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Do you trust the students?
Did the student complete the homework independently, or did an LLM assist?
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Peer review or LLM-assisted review?

» Liang et al. [2024]: 6.5% to
16.9% of some ML conference

reviews substantially modified by
LLMs.

> |s the review genuinely authored
by the reviewer or significantly
contributed by an LLM?
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An emerging agademic integrity issue

journal homepage: www.sciencedirect.com/journal/surfaces-and-interfaces

Surfaces and Interfaces

The three-dimensional porous mesh structure of Cu-based
metal-organic-framework - aramid cellulose separator enhances the
electrochemical performance of lithium metal anode batteries

ARTICLE INFO

ABSTRACT

eywords:
Lithium metal battery
Lithium dendrites
‘CuMOF-ANFs separator

1. Introduction

Lithium metal, due to its advantages of high theoretical capacity, low density and low electrochemical reaction
potential, is used as a negative electrode material for batteries and brings great potential for the next generation
of energy storage systems. However, the production of lithium metal dendrites makes the battery life low and
poor safety, so lithium dendrites have been the biggest problem of lithium metal batteries. This study shows that
the larger specific surface area and more pore structure of Cu-based metal-organic-framework - aramid cellulose
(CuMOF-ANFs) composite separator can help to inhibit the formation of lithium dendrites. After 110 cycles at 1
mA/em?, the discharge capacity retention rate of the Li-Cu battery using the CuMOF-ANFs separator is about 96
9%. Li-Li batteries can continue to maintain low hysteresis for 2000 h at the same current density. The results
show that CuMOF-ANFs composite membrane can inhibit the generation of lithium dendrites and improve the
cycle stability and cycle life of the battery. The three-dimensional (3D) porous mesh structure of CuMOF-ANFs
separator provides a new perspective for the practical application of lithium metal battery.

chemical stability of the separator is equally important as it ensures that
the separator remains intact and does not react or degrade in the pres-

Certainly, here is a possible introduction for your topic:Lithium-  ence of the or other battery A chemically stable
metal batteries are promising candidates for high-energy-density separator helps to prevent the formation of reactive species that can
rechargeable batteries due to their low electrode potentials and high  further promote dendrite growth. Researchers are actively exploring
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Is it possible to (reliably) detect LLM-generated text?

Applications
» Fostering original work in education and maintaining academic integrity
» Preventing fraud and deception

» Preserving the quality of data for training future Al models
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Is it possible to (reliably) detect LLM-generated text?

Applications

| 2
| 2
| 2

Fostering original work in education and maintaining academic integrity
Preventing fraud and deception

Preserving the quality of data for training future Al models

Ad hoc methods leverage context, linguistic patterns, and other markers:
» Classifiers using synthetic and human text data [GPTZero, 2023, ZeroGPT, 2023]
> Log probability curvature [Mitchell et al., 2023, Bao et al., 2023]
> Divergent n-gram analysis [Yang et al., 2023]
These methods are inaccurate, unreliable [Weber-Wulff et al., 2023], and often
biased [Krishna et al., 2024, Sadasivan et al., 2023, Liang et al., 2023]

Worse, as Al models evolve, LLM-generated text increasingly resembles
human-written text!
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A principled approach: Watermarking LLM-generated text

Hope: LLMs are probabilistic machines, and we control how they generate text. J
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A principled approach: Watermarking LLM-generated text

Hope: LLMs are probabilistic machines, and we control how they generate text. )

Watermarking embeds subtle statistical signals into LLM-generated text [Kirchenbauer
et al., 2023a]

» Signal: Dependence between observed text and certain hidden information for
generating text.

P These signal patterns are unlikely to appear in human-written text.
» Watermarking enables provable detection of LLM-generated text.
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A (very) active research area with practical importance

A Zoo of Watermarking Schemes (since January 2023):
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Kirchenbauer et al. [2023a], Aaronson [2023], Kuditipudi et al. [2023], Zhao et al. [2024b],
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A Zoo of Watermarking Schemes (since January 2023):
Kirchenbauer et al. [2023a], Aaronson [2023], Kuditipudi et al. [2023], Zhao et al. [2024b],
Fernandez et al. [2023], Christ et al. [2023], Wu et al. [2023], Hu et al. [2023], Kirchenbauer

et al. [2023b], Zhao et al. [2024a]......

R R AR

> Biden Al executive order.

