
LLM Training and Coding for Statistical Learning and
Data Science

Part 2: API Usage and Text Watermarking

Xiang Li

University of Pennsylvania

Nov. 5, 2025

LLMs in everyday use

2 / 25

Bringing LLMs into everyday applications

ChatGPT and other LLMs are powerful, but web interfaces limit automation.
To integrate LLMs into software, we use an API (Application Programming
Interface).
APIs let developers send text prompts and receive model-generated responses.
Conceptually, an API treats the LLM as a black box that returns outputs in a
function-calling manner.
This enables customized assistants, summarizers, or analytic tools.

3 / 25

Applications built on the ChatGPT API
Chatbots and Assistants: Integrations like Notion AI and Instacart’s shopping
assistant use the API to answer user queries and automate workflows.
Content and Writing Tools: Tools such as Jasper and Copy.ai use the API for
marketing text, article generation, and idea expansion.
Developer Tools: Examples include GitHub Copilot for code suggestions and
various OpenAI project demos for SQL translation or tutoring.
Summarization and Knowledge Extraction: Apps like Yext use the API to
build domain-specific QA systems from large document sets.
Specialized Research and Healthcare: For instance, researchers have used the
API to aid in systematic clinical review screening.

API is not everything
The ChatGPT API acts as a reasoning engine: it generates intelligent responses, while
the whole application handles more things such as context, interaction, and control.

4 / 25

https://www.notion.com/customers/openai
https://www.instacart.com/company/updates/instacart-chatgpt
https://www.instacart.com/company/updates/instacart-chatgpt
https://www.jasper.ai/
https://www.copy.ai/
https://github.com/features/copilot
https://github.com/vivinkv6/openai-projects
https://www.yext.com/
https://arxiv.org/abs/2305.00844

Applications built on the ChatGPT API
Chatbots and Assistants: Integrations like Notion AI and Instacart’s shopping
assistant use the API to answer user queries and automate workflows.
Content and Writing Tools: Tools such as Jasper and Copy.ai use the API for
marketing text, article generation, and idea expansion.
Developer Tools: Examples include GitHub Copilot for code suggestions and
various OpenAI project demos for SQL translation or tutoring.
Summarization and Knowledge Extraction: Apps like Yext use the API to
build domain-specific QA systems from large document sets.
Specialized Research and Healthcare: For instance, researchers have used the
API to aid in systematic clinical review screening.

API is not everything
The ChatGPT API acts as a reasoning engine: it generates intelligent responses, while
the whole application handles more things such as context, interaction, and control.

4 / 25

https://www.notion.com/customers/openai
https://www.instacart.com/company/updates/instacart-chatgpt
https://www.instacart.com/company/updates/instacart-chatgpt
https://www.jasper.ai/
https://www.copy.ai/
https://github.com/features/copilot
https://github.com/vivinkv6/openai-projects
https://www.yext.com/
https://arxiv.org/abs/2305.00844

Getting started with the ChatGPT API

1. Create an OpenAI account via auth.openai.com/create-account.
2. Get your API key via platform.openai.com/account/api-keys.

3. Store the API key securely (as an environment variable or in a secret manager).
4. Install the client library, e.g.:

pip install openai

5. Start querying the model!

Cost of APIs
Using the API is billed per token: e.g., GPT-5 mini currently costs about $0.25 per 1
M input tokens and $2 per 1 M output tokens (see official pricing).

5 / 25

https://auth.openai.com/create-account
https://platform.openai.com/account/api-keys
https://openai.com/api/pricing

Getting started with the ChatGPT API

1. Create an OpenAI account via auth.openai.com/create-account.
2. Get your API key via platform.openai.com/account/api-keys.

3. Store the API key securely (as an environment variable or in a secret manager).
4. Install the client library, e.g.:

pip install openai

5. Start querying the model!

Cost of APIs
Using the API is billed per token: e.g., GPT-5 mini currently costs about $0.25 per 1
M input tokens and $2 per 1 M output tokens (see official pricing).

