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LLMs in everyday use
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Bringing LLMs into everyday applications

ChatGPT and other LLMs are powerful, but web interfaces limit automation.

To integrate LLMs into software, we use an APl (Application Programming
Interface).

APIs let developers send text prompts and receive model-generated responses.

Conceptually, an API treats the LLM as a black box that returns outputs in a
function-calling manner.

This enables customized assistants, summarizers, or analytic tools.
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Applications built on the ChatGPT API

Chatbots and Assistants: Integrations like Notion Al and Instacart’s shopping
assistant use the API to answer user queries and automate workflows.

Content and Writing Tools: Tools such as Jasper and Copy.ai use the API for
marketing text, article generation, and idea expansion.

Developer Tools: Examples include GitHub Copilot for code suggestions and
various OpenAl project demos for SQL translation or tutoring.

Summarization and Knowledge Extraction: Apps like Yext use the API to
build domain-specific QA systems from large document sets.

Specialized Research and Healthcare: For instance, researchers have used the
API to aid in systematic clinical review screening.
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Chatbots and Assistants: Integrations like Notion Al and Instacart’s shopping
assistant use the API to answer user queries and automate workflows.

Content and Writing Tools: Tools such as Jasper and Copy.ai use the API for
marketing text, article generation, and idea expansion.

Developer Tools: Examples include GitHub Copilot for code suggestions and
various OpenAl project demos for SQL translation or tutoring.

Summarization and Knowledge Extraction: Apps like Yext use the API to
build domain-specific QA systems from large document sets.

Specialized Research and Healthcare: For instance, researchers have used the
API to aid in systematic clinical review screening.

API is not everything

The ChatGPT API acts as a reasoning engine: it generates intelligent responses, while
the whole application handles more things such as context, interaction, and control.
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Getting started with the ChatGPT API

1. Create an OpenAl account via auth.openai.com/create-account.

2. Get your API key via platform.openai.com/account/api-keys.

NAME SECRET KEY LAST USED ® CREATED BY PERMISSIONS

Secret key sk-...2GQA Never Xiang Li All

3. Store the API key securely (as an environment variable or in a secret manager).
4. Install the client library, e.g.:
e pip install openai

5. Start querying the model!
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Getting started with the ChatGPT API

1. Create an OpenAl account via auth.openai.com/create-account.

2. Get your API key via platform.openai.com/account/api-keys.

NAME SECRET KEY LAST USED © CREATED BY PERMISSIONS

Secret key sk-...2GQA Never Xiang Li All

3. Store the API key securely (as an environment variable or in a secret manager).
4. Install the client library, e.g.:
e pip install openai

5. Start querying the model!

Cost of APIs

Using the APl is billed per token: e.g., GPT-5 mini currently costs about $0.25 per 1
M input tokens and $2 per 1 M output tokens (see official pricing).
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Minimal Python Example

Goal: send a user message and get a response.

1 from openai import OpenAl

2 client = OpenAI(api_key="your_api_key_here")

3

4 resp = client.chat.completions.create(

5 model="gpt-4o0-mini",

6 messages=[

7 {"role": "system", "content": "You are a helpful assistant."},
8 {"role": "user", "content": "Explain PCA in 3 short bullets."}
9 ]

10 )

11

12 answer = resp.choices[0].message.content
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Model Output Example

Model output:

**Dimensionality Reduction*#*: Principal Component Analysis (PCA)
transforms high-dimensional data into a lower-dimensional space
while preserving as much variance (information) as possible.

H
|

3 - **0rthogonal Transformation**: It achieves this by identifying new
axes (principal components) that are linear combinations of the
original features, where each principal component is orthogonal to

one another.

5 - **xVariance Maximization**: The first principal component captures
the direction of the greatest variance in the data, and subsequent
components capture the remaining variance in orthogonal
directions.

7/25



Tuning Model Parameters in the ChatGPT API

The API provides flexible parameters to control generation behavior. See
https://platform.openai.com/docs/api-reference/completions for more.

Key parameters:
® temperature — randomness of responses (0 = deterministic, 1 = creative)
® max_tokens — limit on output length
e top_p — nucleus sampling [Holtzman et al., 2020], top-p probability mass
e frequency_penalty — discourages repetition of frequent tokens
® presence_penalty — encourages introducing new topics
1 resp = client.chat.completions.create(
2 model="gpt-4o0-mini",
3 temperature=0.8,
4 max_tokens=200,
5 top_p=0.9,
6 frequency_penalty=0.2,
7 presence_penalty=0.6,
8 messages=[...... i)
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Beyond chat: Other OpenAl API capabilities

The API supports many tasks beyond text generation.

