, ζ7)
carpet

Compute

ζ7 = #(w3:6, Key)

P7 = (P7,1, ⋯, P7,K)

pseudorando

I Given a text w1:n = (w1, . . . ,wn), the detector recovers ζ1:n = (ζ1, . . . , ζn) using
the knowledge of A and Key.

I Watermark signal is the dependence of each wt on ζt .
12 / 40



A baby watermark

I Let W = {0, 1},Pt = (Pt,0,Pt,1), ζt be iid copies of U(0, 1)
I Decoder

wt = S(Pt , ζt) =
{
0 if ζt ≤ Pt,0

1 otherwise

Unbiasedness

Pζ(S(P, ζ) = w) = Pw

for w = 0, 1.

Embedded signal
I If ζt is large, wt is more likely to be 1 instead of 0.
I Statistic for detection:

n∑
t=1

(2wt − 1)(2ζt − 1).

I Statistically, a watermark = a sampling method from a multinomial distribution P.
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Our focus: Gumbel-max watermark
Definition (Unbiased)
We say the decoder S is unbiased if for any P and w ∈ W,

Pζ∼U(Ξ)(S(P, ζ) = w) = Pw .

Gumbel-max trick [Gumbel, 1948]
Let Ξ = [0, 1]K and ζ = (U1,U2, . . .UK ) ∈ Ξ with Uk ’s i.i.d. copies of U(0, 1). The
Gumbel-max trick asserts that

arg max
w∈W

logUw
Pw

∼ P ≡ (Pw )w∈W .

Gumbel-max watermark [Aaronson, 2023]

Sgum(P, ζ) = arg max
w∈W

{ 1
Pw
· logUw

}
where ζ = (U1, . . . ,U|W|).
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Detection framework from [Li et al., 2024]

Find a pivotal statistic Yt = Y (wt , ζt) such that
I Under H0, wt ⊥ ζt so that Yt ∼ µ0 regardless of Phuman,t .
I Under H1, wt = S(ζt ,Pt) so that Yt ∼ Y (S(ζt ,Pt), ζt). Hence, Yt |Pt ∼ µ1,Pt .

Previous formulation in [Li et al., 2024]

H0 : Yt
i .i .d .∼ µ0 ∀t ∈ [n] versus H1 : Yt |Pt ∼ µ1,Pt ∀t ∈ [n].

I A score function h : R→ R introduces a detection rule Th =
∑n

t=1 h(Yt) which
reject H0 if Th is larger than a threshold.

Limitation
Each token in the text w1:n are all human-written or LLM-generated.
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A statistical model for user modification
A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.

I
w̃1

utilize
w̃2

ChatGPT
w̃3

to
w̃4

facilely
w̃5

write
w̃6

...

...

facilely
w5

write ...
...

help
w5

polish ...
...

help
w5

facilely write ...
...

facilely write
w5

...

...

I
w1

use
w2

ChatGPT
w3

to
w4

No
Modifi

cati
on

Substitution

Insertion

Deletion

Human-modified

Watermarked

t̃ = 5

t̃ = 6
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The formal procedure
1: Input: The watermarked text w̃1:n0 generated by w̃t = S(P̃t , ξ̃t) and P̃t =M(w̃1:(t−1)).
2: Initialize: w1:0 = ∅, t = t0 = 1, and π is the distribution that makes S unbiased.
3: while the modification is not complete do one of the feasible operators:
4: Try to determine wt by inspecting the referenced token w̃t0 .
5: if the user approves w̃t0 then
6: No modification: Set wt = w̃t0 and update (t, t0)← (t + 1, t0 + 1).
7: else if the user prefers to generate wt themselves then
8: Generate a new token: wt = S(Ph

t , ξ
h
t ) where Ph

t = H(w1:(t−1)) and ξh
t

i.i.d.∼ π.
9: Substitution: Update (t, t0)← (t + 1, t0 + 1).

10: Insertion: Update (t, t0)← (t + 1, t0).
11: else if the user searches for a better alternative in the watermarked text then
12: Deletion: Update (t, t0)← (t, t0 + 1). Note that wt remains undetermined at this

stage.
13: end if
14: end while
15: Return: The modified text w1:t .
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How token modification changes the distribution of Yt?
A key fact
I ζt = A(wt−m:t−1,Key) uses previous m tokens and Yt = Y (wt , ζt) uses the

nearest m + 1 tokens.
I If consecutive m (or m + 1) tokens remain unchanged, the value of ζt (or Yt) is

preserved.

Consider the watermarked text w̃1:n0 . Suppose for some t and t̃,
Case A If wt is watermarked and ζt are preserved, i.e., w(t−m):t = w̃(̃t−m):̃t ,

Yt = Y (wt , ξt) = Y (w̃t̃ , ξ̃̃t) = Ỹt̃ =⇒ Yt | P̃t̃ ∼ µ1,P̃̃
t
.