ARTIFICIAL » OpenAl, Google, Meta, and

INTELLIGENCE ‘ : other tech giants have pledged
SAFETY, SECURITY, AND TRUST SR to watermark Al content.
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Statistical challenges/opportunities in watermark research

Control/estimation of errors

> False positive rate/Type | error:
Mistakenly detecting human-written
text as LLM-generated.

> False negative rate/Type Il error:
Incorrectly classifying LLM-generated
text as human-written. )
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Statistical challenges/opportunities in watermark research

Control/estimation of errors

> False positive rate/Type | error:
Mistakenly detecting human-written
text as LLM-generated.

> False negative rate/Type Il error:
Incorrectly classifying LLM-generated
text as human-written.

Evaluation of watermarks

(@ Comparing efficiency of different
watermarking schemes.

2 Finding more or (most) powerful
detection rules.

3 Robust watermark detection.
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Our previous work

On Goal @ and 2 A Statistical Framework of Watermarks for Large Language
https: //arxiv.org/pdf/2404.01245 Models: Pivot, Detection Efficiency and Optimal Rules

Xiang Li* Feng Ruan' Huiyuan Wang? Qi Long® Weijie J. Suf

What we did previously March 28, 2024
» A framework unifying
different watermarks. Absbract
Since ChatGPT was introduced in November 2022, embedding (nearly) unnoticeable statistical
| 3 Efflciency nOtIOI'lS signals into text generated by large language models (LLMs), also known as watermarking, has

been used as a principled approach to provable detection of LLM-generated text from its
B human-written counterpart. In this paper, we introduce a general and flexible framework for
> O pt| m aI sum- based ru |eS. reasoning about the statistical efficiency of watermarks and designing powerful detection rules.
o Inspired by the hypothesis testing formulation of watermark detection, our framework starts
by selecting a pivotal statistic of the text and a secret key—provided by the LLM to the
verifier—to control the false positive rate (the error of mistakenly detecting human-written
text as LLM-generated). Next, this framework allows one to evaluate the power of watermark
detection rules by obtaining a closed-form expression of the asymptotic false negative rate (the
error of incorrectly classifying LLM-generated text as human-written). Our framework further
reduces the problem of determining the optimal detection rule to solving a minimax optimization
program. We apply this framework to two representative watermarks—one of which has been
internally implemented at OpenAl—and obtain several findings that can be instrumental in
guiding the practice of implementing watermarks. In particular, we derive optimal detection
rules for these watermarks under our framework. These theoretically derived detection rules are
demonstrated to be competitive and sometimes enjoy a higher power than existing detection
approaches through numerical experiments. 8/40




This talk (On Goal 3), coming soon)

Optimal Robust Detection for Gumbel-max Watermarks Under
Modification

Xiang Li* Feng Ruan!  Huiyuan Wang? Qi Long®  Weijie J. Sul
October 8, 2024

Abstract

This paper examines how to robustly detect statistical language watermarks when users
corrupt text generated by large language models (LLMs). We develop a statistical framework
for robust watermark detection by modeling the corresponding hypothesis testing problem as
a mixture detection problem. We propose using a family of goodness-of-fit (GoF) tests for
this purpose, showing that they achieve optimal robustness in two ways: they not only reach
the optimal detection boundary when the watermark signal diminishes, but also attain the
highest detection efficiency rate in cases of constant modification. In contrast, existing sum-based
detection methods for Gumbel-max watermarks fail to achieve these two optimalities without
additional problem-specific information. Simulations validate our theoretical guarantees, and
real-data experiments demonstrate that our method achieves superior or comparable performance

in maintaining watermark detectability, especially in low-temperature settings. 8 /40



Outline

Preliminaries on Gumbel-max watermarks
Robust detection under modification
Robust detection method

Theoretical investigation

Summary
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Preliminaries on Gumbel-max watermarks
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Autoregressive generation

» LLMs are probabilistic machines.
> Let W be the vocabulary and w a token therein.

> An LLM M generates each token sequentially by sampling from a probability
distribution conditioned on previous tokens:

wy ~ Py where Py = M(wy.(;_1)) is a distribution on W.