5 / 25

https://auth.openai.com/create-account
https://platform.openai.com/account/api-keys
https://openai.com/api/pricing

Minimal Python Example

Goal: send a user message and get a response.

1 from openai import OpenAI
2 client = OpenAI (api_key =" your_api_key_here ")
3

4 resp = client .chat. completions . create (
5 model="gpt -4o-mini",
6 messages =[
7 {"role": " system ", " content ": "You are a helpful assistant ."},
8 {"role": "user", " content ": " Explain PCA in 3 short bullets ."}
9]

10)
11

12 answer = resp. choices [0]. message . content

6 / 25

Model Output Example

Model output:

1 - ** Dimensionality Reduction **: Principal Component Analysis (PCA)
transforms high - dimensional data into a lower - dimensional space
while preserving as much variance (information) as possible .

2

3 - ** Orthogonal Transformation **: It achieves this by identifying new
axes (principal components) that are linear combinations of the
original features , where each principal component is orthogonal to

one another .
4

5 - ** Variance Maximization **: The first principal component captures
the direction of the greatest variance in the data , and subsequent

components capture the remaining variance in orthogonal
directions .

7 / 25

Tuning Model Parameters in the ChatGPT API
The API provides flexible parameters to control generation behavior. See
https://platform.openai.com/docs/api-reference/completions for more.

Key parameters:
temperature – randomness of responses (0 = deterministic, 1 = creative)
max_tokens – limit on output length
top_p – nucleus sampling [Holtzman et al., 2020], top-p probability mass
frequency_penalty – discourages repetition of frequent tokens
presence_penalty – encourages introducing new topics

1 resp = client .chat. completions . create (
2 model="gpt -4o-mini",
3 temperature =0.8 ,
4 max_tokens =200 ,
5 top_p =0.9 ,
6 frequency_penalty =0.2 ,
7 presence_penalty =0.6 ,
8 messages =[......])

8 / 25

https://platform.openai.com/docs/api-reference/completions

Beyond chat: Other OpenAI API capabilities

The API supports many tasks beyond text generation.
Embeddings & Search: Convert text to vector form for similarity, clustering, or
retrieval.
Multimodal Input: Process or generate images (e.g., analysis, editing, or
description).
Function Calling: Let models call external tools or return structured JSON
outputs.
Reasoning Tasks: Use models with better step-by-step reasoning ability.
Fine-tuning: Train models on domain-specific data to match your tone or tasks.

Check https://platform.openai.com/docs/api-reference for more details.

9 / 25

https://platform.openai.com/docs/api-reference

An example: Model evaluation via APIs

Even with only API access, we can still conduct meaningful statistical research.
APIs provide access to LLM intelligence, but interpreting their behavior and
improving their utility require statistical thinking.
For example, suppose we want to evaluate how many theorems an LLM knows.

How Many Theorems
Does an LLM Know?

Give me a list of theorems

User

Give me a list of theorems

User
Thm3, Thm1, Thm5, Thm4

...

Prompt 100 times

Thm1
Thm3
Thm5

...

Common
Thm2
Thm4
Thm6

...

Rare

Theorem
Thm1

 From Observation
LLM knows 5 Theorems

Our Method
Estimate the unseen

LLM knows 6 Theorems

Thm3
Thm5

Thm2
Thm4

Thm6

C
ou

n
ts

Thm1, Thm3, Thm5, Thm2

(a) (b) (c)

10 / 25

An example: Model evaluation via APIs

Even with only API access, we can still conduct meaningful statistical research.
APIs provide access to LLM intelligence, but interpreting their behavior and
improving their utility require statistical thinking.
For example, suppose we want to evaluate how many theorems an LLM knows.

How Many Theorems
Does an LLM Know?

Give me a list of theorems

User

Give me a list of theorems

User
Thm3, Thm1, Thm5, Thm4

...

Prompt 100 times

Thm1
Thm3
Thm5

...

Common
Thm2
Thm4
Thm6

...