Case B If wt is human-written, no matter whether ζt is preserved, wt ⊥ ζt .
Case C If wt is watermarked but ζt is changed, wt ⊥ ζt .
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How token modification changes the distribution of Yt?
We always have wt ⊥ ζt or Yt | Pt ∼ µ1,Pt for some Pt .

w

ζ

Y ∼ µ0

H0

Independent

w

ζ

Y | P ∼ µ1,P

H1

S(P , ·)

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t ∈ [n] versus Hmix

1 : Yt |(Pt , ηt) ∼ (1− ηt)µ0 + ηtµ1,Pt ∀t ∈ [n].

where ηt ∈ {0, 1} is a binary random process due to user modifications.
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Examples of the binary process ηt

I t̃ = the longest scanned length in w̃1:n0 before wt is finalized.
I Xt := 1wt =w̃̃

t
indicate whether the user changed the latest watermarked token w̃t̃

when determining wt .
I Following the above procedure, one can show that

ηt = 1w(t−m):t =w̃
(̃t−m):̃t

=
t∏

j=(t−m)
Xj .

Two types of modifications

I I.i.d.: Xi
i .i .d .∼ Ber(a), P(ηt = 1) = (1− a)m+1.

I Markov stationary: P(ηt = 1) = Eηt = E
∏m+1

i=1 Xi .
I Leave room for further modeling.
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How could we solve the new problem?

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t ∈ [n] versus Hmix

1 : Yt |(Pt , ηt) ∼ (1− ηt)µ0 + ηtµ1,Pt ∀t ∈ [n].

where ηt ∈ {0, 1} is a binary random process due to user modifications.

I Difficulties: We know nothing about ηt or Pt .

I Hope: We know everything about the null H0.
I Focus to determine whether the observed Y1, . . . ,Yn follows µ0.
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Goodness-of-fit (GoF) test [Jager and Wellner, 2007]

I The empirical CDF of p-values: Fn(r) = 1
n
∑n

t=1 1pt≤r where pt = 1− Yt .
I Introduce a scalar convex function indexed by s:

φs(x) =


x log x − x + 1, if s = 1,
1−s+sx−x s

s(1−s) , if s 6= 0, 1,
− log x + x − 1, if s = 0.

I The φs -divergence between Ber(u) and Ber(v) is

Ks(u, v) = vφs

(u
v

)
+ (1− v)φs

(1− u
1− v

)
.

I For s ∈ [−1, 2], we reject H0 if nS+
n (s) = sup

r∈(0,1)
nKs(Fn(r), r)1Fn(r)>r is larger

than a given critical value.
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Formal detection procedure

1: Input: Modified text w1:n, hash function A, secret key Key, pivot statistic
function Y .

2: For t = 1, 2, . . . , n, compute pseudorandom ξt = A(w(t−m):(t−1),Key).
3: For t = 1, 2, . . . , n, compute the pivot statistic Yt = Y (wt , ξt).
4: For t = 1, 2, . . . , n, calculate the p-value as pt = 1− Yt .
5: Sort the p-values: p(1) < p(2) < . . . < p(n) and set p(n+1) = 1.
6: Compute the test statistic by

S+
n (s) = sup

t
Ks(t/n, p(t))1t/n≥p(t)

.

7: Claim: Text w1:n is modified by LLM if nS+
n (s) is too large; otherwise, it is

human-written.
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Performance on real-dataset
I OPT-1.3B [Zhang et al., 2022], newslike C4-dataset [Raffel et al., 2020].
I 0.1 (low) temperature.

0 200 400
Unwatermarked text length

0.040

0.045

0.050

0.055

0.060

T
y
p

e
I

er
ro

r

0 200 400
Watermarked text length

0.2

0.4

0.6

0.8

T
y
p

e
II

er
ro

r

10−3 10−1

Type I error

10−3

10−2

10−1

100

T
y
p

e
II

er
ro

r

n = 200 s = 2

s = 1.5

s = 1

s = 0.5

s = 0

hlog

hars

hopt,0.3

hopt,0.2

hopt,0.1

22 / 40



Performance on real-dataset
I OPT-1.3B [Zhang et al., 2022], newslike C4-dataset [Raffel et al., 2020].
I 0.7 (high) temperature.
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Under controllable random substitution
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Under controllable random deletion
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Under controllable random insertion
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Under controllable random modifications

Task Modification s = 1 s = 1.5 s = 2 hlog hars hopt,0.3 hopt,0.2 hopt,0.1

Poem
Recitation

Substitution 30.6 31.96 31.23 24.62 26.59 26.39 26.86 23.72

Insertion 33.14 35.22 35.92 26.28 27.71 27.57 27.98 23.51

Deletion 46.14 47.93 49.42 39.24 29.08 40.89 42.69 22.36

Poem
Generation

Substitution 40.08 41.98 42.58 29.51 41.19 32.44 33.9 35.74

Insertion 44.51 46.95 48.7 30.7 45.44 33.19 35.52 39.68

Deletion 45.5 47.76 48.66 32.02 47.36 34.85 37.47 39.95

Table: The modification tolerance limits (%) for detection methods on the OPT-1.3B model.
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Under non-controllable round-trip translation attack
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Why the GoF test performs so well?