Embeddings & Search: Convert text to vector form for similarity, clustering, or
retrieval.

Multimodal Input: Process or generate images (e.g., analysis, editing, or
description).

Function Calling: Let models call external tools or return structured JSON
outputs.

Reasoning Tasks: Use models with better step-by-step reasoning ability.

Fine-tuning: Train models on domain-specific data to match your tone or tasks.

Check https://platform.openai.com/docs/api-reference for more details.
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An example: Model evaluation via APls

e Even with only API access, we can still conduct meaningful statistical research.

® APIs provide access to LLM intelligence, but interpreting their behavior and
improving their utility require statistical thinking.

® For example, suppose we want to evaluate how many theorems an LLM knows.
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e Even with only API access, we can still conduct meaningful statistical research.

® APIs provide access to LLM intelligence, but interpreting their behavior and
improving their utility require statistical thinking.

® For example, suppose we want to evaluate how many theorems an LLM knows.
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Our method [Li et al., 2025c]: Estimating the Unseen

® Five-step procedure.
—— ® Steps 2 & 3

.

e Verification reduces
hallucination.

Input 1: Generation 2: Verification
e Clustering reduces

redundancy.
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Results of knowledge estimation

® Query the LLM Nguery times with a fixed prompt, each time requesting Naps
instances of domain-specific knowledge.

e Use external databases for validation (e.g., Wikipedia) and cluster the responses
based on their unique external identifiers (e.g., canonical URL).

® (Nguery, Nans) = (30,000, 20) for theorems and (3,000, 50) for diseases.

e SKR = seen knowledge / total knowledge.
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Results of knowledge estimation

® Query the LLM Nguery times with a fixed prompt, each time requesting Naps
instances of domain-specific knowledge.
e Use external databases for validation (e.g., Wikipedia) and cluster the responses

based on their unique external identifiers (e.g., canonical URL).
® (Nguery, Nans) = (30,000, 20) for theorems and (3,000, 50) for diseases.
e SKR = seen knowledge / total knowledge.

Math theorem

Anatomical disease

Model Nseen Ntot SKR Nseen Ntot SKR
@ ChatGPT-4o0-chat 702 1189 0.59 | 277 732 0.38
@ ChatGPT-3.5-turbo-chat 868 1064 0.82 268 278  0.96
® LLaMA-V3-70B-instruct 1432 1706 0.84 | 875 3372 0.26
@ LLaMA-V3-3B-instruct 1035 1331 0.78 | 780 1375 0.57
® Mistral-7B-instruct-VO0.1 | 753 1194 0.63 | 489 1723 0.28
® Qwen2.5-7B-instruct 444 1162 0.38 | 426 521  0.82
® Claude-3.7-Sonnet 120 201 0.60 | 115 462 0.25
DeepSeek-V3 148 241 0.61 86 334 0.26
® Gemini-1.5-flash 100 515 0.19 | 139 143 0.97
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What if we have more access to the LLM?



How LLMs combine tokens

Denote the vocabulary by W = {1,..., K}, a token therein by w;, and a text by
Wep 1= W1 - W 1.
e Large vocabulary: W is large in practice; K = 50,257 for GPT-2/3.5, = 32,000
for LLaMa models, and = 128,000 for DeepSeek-R1.
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How LLMs combine tokens

Denote the vocabulary by W = {1,..., K}, a token therein by w;, and a text by

Wep 1= W1 - W 1.
e Large vocabulary: W is large in practice; K = 50,257 for GPT-2/3.5, = 32,000

for LLaMa models, and = 128,000 for DeepSeek-R1.
e Autoregresiveness: An LLM generates each token sequentially by sampling from
a probability distribution conditioned on previous tokens:

wy ~ Py where P; = LLM(w.;) is a distribution on W.

. T T Sample
Preceding text w.; LLM NTP distribution P; = LLM(w.;) ——> Output token w;
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Example of autoregresive generation

Next Token, w,; ~ P,

| saw acatona

P =
W] 6 = [W] s WZ, W39 W4, Ws, W6] 7

Py, -+,

>
>

Pr )

Mat 25%
arpet 13%

“Boat 5%
Plane 3%

 Sampling
———— > carpet
I
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What if we could control the sampling of the LLM?

e By manipulating the sampling process, we can embed a statistical signal between
the input (preceding text w.;) and the output (next token wy).

® Such dependence rarely appears in human-written text but commonly arises in
LLM-generated text.
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What if we could control the sampling of the LLM?

e By manipulating the sampling process, we can embed a statistical signal between
the input (preceding text w.;) and the output (next token wy).