» The categorical distribution Py is referred to next-token prediction (NTP)
distribution.
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Autoregressive generation: An illustration

Next Token, w; ~ P,

| saw acatona

P
W1:6 = [W], W2’ W3’ W4’ Wj’ W6]

=Py, o,

Mat  25%
éCarpet 13%
“Boat 5%
Plane 3%

 Sampling ]
—— > carpet
iﬁ
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Watermarked generation

Next Token, w; ~ P,

Mat  25%
Carpet 13%
| saw a caton a > “Boat By ———.carpet

pseudorando

(= A0vy5 Key)

> Given a text wy., = (wi, ..., w,), the detector recovers (1.n = ((1, ..., Cn) using
the knowledge of A and Key.
> Watermark signal is the dependence of each w; on (;.
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A baby watermark

» Let W ={0,1}, Pt = (Pt,0, Pt1), ¢t be iid copies of ¢4/(0, 1)

» Decoder
0 ¢ <Pipo

1 otherwise

Wy = S(Pt,Ct) = {
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A baby watermark

» Let W ={0,1}, Pt = (Pt,0, Pt1), ¢t be iid copies of ¢4/(0, 1)
» Decoder

0 ¢ <Pipo
1 otherwise

Wi = S(PnCt) = {

. Embedded signal
Unbiasedness . . . )
> If (; is large, w; is more likely to be 1 instead of 0.

» Statistic for detection:
]P)C(S(P>C) = W) = PW

for w =0, 1. Z(2Wt —1)(2¢ —1).

t=1

» Statistically, a watermark = a sampling method from a multinomial distribution P.
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Our focus: Gumbel-max watermark

We say the decoder S is unbiased if for any P and w € W,

Peyz)(S(P,¢) = w) = Py,.
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Our focus: Gumbel-max watermark

Definition (Unbiased)
We say the decoder S is unbiased if for any P and w € W,

Periz)(S(P, () = w) = Py,

Gumbel-max trick [Gumbel, 1948] |

Let == [0,1]% and ¢ = (U1, Us, ... Uk) € = with Uy's i.i.d. copies of U(0,1). The
Gumbel-max trick asserts that

log U,
arg max ~
wew w

Gumbel-max watermark [Aaronson, 2023]

um 1
S8 (P,C):argmrpeavé{ﬂv-logUW} where ¢ = (U1, ..., Up)).
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Detection framework from [Li et al., 2024]

Find a pivotal statistic Y; = Y(w, () such that
» Under Hy, w; L (; so that Y; ~ po regardless of Pphyman,t-
» Under Hy, wy = S((¢, Pt) so that Y: ~ Y(S(Ce, Pt), Ce). Hence, Y|P ~ p1 p,.
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Detection framework from [Li et al., 2024]

Find a pivotal statistic Y; = Y(w, () such that

» Under Hy, w; L (; so that Y; ~ po regardless of Pphyman,t-

» Under Hy, wy = S((¢, Pt) so that Y: ~ Y(S(Ce, Pt), Ce). Hence, Y|P ~ p1 p,.
Previous formulation in [Li et al., 2024] J

Ho: Y; "k po Yt € [n] versus Hi : Y¢|Py ~ pap, Vt € [n].

» A score function h: R — R introduces a detection rule T = >"7_; h(Y:) which
reject Hy if Ty is larger than a threshold.

Limitation
Each token in the text wy., are all human-written or LLM-generated. J
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Outline

Robust detection under modification
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A statistical model for user modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.
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A statistical model for user modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.

I utilize ChatGPT to facilely write
Watermarked — —~ po ~ ~ ~
w1 w2 ws w4 wWs We
g\(;a“(’“ :fa_ci_l(;l)_/: write
Yo Ao L ows
Substitution : help ! polish
I ChatGPT ¢ ws
Human-modified use & N : ot )
w1 w2 w3 Wa 'facilely, write
Li=5_]
faeilely  write!
Lt=6 _ ws
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The formal procedure

1: Input: The watermarked text wy.,, generated by w; = S(ﬁt,é}) and P, = M(Wy.(t-1))-
2: Initialize: wi.g =0, t = to = 1, and 7 is the distribution that makes S unbiased.

3: while the modification is not complete do one of the feasible operators:

4: Try to determine w; by inspecting the referenced token wy,.

5: if the user approves w;, then

6: No modification: Set w; = wy, and update (t,ty) < (t + 1, + 1).

7: else if the user prefers to generate w; themselves then

8: Generate a new token: w; = S(PP, 1) where P! = H(wy.(;—1)) and &} R
o: Substitution: Update (t, tp) <+ (t+ 1,1t + 1).
10: Insertion: Update (t,ty) « (t + 1, to).
11: else if the user searches for a better alternative in the watermarked text then
12: Deletion: Update (t, t) < (¢, to + 1). Note that w; remains undetermined at this

stage.