Rare

Theorem
Thm1

 From Observation
LLM knows 5 Theorems

Our Method
Estimate the unseen

LLM knows 6 Theorems

Thm3
Thm5

Thm2
Thm4

Thm6

C
ou

n
ts

Thm1, Thm3, Thm5, Thm2

(a) (b) (c)

10 / 25

Our method [Li et al., 2025c]: Estimating the Unseen

Th
m4

,

Th
m5

,Th
m6

Thm3

Thm1,Thm7

Prompt Thm1

...

C
ou

nt

Extrapolation ()

C
ou

nt

Input 1: Generation 2: Verification 3: Clustering 4: Est. Prevalence 5: Est. Unseen

Thm1
Thm1

Thm1
Thm1

Thm1

Prompt
Prompt

Prompt
Prompt

Prompt

Thm1
Thm1

Thm1
Thm1

Thm1
Thm1

Th
m4

,

Th
m5

,Th
m6

Thm3

Thm1,Thm7

Prompt Thm1

...

C
ou

nt

Extrapolation ()

C
ou

nt

Input 1: Generation 2: Verification 3: Clustering 4: Est. Prevalence 5: Est. Unseen

Thm1
Thm1

Thm1
Thm1

Thm1

Prompt
Prompt

Prompt
Prompt

Prompt

Thm1
Thm1

Thm1
Thm1

Thm1
Thm1

Five-step procedure.
Steps 2 & 3
standardize answers.
Verification reduces
hallucination.
Clustering reduces
redundancy.
n0 = the amount of
unseen knowledge.

11 / 25

Results of knowledge estimation
Query the LLM Nquery times with a fixed prompt, each time requesting Nans
instances of domain-specific knowledge.
Use external databases for validation (e.g., Wikipedia) and cluster the responses
based on their unique external identifiers (e.g., canonical URL).
(Nquery,Nans) = (30,000, 20) for theorems and (3,000, 50) for diseases.
SKR = seen knowledge / total knowledge.

Model Math theorem Anatomical disease
Nseen N̂tot SKR Nseen N̂tot SKR

¬ ChatGPT-4o-chat 702 1189 0.59 277 732 0.38
­ ChatGPT-3.5-turbo-chat 868 1064 0.82 268 278 0.96
® LLaMA-V3-70B-instruct 1432 1706 0.84 875 3372 0.26
¯ LLaMA-V3-3B-instruct 1035 1331 0.78 780 1375 0.57
° Mistral-7B-instruct-V0.1 753 1194 0.63 489 1723 0.28
± Qwen2.5-7B-instruct 444 1162 0.38 426 521 0.82
² Claude-3.7-Sonnet 120 201 0.60 115 462 0.25
³ DeepSeek-V3 148 241 0.61 86 334 0.26
´ Gemini-1.5-flash 100 515 0.19 139 143 0.97

12 / 25

Results of knowledge estimation
Query the LLM Nquery times with a fixed prompt, each time requesting Nans
instances of domain-specific knowledge.
Use external databases for validation (e.g., Wikipedia) and cluster the responses
based on their unique external identifiers (e.g., canonical URL).
(Nquery,Nans) = (30,000, 20) for theorems and (3,000, 50) for diseases.
SKR = seen knowledge / total knowledge.

Model Math theorem Anatomical disease
Nseen N̂tot SKR Nseen N̂tot SKR

¬ ChatGPT-4o-chat 702 1189 0.59 277 732 0.38
­ ChatGPT-3.5-turbo-chat 868 1064 0.82 268 278 0.96
® LLaMA-V3-70B-instruct 1432 1706 0.84 875 3372 0.26
¯ LLaMA-V3-3B-instruct 1035 1331 0.78 780 1375 0.57
° Mistral-7B-instruct-V0.1 753 1194 0.63 489 1723 0.28
± Qwen2.5-7B-instruct 444 1162 0.38 426 521 0.82
² Claude-3.7-Sonnet 120 201 0.60 115 462 0.25
³ DeepSeek-V3 148 241 0.61 86 334 0.26
´ Gemini-1.5-flash 100 515 0.19 139 143 0.97

12 / 25

What if we have more access to the LLM?