® Such dependence rarely appears in human-written text but commonly arises in
LLM-generated text.
® This technique is known as watermarking [Kirchenbauer et al., 2023].

e Enables reliable detection and attribution of Al-generated content.

» Extends naturally to other modalities such as images and tables.

* Many applications: Al-content labeling, academic integrity checking, biosecurity
monitoring, and data provenance tracking.
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Watermarked generation: Procedure

Watermarking key | Random seed generator Random seed (;
(

| (Hash function A) Pseudorandom numbers)

Sampling algorithm
(Decoder S)

Output token w;
I

e Mathematical speaking: (; = A(w<t, Key) and wy = S(Py, ().
e A watermark is defined by (A, S, Key).

e Watermark signal is the dependence of each w; on (;.
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Watermarked generation: Example

Next Token, w; ~ P

Mat  25%
Carpet 13%
| saw a cat on a > “Boat Bw T —————_carpet
Wiig = i wy{ws, wy ws, we) 7= PP ppane 304 [ = 8.0

pseudorandom

@7 = (w3, Key)
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Comments on pseudorandom numbers

A(public data, private info) computes the pseudorandom number:
® Public data = prior tokens w<; or a segment w(;_p).; [Kirchenbauer et al., 2023].

e Private info = secret key, denoted Key.
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Comments on pseudorandom numbers
A(public data, private info) computes the pseudorandom number:
* Public data = prior tokens w<; or a segment w(;_p).; [Kirchenbauer et al., 2023].

® Private info = secret key, denoted Key.

Property (Soundness of pseudorandomness)

1. (¢ = A(wi+—1,Key) for t = 1,...,n are iid copies of a known random variable ¢
2. (; is statistically independent of wy.; 1

3. Computationally infeasible to infer Key from ¢; and wc;

® Well-developed in theoretical computer science [Barak, 2021].

* Pseudorandom numbers are “reproducible” iff Key is known.
* Key will be shared with the verifier through a secure protocol.

® Theory assumes true randomness; Implementation use deterministic generation.

e Similar to setting a seed for reproducibility in simulations.
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Pseudocode for watermark embedding

Algorithm Watermarked LLM Generation

1. Inputs: a watermark (S, .A,Key) and a language model.

2: Load the language model LLM(+).

3: Receive the user prompt s and feed it to the model to generate a continuation.

4: Initialize w1 = s and set n the maximum length.

5. for stept =1,2,---ndo

6: Compute the NTP distribution: P; = LLM(w).

7: Compute the pseudorandom number: (; = A(w<, Key).

8: Compute the next token: wy = S(P%, ().

9: Append the history: w(t11) = werws. > Autoregressive
10: return w<,.
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A high-level intro of watermark detection

Ho : w<p is human written v.s. Hj: w<, is LLM-generated.

¢ Human-written text: w; is independent of {; as humans don't know A and Key.

e LLM-generated text: w; depends on (; via the decoder function S.
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A high-level intro of watermark detection

Ho : w<p is human written v.s. Hj: w<, is LLM-generated.

¢ Human-written text: w; is independent of {; as humans don't know A and Key.

e LLM-generated text: w; depends on (; via the decoder function S.

Take-away

Watermarking couples each token w; and a psedorandom (;, altering their joint
distribution. Pivotal statistic Y; quantifies this evidence.

® Practical choices uses the pivotal statistic Y: = Y (wg, () [Li et al., 2025b]:

e Under Hy, w; L (; such that Y: ~ pp.
e Under Hl, Wy = S(Phé_t‘) such that Yt = Y(S(Pt7<t)7ct) ~ U1,p,-

Tokens w<, 1= wy ... w,

Pivotal stats | Score func Apply threshold ~ Decision:
hash func v. Score(Y<,) ———————— > Watermarked/
=" not watermarked

PRNG. (<pi=(1...Cn
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Pseudocode for watermark detection

Algorithm Watermark Detection

1:
2:
3:

e e N

Inputs: a text w<,, hash function A, secret Key, and significance level a.
Simulate n iid samples from the pivotal distribution pg.
Set g, as the empirical (1 — «)-quantile of those null samples, if its theoretical
counterpart is hard to compute.
Initialize w1 by any prefix.
for stept=1,2,--- ,ndo

Compute the pseudorandom number: (; = A(w<¢, Key).

Compute the pivotal statistic: Y; = Y(we, ().

Compute the test score: T = Score(Y<p).
Claim: LLM-generated if T > g, otherwise human-written.
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How to optimally choose the Score function?