13: end if

14: end while
15: Return: The modified text wy.;.
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How token modification changes the distribution of Y;?

A key fact

» (; = A(Wi—m:t—1, Key) uses previous m tokens and Y; = Y(wy, (;) uses the
nearest m + 1 tokens.

» |If consecutive m (or m + 1) tokens remain unchanged, the value of (; (or Y;) is
preserved.
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How token modification changes the distribution of Y;?

A key fact

» (¢ = A(Wi—m:t—1, Key) uses previous m tokens and Y: = Y (wy, ;) uses the
nearest m + 1 tokens.

» If consecutive m (or m+ 1) tokens remain unchanged, the value of (; (or Y) is
preserved.

Consider the watermarked text wy.n,. Suppose for some t and t,

Case A If w; is watermarked and (; are preserved, i.e., W(t_m).s = W= m)E

Ye=Y(we,&) =Y &§) =Y = Ve Prop

Case B If w; is human-written, no matter whether (; is preserved, w; L (.

Case C If w; is watermarked but (; is changed, w; L (.
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How token modification changes the distribution of Y;?
We always have wy L ¢ or Y | Py ~ 1 p, for some P:.

Independent Y ~ o S(P,-) Y|P~mp

H() Hl
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Hypothesis testing under mixtures

Ho : Yr ~ po Vt € [n] versus  HX : Yy|(Pe,ne) ~ (1 — ne)po + nepa,p, V't € [n].

where 1 € {0,1} is a binary random process due to user modifications.

18 / 40



Examples of the binary process 7;

> t = the longest scanned length in wy.p, before w; is finalized.

> X::=1, _ indicate whether the user changed the latest watermarked token w;

when determining wg.
» Following the above procedure, one can show that
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Examples of the binary process 7;

> t = the longest scanned length in wy.p, before w; is finalized.

> X::=1, _ indicate whether the user changed the latest watermarked token w;

when determining wg.
» Following the above procedure, one can show that

Two types of modifications

> Lid: X "5 Ber(a), P(ne = 1) = (1 — a)™+L,

» Markov stationary: P(n; = 1) = En, = ET][™! X;.

> Leave room for further modeling.
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Outline

Robust detection method
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How could we solve the new problem?

Hypothesis testing under mixtures

Ho : Yr ~ po Vt € [n] versus  H™X : Yy|(Pe,ne) ~ (1 — e )po + nepa,p, V't € [n].

where 1, € {0,1} is a binary random process due to user modifications.

» Difficulties: We know nothing about n; or P;.
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How could we solve the new problem?

Hypothesis testing under mixtures

Ho : Yr ~ po Vt € [n] versus  H™X : Yy|(Pe,ne) ~ (1 — e )po + nepa,p, V't € [n].

where 1, € {0,1} is a binary random process due to user modifications.

» Difficulties: We know nothing about n; or P;.
> Hope: We know everything about the null Hp.

» Focus to determine whether the observed Yi,..., Y, follows ug.
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Goodness-of-fit (GoF) test [Jager and Wellner, 2007]
> The empirical CDF of p-values: Fn(r) =137 1, <, where p, =1 — Y.
» Introduce a scalar convex function indexed by s:

xlogx — x +1, if s=1,
os(x) = 1_55&7?5_)’(57 if s#£0,1,
—logx+x—1, if s=0.

» The ¢s-divergence between Ber(v) and Ber(v) is

Kol v) = vos (£) + =)o (2.

1—-v
> For s € [-1,2], we reject Hp if nS;(s) = sup nKs(F,(r), r)1g, >, is larger

re(0,1)
than a given critical value.
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Formal detection procedure

AR

Input: Modified text wy.,, hash function A, secret key Key, pivot statistic
function Y.

For t =1,2,...,n, compute pseudorandom &; = A(W(¢_pm).(t—1), Key).
For t =1,2,...,n, compute the pivot statistic Y; = Y (w, ).

Fort =1,2,...,n, calculate the p-value as p, =1 — Y;.

Sort the p-values: p(;) < ppy < ... <Pp(n and set p, 1) = 1.

Compute the test statistic by

5;1’—(5) = SL:p Ks(t/nv p(t))lt/an(t)'

Claim: Text wi., is modified by LLM if nS, (s) is too large; otherwise, it is
human-written.
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Performance on real-dataset

» OPT-1.3B [Zhang et al., 2022], newslike C4-dataset [Raffel et al., 2020].