How LLMs combine tokens

Denote the vocabulary by W = {1, . . . ,K}, a token therein by wt , and a text by
w<t := w1 · · ·wt−1.

Large vocabulary: W is large in practice; K = 50, 257 for GPT-2/3.5, = 32, 000
for LLaMa models, and = 128, 000 for DeepSeek-R1.

Autoregresiveness: An LLM generates each token sequentially by sampling from
a probability distribution conditioned on previous tokens:

wt ∼ Pt where Pt = LLM(w<t) is a distribution on W.

Preceding text w<t LLM NTP distribution Pt = LLM(w<t) Output token wt
Sample

Append

13 / 25

How LLMs combine tokens

Denote the vocabulary by W = {1, . . . ,K}, a token therein by wt , and a text by
w<t := w1 · · ·wt−1.

Large vocabulary: W is large in practice; K = 50, 257 for GPT-2/3.5, = 32, 000
for LLaMa models, and = 128, 000 for DeepSeek-R1.
Autoregresiveness: An LLM generates each token sequentially by sampling from
a probability distribution conditioned on previous tokens:

wt ∼ Pt where Pt = LLM(w<t) is a distribution on W.

Preceding text w<t LLM NTP distribution Pt = LLM(w<t) Output token wt
Sample

Append

13 / 25

Example of autoregresive generation

I saw a cat on a

Mat 25%

Carpet 13%

Boat 5%

Plane 3%

…. …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

w7
carpet

Sampling

P7 = (P7,1, ⋯, P7,K)

14 / 25

What if we could control the sampling of the LLM?

By manipulating the sampling process, we can embed a statistical signal between
the input (preceding text w<t) and the output (next token wt).
Such dependence rarely appears in human-written text but commonly arises in
LLM-generated text.

This technique is known as watermarking [Kirchenbauer et al., 2023].
Enables reliable detection and attribution of AI-generated content.
Extends naturally to other modalities such as images and tables.
Many applications: AI-content labeling, academic integrity checking, biosecurity
monitoring, and data provenance tracking.

15 / 25

What if we could control the sampling of the LLM?

By manipulating the sampling process, we can embed a statistical signal between
the input (preceding text w<t) and the output (next token wt).
Such dependence rarely appears in human-written text but commonly arises in
LLM-generated text.
This technique is known as watermarking [Kirchenbauer et al., 2023].

Enables reliable detection and attribution of AI-generated content.
Extends naturally to other modalities such as images and tables.
Many applications: AI-content labeling, academic integrity checking, biosecurity
monitoring, and data provenance tracking.

15 / 25

Watermarked generation: Procedure

Preceding text w<t LLM Pt = LLM(w<t)
Sampling algorithm

(Decoder S) Output token wt

Append

Random seed generator
(Hash function A)

Random seed ζt
(Pseudorandom numbers)

Watermarking key

Mathematical speaking: ζt = A(w<t ,Key) and wt = S(Pt , ζt).
A watermark is defined by (A,S,Key).
Watermark signal is the dependence of each wt on ζt .

16 / 25

Watermarked generation: Example

I saw a cat on a

Mat 25%

Carpet 13%

Boat 5%

Plane 3%

…. …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

w7 = "(P7, ζ7)
carpet

Compute

ζ7 = #(w3:6, Key)

P7 = (P7,1, ⋯, P7,K)

pseudorandom

17 / 25

Comments on pseudorandom numbers
A(public data, private info) computes the pseudorandom number:

Public data = prior tokens w<t or a segment w(t−m):t [Kirchenbauer et al., 2023].
Private info = secret key, denoted Key.

Property (Soundness of pseudorandomness)
1. ζt = A(w1:t−1,Key) for t = 1, . . . , n are iid copies of a known random variable ζ
2. ζt is statistically independent of w1:t−1

3. Computationally infeasible to infer Key from ζt and w<t

Well-developed in theoretical computer science [Barak, 2021].
Pseudorandom numbers are “reproducible” iff Key is known.
Key will be shared with the verifier through a secure protocol.