A question
Why the GoF test performs so well in the robust detection problem?

I We focus on the Gumbel-max watermark. Similar analysis could be paralleled to
other watermarks.

High-level answers
The GoF test achieves optimal robustness in two senses:

1. Optimal detection boundary in a decaying watermark-signal case.
2. Optimal detection efficiency rate in a constant corruption case.
!!! The GoF test doesn’t require any prior knowledge.
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When the robust detection is possible?

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t ∈ [n] versus Hmix

1 : Yt |(Pt , ηt) ∼ (1− ηt)µ0 + ηtµ1,Pt ∀t ∈ [n].

A difficulty case
We consider an extreme case where
I Eηt = εn for all t ∈ [n] with εn � n−p and p ∈ (0, 1].
I 1−maxw∈W Pt,w = ∆n for all t ∈ [n] with ∆n � n−q and q ∈ (0, 1).

I Motivated by sparse detection problem [Donoho and Jin, 2004, 2015].
I If Eηt = 0 or 1−maxw∈W Pt,w = 0, (1− ηt)µ0 + ηtµ1,Pt = µ0, i.e., H0 merges

with Hmix
1 .
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When the robust detection is possible?

Theorem

I If q + 2p > 1, H0 and Hm
1 merge asymptotically. For any test, the sum of Type I

and Type II error probabilities is 1 as n→∞.
I If q + 2p < 1, H0 and Hm

1 separate asymptotically. Furthermore, for the
likelihood-ratio test that rejects H0 if the log-likelihood ratio is positive, the sum
of Type I and Type II error probabilities tends to 0 as n→∞.

=⇒ Robust detection is impossible for small watermark signal, i.e., q + 2p > 1.
=⇒ With sufficient watermark signal, detection is possible with the likelihood-ratio

test an optimal rule, i.e., q + 2p < 1.
!!! The likelihood-ratio test is impractical as it needs to know Pt ’s and εn.
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Optimal detection boundary

Target
An ideal optimal detection method should work as long as q + 2p < 1 and don’t
requires the knowledge of Pt ’s and εn.

Our finding
The GoF test achieves this optimal detection boundary.

Theorem (Adaptive optimality)
If the critical value � log log n, the Type I and II errors of the GoF test → 0 if n→∞
as long as q + 2p < 1 and s ∈ [−1, 2].

I Optimal adaptivity without any prior knowledge.
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Empirical detection boundaries v.s. theoretical q + 2p = 1
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Failure of all sum-based tests
I Consider the sum-based test in the form that rejects H0 if

n∑
t=1

h(Yt) ≥ n · E0h(Y ) + Θ(1) · n
1
2 · poly(log n).

Theorem
The detection boundary for sum-based tests is q + p = 1/2 for all non-decreasing,
(∆n, εn)-free, and continuous h.

Corollary
The detection boundary for the existing score function h ∈ {hars, hlog, hind, h?gum,∆}
with both δ,∆0 ∈ (0, 1) is q + p = 1/2.

I Sum-based tests fail to achieve adaptivity.
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Failure of sum-based tests
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What about constant corruption?
I The optimal detection boundary cares about the diminishing region where the

watermark signal decays with the text length n.
I Practical settings meet with the constant corruption case, i.e., εn ≡ ε.
I The problem is detectable because p = q = 0 (within q + 2p < 1).

I Use P-efficiency: the rate of exponential decrease in Type II errors for a fixed
significance level α and the worst-case alternative within a belief set P.

Definition (P-efficiency [Li et al., 2024])

Let γn,α satisfy P0(Sn ≥ γn,α) = α for n ≥ 1. For a given belief set P, we define the
following limit (if exists) as the P-efficiency of Sn and denote it by RP(Sn):

lim
n→∞

sup
Pt∈P,∀t∈[n]

1
n logP1(Sn ≤ γn,α) = −RP(Sn).
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What about constant corruption?

Theorem (Optimal P∆-efficiency)

Let s ∈ (0, 1), εn ≡ ε ∈ (0, 1] and ∆n ≡ ∆ ∈ (0, 1).

RP∆(any detection rule) ≤ DKL(µ0, (1− ε)µ0 + εµ1,P?
∆

) ≤ RP∆(GoF)

where P?
∆ is the least-favorable NTP distribution defined by

P?
∆ =

(
1−∆, . . . , 1−∆︸ ︷︷ ︸
b 1
1−∆ c times

, 1− (1−∆) ·
⌊ 1
1−∆

⌋
, 0, . . .

)
.

I Upper and lower bounds.
I When ε = 1, this rate is obtained by the sum-based test defined by h?gum,∆.
I Optimal efficiency without any prior knowledge.
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Theoretical P∆-efficiency comparison
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Summary

I Model the robust watermark detection problem as mixture detection problem.
I GoF tests achieve the optimal detection boundary and the optimal P∆-efficiency

without any prior knowledge.
I GoF tests outperform other detection methods in low-temperature cases and

perform comparably in high-temperature cases.

Future directions
I Other optimal detection rule?
I Optimal for other watermarks?
I Estimate the non-null fraction ε.
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