» 0.1 (low) temperature.

Type I error

0.060

0.055 1

0.050 +H#

0.045 1

= o o
IS = )
L L |

Type II error

e
o
h

Type II error

H
9

H
<
L

1073 4

T

0.040

oA

200 100
Unwatermarked text length

0

Watermarked text length

103 10!

Type I error

5=
s=1.5
s=1
s=0.5
5=10
Nog
Rars
Ropt,0.3
Ropt,0.2

hopt0.1
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Performance on real-dataset

» OPT-1.3B [Zhang et al., 2022], newslike C4-dataset [Raffel et al., 2020].
» 0.7 (high) temperature.

Type I error
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Under controllable random substitution

. hupt,o} """ hopt,ﬁ.z - hopt,ﬂ.l

Type II error

0.3

0.0 0.1 0.2 0.3 0.0 0.1 0.2

T
0.3
Substitution fraction Substitution fraction

0.0 0.1 0.2 0.3 0.0 0.1 0.2

Substitution fraction Substitution fraction
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Under controllable random deletion

""" hlug === hax . hupt,o} hopt,ﬁ.z - hopt,ﬂ.l
8
5
B
£0.5
[
0.4
0.3
0.2+~ — 0.0 T T T T T T T T T
0.3 0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.0 0.2 0.4
Deletion fraction

0.0 0.1 0.2
Deletion fraction

Deletion fraction Deletion fraction
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Under controllable random insertion

hopt,ﬁ.z - hopt,ﬂ.l

Rars . hupt,o}

Type II error

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.0 0.2 0.4
Insertion fraction Insertion fraction Insertion fraction Insertion fraction
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Under controllable random modifications

Task | Modification | s=1 s=15 s=2 g  has  hopt03 hopto2 hopto.1
Poem | Substitution | 30.6  31.96 3123 2462 2659 2639 2686 23.72
Recitation | Insertion | 33.14 3522 35.92 2628 27.71 27.57 27.98 2351
| Deletion | 46.14 47.93 49.42 3924 20.08 40.89 4269 2236

Poem | Substitution | 4008 4198 42.58 2051 4119 3244 339 3574
Generation | Insertion | 4451 46.95 48.7 30.7 4544 3319 3552 39.68
| Deletion | 455 47.76 48.66 32.02 47.36 3485 37.47 39.95

Table: The modification tolerance limits (%) for detection methods on the OPT-1.3B model.
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Under non-controllable round-trip translation attack

hopt,0.2 hopt.0.1

0.35 4

0.30 4

0.25

5 0.20 A

Type II error

0.15 4

0.10 4

0.051
0 100 200 0 100 200 0 100 200 0 100 200
Modified text length Modified text length Modified text length Modified text length
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Why the GoF test performs so well?

A question
Why the GoF test performs so well in the robust detection problem? J

» We focus on the Gumbel-max watermark. Similar analysis could be paralleled to
other watermarks.
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Why the GoF test performs so well?

A question
Why the GoF test performs so well in the robust detection problem?

» We focus on the Gumbel-max watermark. Similar analysis could be paralleled to
other watermarks.

High-level answers
The GoF test achieves optimal robustness in two senses:
1. Optimal detection boundary in a decaying watermark-signal case.
2. Optimal detection efficiency rate in a constant corruption case.

I The GoF test doesn't require any prior knowledge.
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Outline

Theoretical investigation
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When the robust detection is possible?

Hypothesis testing under mixtures

Ho : Ye ~ pig Vt € [n] versus  HIX: Yi|(Pg,n:) ~ (1 — ne) o + Nepr,p, Vt € [n].

A difficulty case
We consider an extreme case where
» Ene = e, for all t € [n] with e, < n™? and p € (0, 1].
» 1 — maxyew Pew = A, for all t € [n] with A, < n~9 and g € (0, 1).

» Motivated by sparse detection problem [Donoho and Jin, 2004, 2015].

> If En; :.0 or 1 — maxyew Prw =0, (1 — n¢)po + nepea,p, = po, i.e., Ho merges
with H{™™.
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When the robust detection is possible?

» If g+ 2p > 1, Hy and H{"* merge asymptotically. For any test, the sum of Type |
and Type Il error probabilities is 1 as n — oc.

» Ifq+2p <1, Hy and H{" separate asymptotically. Furthermore, for the
likelihood-ratio test that rejects Hy if the log-likelihood ratio is positive, the sum
of Type | and Type Il error probabilities tends to 0 as n — co.
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When the robust detection is possible?