Theory assumes true randomness; Implementation use deterministic generation.
Similar to setting a seed for reproducibility in simulations.

18 / 25

Comments on pseudorandom numbers
A(public data, private info) computes the pseudorandom number:

Public data = prior tokens w<t or a segment w(t−m):t [Kirchenbauer et al., 2023].
Private info = secret key, denoted Key.

Property (Soundness of pseudorandomness)
1. ζt = A(w1:t−1,Key) for t = 1, . . . , n are iid copies of a known random variable ζ
2. ζt is statistically independent of w1:t−1

3. Computationally infeasible to infer Key from ζt and w<t

Well-developed in theoretical computer science [Barak, 2021].
Pseudorandom numbers are “reproducible” iff Key is known.
Key will be shared with the verifier through a secure protocol.

Theory assumes true randomness; Implementation use deterministic generation.
Similar to setting a seed for reproducibility in simulations.

18 / 25

Comments on pseudorandom numbers
A(public data, private info) computes the pseudorandom number:

Public data = prior tokens w<t or a segment w(t−m):t [Kirchenbauer et al., 2023].
Private info = secret key, denoted Key.

Property (Soundness of pseudorandomness)
1. ζt = A(w1:t−1,Key) for t = 1, . . . , n are iid copies of a known random variable ζ
2. ζt is statistically independent of w1:t−1

3. Computationally infeasible to infer Key from ζt and w<t

Well-developed in theoretical computer science [Barak, 2021].
Pseudorandom numbers are “reproducible” iff Key is known.
Key will be shared with the verifier through a secure protocol.

Theory assumes true randomness; Implementation use deterministic generation.
Similar to setting a seed for reproducibility in simulations.

18 / 25

Comments on pseudorandom numbers
A(public data, private info) computes the pseudorandom number:

Public data = prior tokens w<t or a segment w(t−m):t [Kirchenbauer et al., 2023].
Private info = secret key, denoted Key.

Property (Soundness of pseudorandomness)
1. ζt = A(w1:t−1,Key) for t = 1, . . . , n are iid copies of a known random variable ζ
2. ζt is statistically independent of w1:t−1

3. Computationally infeasible to infer Key from ζt and w<t

Well-developed in theoretical computer science [Barak, 2021].
Pseudorandom numbers are “reproducible” iff Key is known.
Key will be shared with the verifier through a secure protocol.

Theory assumes true randomness; Implementation use deterministic generation.
Similar to setting a seed for reproducibility in simulations.

18 / 25

Pseudocode for watermark embedding

Algorithm Watermarked LLM Generation
1: Inputs: a watermark (S,A,Key) and a language model.
2: Load the language model LLM(·).
3: Receive the user prompt s and feed it to the model to generate a continuation.
4: Initialize w<1 = s and set n the maximum length.
5: for step t = 1, 2, · · · n do
6: Compute the NTP distribution: Pt = LLM(w<t).
7: Compute the pseudorandom number: ζt = A(w<t ,Key).
8: Compute the next token: wt = S(Pt , ζt).
9: Append the history: w<(t+1) = w<twt . . Autoregressive

10: return w≤n.

19 / 25

A high-level intro of watermark detection

H0 : w≤n is human written v.s. H1 : w≤n is LLM-generated.

Human-written text: wt is independent of ζt as humans don’t know A and Key.
LLM-generated text: wt depends on ζt via the decoder function S.

Take-away
Watermarking couples each token wt and a psedorandom ζt , altering their joint
distribution. Pivotal statistic Yt quantifies this evidence.

Practical choices uses the pivotal statistic Yt = Y (wt , ζt) [Li et al., 2025b]:
Under H0, wt ⊥ ζt such that Yt ∼ µ0.
Under H1, wt = S(Pt , ζt) such that Yt = Y (S(Pt , ζt), ζt) ∼ µ1,Pt .