® For the sum-based rule Score(Y<p) = >.7_; h(Y:), Li et al. [2025b] introduced an
efficiency measure

1
Rp(h) = nILrTgo—; log(Type Il error) s.t. Type | error = a,

which characterizes the exponential decay rate of the Type Il error under a fixed
Type | error level.
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How to optimally choose the Score function?

For the sum-based rule Score(Y<,) = >"{_; h(Yt), Li et al. [2025b] introduced an
efficiency measure

1
Rp(h) = nILrTgo—; log(Type Il error) s.t. Type | error = a,

which characterizes the exponential decay rate of the Type Il error under a fixed
Type | error level.

Maximizing Rp(h) over h yields the optimal detection rule when all NTP
distributions are contained in a given class P.

Li et al. [2025a] proposed a truncated goodness-of-fit (GoF) test for corruption
scenarios and proved its optimality in certain regimes.

He et al. [2025] demonstrated that general GoF tests enhance both detection
power and robustness to corruption.

Cai et al. [2025] derived the optimal score function in settings where the
pseudorandom variables are not i.i.d.
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Performance of different detectors

® On C4 news-like dataset [Raffel et al., 2020] and OPT-1.3B model [Zhang et al.,

2022] (temperature 0.3).

Without human edit

5% paraphrase edits

5% adversarial edits

o TV T ST SR IN TS

o
=N
L

I
IS
L

Detection power

e
o
h

o
o
L

— Tr-GoF
—-— Aaronson [2023]
---- Liet al. [2024]

0 100 200 300 400
Length of watermarked text

0 100 200 300 400

Length of text under detection

100 200 300 400
Length of text under detection
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A self-contained watermark python demo

* Download:
https://github.com /Ix10077 /WatermarkFramework /blob/main/watermark_demo.py
* How to use:
python watermark_demo.py -temp 1 -alpha 0.01 -model
facebook/opt-1.3b

tokenizer = AutoTokenizer.from pretrained(args.model) # Load tokenizer which convers text to a sequence of
# Ensure the tokenizer has a pad token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausallLM.from_pretrained(
args.model,
device_map="auto", # Automatically place model layers on available GPU(s)
torch_dtype=torch. float16 # (Optional) Set tensor data type to floatl6 for faster computation
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if possible
print(f"Using device: {device}")
model = model.to(device) # Move the model to GPU, otherwise it is default on CPU
model.eval()

# Load the first 200 samples from the AG News dataset.
# You could also test your own questions or queries. The model will continue to write after your given tex

# To that end, simply change the following 'raw_texts' with a list of your questions.
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Concluding remarks

e Even with only API access, we can still conduct meaningful research. For
example, estimate unseen knowledge.

® Watermarking enhances content traceability and integrity by coupling each toke
with tractable pseudorandom numbers.

® Many interesting statistical challenges emerge in practical watermarking
applications:

Whether How many Which
watermarked watermarked watermarked

¢ Have a try to watermark!
https://github.com /Ix10077 /WatermarkFramework /blob/main /watermark_demo.py

25 /25


https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py

References |

B. Barak. An intensive introduction to cryptography, lectures notes for Harvard CS 127.
https://intensecrypto.org/public/index.html, Fall 2021.

T. T. Cai, X. Li, Q. Long, W. J. Su, and G. G. Wen. Optimal detection for language watermarks with
pseudorandom collision. arXiv preprint arXiv:2510.22007, 2025.

W. He, X. Li, T. Shang, L. Shen, W. J. Su, and Q. Long. On the empirical power of goodness-of-fit tests in
watermark detection. In Advances in neural information processing systems, 2025.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration. In
International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rygGQyrFvH.

J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, |. Miers, and T. Goldstein. A watermark for large language
models. In International Conference on Machine Learning, volume 202, pages 17061-17084, 2023.

X. Li, F. Ruan, H. Wang, Q. Long, and W. J. Su. Robust detection of watermarks for large language models
under human edits. Journal of the Royal Statistical Society Series B: Statistical Methodology, page qkaf056,
2025a.

X. Li, F. Ruan, H. Wang, Q. Long, and W. J. Su. A statistical framework of watermarks for large language
models: Pivot, detection efficiency and optimal rules. The Annals of Statistics, 53(1):322-351, 2025b.

X. Li, J. Xin, Q. Long, and W. J. Su. Evaluating the unseen capabilities: How many theorems do LLMs know?
arXiv preprint arXiv:2506.02058, 2025c.


https://intensecrypto.org/public/index.html
https://openreview.net/forum?id=rygGQyrFvH

References |l

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21
(1):5485-5551, 2020.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin, et al. OPT:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.



	API Usage
	Text Watermarking
	Concluding remarks
	References