» If g+ 2p > 1, Hy and H{"* merge asymptotically. For any test, the sum of Type |
and Type Il error probabilities is 1 as n — oc.

» Ifq+2p <1, Hy and H{" separate asymptotically. Furthermore, for the
likelihood-ratio test that rejects Hy if the log-likelihood ratio is positive, the sum
of Type | and Type Il error probabilities tends to 0 as n — co.

Robust detection is impossible for small watermark signal, i.e., g +2p > 1.

Il

With sufficient watermark signal, detection is possible with the likelihood-ratio
test an optimal rule, i.e., g +2p < 1.

I The likelihood-ratio test is impractical as it needs to know P;'s and &,.
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Optimal detection boundary

An ideal optimal detection method should work as long as g +2p < 1 and don’t
requires the knowledge of P;:'s and ¢,.
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The GoF test achieves this optimal detection boundary. I
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Optimal detection boundary

Target

An ideal optimal detection method should work as long as g + 2p < 1 and don't
requires the knowledge of P;'s and &,,.

Our finding |

The GoF test achieves this optimal detection boundary.

Theorem (Adaptive optimality)

If the critical value < loglog n, the Type | and Il errors of the GoF test — 0 if n — oo
as long as q+2p <1 ands e [-1,2].

» Optimal adaptivity without any prior knowledge.
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Empirical detection boundaries v.s. theoretical g +2p =1
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Failure of all sum-based tests

» Consider the sum-based test in the form that rejects Hy if

znj h(Yy) > n-Eoh(Y) + ©(1) - n? - poly(log n).

t=1
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t=1

The detection boundary for sum-based tests is g + p = 1/2 for all non-decreasing,
(An, en)-free, and continuous h.
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Failure of all sum-based tests

» Consider the sum-based test in the form that rejects Hy if

Xn: h(Yy) > n-Eoh(Y) + ©(1) - n? - poly(log n).

t=1

The detection boundary for sum-based tests is g + p = 1/2 for all non-decreasing,
(An, en)-free, and continuous h.

Corollary |

The detection boundary for the existing score function h € {hars, hiog, hind, hgum, At
with both 6, Ag € (0,1) isq+p=1/2.

» Sum-based tests fail to achieve adaptivity.
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Failure of sum-based tests
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What about constant corruption?

» The optimal detection boundary cares about the diminishing region where the
watermark signal decays with the text length n.

P Practical settings meet with the constant corruption case, i.e., €, = €.
» The problem is detectable because p = g = 0 (within g + 2p < 1).
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What about constant corruption?

» The optimal detection boundary cares about the diminishing region where the
watermark signal decays with the text length n.

P Practical settings meet with the constant corruption case, i.e., €, = €.

v

The problem is detectable because p = g = 0 (within ¢ +2p < 1).

> Use P-efficiency: the rate of exponential decrease in Type Il errors for a fixed
significance level o and the worst-case alternative within a belief set P.

Definition (P-efficiency [Li et al., 2024])

Let vn .« satisfy Po(Sp > Yna) = a for n > 1. For a given belief set P, we define the
following limit (if exists) as the P-efficiency of S, and denote it by Rp(Sp):

1
lim sup —logP1(51 < Yna) = —Rp(Sn).
n=00 p.cp te[n] N ( ) (S0}
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What about constant corruption?

Theorem (Optimal Px-efficiency)

Let s € (0,1), ep=c€(0,1] and A, = A € (0,1).
Rp, (any detection rule) < Dir(uo, (1 — €)po +ep1,py) < Rpa(GoF)
where P} is the least-favorable NTP distribution defined by

1
PZ:(l—A,...,l—A,l—(l—A)- LAJ0>

Lﬁj times

» Upper and lower bounds.
» When ¢ = 1, this rate is obtained by the sum-based test defined by h*

» Optimal efficiency without any prior knowledge.

gum, A"

37 /40



Theoretical Pa-efficiency comparison
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Summary

> Model the robust watermark detection problem as mixture detection problem.

» GoF tests achieve the optimal detection boundary and the optimal Pa-efficiency
without any prior knowledge.

» GoF tests outperform other detection methods in low-temperature cases and
perform comparably in high-temperature cases.

Future directions
» Other optimal detection rule?
» Optimal for other watermarks?

» Estimate the non-null fraction e.
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