Pivotal stats
Y≤n

Tokens w≤n := w1 . . .wn

PRNG. ζ≤n := ζ1 . . . ζn

hash func Score(Y≤n)
Decision:
Watermarked/
not watermarked

Score func Apply threshold

20 / 25

A high-level intro of watermark detection

H0 : w≤n is human written v.s. H1 : w≤n is LLM-generated.

Human-written text: wt is independent of ζt as humans don’t know A and Key.
LLM-generated text: wt depends on ζt via the decoder function S.

Take-away
Watermarking couples each token wt and a psedorandom ζt , altering their joint
distribution. Pivotal statistic Yt quantifies this evidence.

Practical choices uses the pivotal statistic Yt = Y (wt , ζt) [Li et al., 2025b]:
Under H0, wt ⊥ ζt such that Yt ∼ µ0.
Under H1, wt = S(Pt , ζt) such that Yt = Y (S(Pt , ζt), ζt) ∼ µ1,Pt .

Pivotal stats
Y≤n

Tokens w≤n := w1 . . .wn

PRNG. ζ≤n := ζ1 . . . ζn

hash func Score(Y≤n)
Decision:
Watermarked/
not watermarked

Score func Apply threshold

20 / 25

A high-level intro of watermark detection

H0 : w≤n is human written v.s. H1 : w≤n is LLM-generated.

Human-written text: wt is independent of ζt as humans don’t know A and Key.
LLM-generated text: wt depends on ζt via the decoder function S.

Take-away
Watermarking couples each token wt and a psedorandom ζt , altering their joint
distribution. Pivotal statistic Yt quantifies this evidence.

Practical choices uses the pivotal statistic Yt = Y (wt , ζt) [Li et al., 2025b]:
Under H0, wt ⊥ ζt such that Yt ∼ µ0.
Under H1, wt = S(Pt , ζt) such that Yt = Y (S(Pt , ζt), ζt) ∼ µ1,Pt .

Pivotal stats
Y≤n

Tokens w≤n := w1 . . .wn

PRNG. ζ≤n := ζ1 . . . ζn

hash func Score(Y≤n)
Decision:
Watermarked/
not watermarked

Score func Apply threshold

20 / 25

A high-level intro of watermark detection

H0 : w≤n is human written v.s. H1 : w≤n is LLM-generated.

Human-written text: wt is independent of ζt as humans don’t know A and Key.
LLM-generated text: wt depends on ζt via the decoder function S.

Take-away
Watermarking couples each token wt and a psedorandom ζt , altering their joint
distribution. Pivotal statistic Yt quantifies this evidence.

Practical choices uses the pivotal statistic Yt = Y (wt , ζt) [Li et al., 2025b]:
Under H0, wt ⊥ ζt such that Yt ∼ µ0.
Under H1, wt = S(Pt , ζt) such that Yt = Y (S(Pt , ζt), ζt) ∼ µ1,Pt .

Pivotal stats
Y≤n

Tokens w≤n := w1 . . .wn

PRNG. ζ≤n := ζ1 . . . ζn

hash func Score(Y≤n)
Decision:
Watermarked/
not watermarked

Score func Apply threshold

20 / 25

Pseudocode for watermark detection

Algorithm Watermark Detection
1: Inputs: a text w≤n, hash function A, secret Key, and significance level α.
2: Simulate n iid samples from the pivotal distribution µ0.
3: Set q̂n as the empirical (1 − α)-quantile of those null samples, if its theoretical

counterpart is hard to compute.
4: Initialize w<1 by any prefix.
5: for step t = 1, 2, · · · , n do
6: Compute the pseudorandom number: ζt = A(w<t ,Key).
7: Compute the pivotal statistic: Yt = Y (wt , ζt).
8: Compute the test score: T = Score(Y≤n).
9: Claim: LLM-generated if T > q̂n otherwise human-written.

21 / 25

How to optimally choose the Score function?
For the sum-based rule Score(Y≤n) =

∑n
t=1 h(Yt), Li et al. [2025b] introduced an

efficiency measure

RP(h) = lim
n→∞

−1
n log(Type II error) s.t. Type I error = α,

which characterizes the exponential decay rate of the Type II error under a fixed
Type I error level.

Maximizing RP(h) over h yields the optimal detection rule when all NTP
distributions are contained in a given class P.
Li et al. [2025a] proposed a truncated goodness-of-fit (GoF) test for corruption
scenarios and proved its optimality in certain regimes.
He et al. [2025] demonstrated that general GoF tests enhance both detection
power and robustness to corruption.
Cai et al. [2025] derived the optimal score function in settings where the
pseudorandom variables are not i.i.d.

22 / 25

How to optimally choose the Score function?
For the sum-based rule Score(Y≤n) =

∑n
t=1 h(Yt), Li et al. [2025b] introduced an

efficiency measure

RP(h) = lim
n→∞

−1
n log(Type II error) s.t. Type I error = α,

which characterizes the exponential decay rate of the Type II error under a fixed
Type I error level.
Maximizing RP(h) over h yields the optimal detection rule when all NTP
distributions are contained in a given class P.
Li et al. [2025a] proposed a truncated goodness-of-fit (GoF) test for corruption
scenarios and proved its optimality in certain regimes.
He et al. [2025] demonstrated that general GoF tests enhance both detection
power and robustness to corruption.
Cai et al. [2025] derived the optimal score function in settings where the
pseudorandom variables are not i.i.d.

22 / 25

Performance of different detectors

On C4 news-like dataset [Raffel et al., 2020] and OPT-1.3B model [Zhang et al.,
2022] (temperature 0.3).

0 100 200 300 400
Length of watermarked text

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
ti

on
p

ow
er

Without human edit

0 100 200 300 400
Length of text under detection

5% paraphrase edits

0 100 200 300 400
Length of text under detection

5% adversarial edits

Tr-GoF

Aaronson [2023]

Li et al. [2024]

23 / 25

A self-contained watermark python demo
Download:

https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py
How to use:

python watermark_demo.py –temp 1 –alpha 0.01 –model
facebook/opt-1.3b

24 / 25

https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py

Concluding remarks

Even with only API access, we can still conduct meaningful research. For
example, estimate unseen knowledge.
Watermarking enhances content traceability and integrity by coupling each toke
with tractable pseudorandom numbers.
Many interesting statistical challenges emerge in practical watermarking
applications:

Whether
watermarked

How many
watermarked

Which
watermarked

Have a try to watermark!
https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py

25 / 25

https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py

References I

B. Barak. An intensive introduction to cryptography, lectures notes for Harvard CS 127.
https://intensecrypto.org/public/index.html, Fall 2021.

T. T. Cai, X. Li, Q. Long, W. J. Su, and G. G. Wen. Optimal detection for language watermarks with
pseudorandom collision. arXiv preprint arXiv:2510.22007, 2025.

W. He, X. Li, T. Shang, L. Shen, W. J. Su, and Q. Long. On the empirical power of goodness-of-fit tests in
watermark detection. In Advances in neural information processing systems, 2025.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration. In
International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rygGQyrFvH.

J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein. A watermark for large language
models. In International Conference on Machine Learning, volume 202, pages 17061–17084, 2023.

X. Li, F. Ruan, H. Wang, Q. Long, and W. J. Su. Robust detection of watermarks for large language models
under human edits. Journal of the Royal Statistical Society Series B: Statistical Methodology, page qkaf056,
2025a.

X. Li, F. Ruan, H. Wang, Q. Long, and W. J. Su. A statistical framework of watermarks for large language
models: Pivot, detection efficiency and optimal rules. The Annals of Statistics, 53(1):322–351, 2025b.

X. Li, J. Xin, Q. Long, and W. J. Su. Evaluating the unseen capabilities: How many theorems do LLMs know?
arXiv preprint arXiv:2506.02058, 2025c.

https://intensecrypto.org/public/index.html
https://openreview.net/forum?id=rygGQyrFvH

References II

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21
(1):5485–5551, 2020.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, et al. OPT:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

	API Usage
	Text Watermarking
	Concluding remarks
	References

