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LLMs in everyday use
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Do you trust the student?

Did the student write this
homework/paper by himself, or
did an LLM lend a hand?
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Peer review or LLM-assisted review?

Liang et al. [2024] finds that
between 6.5% and 16.9% reviews
of some ML conferences were
substantially modified by LLMs.
Is your paper review really your
own, or did an LLM lend a hand?
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Even use LLMs to write papers!
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General LLM risks
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General LLM risks

How to detect AI-
generated text?

6 / 72



How to detect AI-generated text? Method 1

Add prefix: “As a large language model. . . ”
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How to detect AI-generated text? Method 1

Add prefix: “As a large language model. . . ”

But, trivial to
remove from text!
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How to detect AI-generated text? Method 2

Use linguistic pattern deviations.

Log probability curvature (below) [Mitchell et al., 2023, Bao et al., 2023]...

Divergent n-gram analysis [Yang et al., 2023]...
log
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How to detect AI-generated text? Method 3

Train classifiers [GPTZero, 2023, ZeroGPT, 2023, ...]
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How to detect AI-generated text? Method 3

Train classifiers [GPTZero, 2023, ZeroGPT, 2023, ...]

Inaccurate, biased
& not robust!
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Watermarking is a provable and practical solution!

Key insight
LLMs are probabilistic machines, and we control how they generate texts.

A watermark embeds subtle and recoverable statistical signals into LLM-generated
texts [Kirchenbauer et al., 2023].

Creates a statistical dependency between the visible text and a hidden information.
Unlikely to appear in human-written text.
Applies not only to text but also to images, tables, and other data modalities.
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Key insight
LLMs are probabilistic machines, and we control how they generate texts.

A watermark embeds subtle and recoverable statistical signals into LLM-generated
texts [Kirchenbauer et al., 2023].

Creates a statistical dependency between the visible text and a hidden information.
Unlikely to appear in human-written text.
Applies not only to text but also to images, tables, and other data modalities.

Efficient & provable!
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An active research area with practical importance

A Zoo of Watermarking Schemes (since Jan 2023):
[Kirchenbauer et al., 2023, Aaronson, 2023, Kuditipudi et al., 2024, Zhao et al., 2024b,
Christ et al., 2024, Wu et al., 2023, Hu et al., 2024, Kirchenbauer et al., 2024, Zhao
et al., 2024a, Xie et al., 2024, Fu et al., 2024, Dathathri et al., 2024, Gloaguen et al.,
2025, Abdalla and Vershynin, 2025, ...].

Open-source toolkits have been developed to support research [Pan et al., 2024].
Large-scale empirical studies benchmark watermarking methods [Fernandez
et al., 2023a, Gloaguen et al., 2025, Piet et al., 2023, ...].
Industry commitment: OpenAI, Google, Meta, and others pledge to watermark
AI-generated content.
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OpenAI’s watermark: Gumbel-max [Aaronson, 2023]

https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17
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Google’s watermark: SynthID [Dathathri et al., 2024]

https://deepmind.google/science/synthid/
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Meta’s watermark: Stable Signature [Fernandez et al., 2023b]

Note that this is for images.
https://ai.meta.com/blog/stable-signature-watermarking-generative-ai/
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Watermark for biosecurity: Protein design
Analogously, Chen et al. [2025] generate amino acids autoregressively and
watermark them like text.

Python package: https://github.com/poseidonchan/ProteinWatermark
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A field where statistics can make meaningful impact

Statistical perspectives
Type I error – falsely flagging
human prose as AI-generated
Type II error – failing to detect
AI-generated text
Prevalence – estimating the share of
AI-generated texts
Localization – identifying which
subtexts are AI-generated
...

Recent advances
Optimal detection rules
Robust detection under mixture
model
Goodness-of-fit tests
Proportion estimation
Token-level localization
...
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In this short course

Why consider watermarks

How to embed a watermark

How to detect the watermark

Recent statistical advances in watermarking

Concluding remarks

17 / 72



Outlines

Why consider watermarks

How to embed a watermark

How to detect the watermark

Recent statistical advances in watermarking

Concluding remarks

17 / 72



Tokens: Smallest units of LLM generation
LLMs generate text by gathering many small units, called “tokens”.
Tokens can be words, parts of words, or even punctuation marks.

https://platform.openai.com/tokenizer
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Autoregresive generation: How LLMs combine tokens
Denote the vocabulary by W = {1, . . . ,K}, a token therein by wt , and a text by
w<t := w1 · · ·wt−1.

Large vocabulary: W is large in practice; K = 50, 257 for GPT-2/3.5, = 32, 000
for LLaMa models, and = 128, 000 for DeepSeek-R1.

Autoregresiveness: An LLM generates each token sequentially by sampling from
a probability distribution conditioned on previous tokens:

wt ∼ Pt where Pt = LLM(w<t) is a distribution on W.

Preceding text w<t LLM NTP distribution Pt = LLM(w<t) Output token wt
Sample

Append

Limited access: The distribution Pt is referred to next-token prediction (NTP)
distribution, which is unknown since it depends on unknown system/user prompts.
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Autoregresive generation: Example

I saw a cat on a

Mat       25%

Carpet  13%

Boat      5%

Plane     3%

….         …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

 

w7
carpet

Sampling

P7 = (P7,1, ⋯, P7,K)
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Watermarked generation: Procedure

Preceding text w<t LLM Pt = LLM(w<t) Sampling algorithm
(Decoder S) Output token wt

Append

Random seed generator
(Hash function A)

Random seed ζt
(Pseudorandom numbers)

Watermarking key

Mathematical speaking: ζt = A(w<t ,Key) and wt = S(Pt , ζt).
A watermark is defined by (A,S,Key).
Watermark signal is the dependence of each wt on ζt .
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Watermarked generation: Example

I saw a cat on a

Mat       25%

Carpet  13%

Boat      5%

Plane     3%

….         …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

 

w7 = "(P7, ζ7)
carpet

Compute

ζ7 = #(w3:6, Key)

P7 = (P7,1, ⋯, P7,K)

pseudorandom
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Comments on pseudorandom numbers
A(public data, private info) computes the pseudorandom number:

Public data = prior tokens w<t or a segment w(t−m):t [Kirchenbauer et al., 2023].
Private info = secret key, denoted Key.

Property (Soundness of pseudorandomness)
1. ζt = A(w1:t−1,Key) for t = 1, . . . , n are iid copies of a known random variable ζ
2. ζt is statistically independent of w1:t−1

3. Computationally infeasible to infer Key from ζt and w<t

Well-developed in theoretical computer science [Barak, 2021].
Pseudorandom numbers are “reproducible” iff Key is known.
Key will be shared with the verifier through a secure protocol.

Theory assumes true randomness; Implementation use deterministic generation.
Similar to setting a seed for reproducibility in simulations.
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Pseudocode for watermark embedding

Algorithm Watermarked LLM Generation
1: Inputs: a watermark (S,A,Key) and a language model.
2: Load the language model LLM(·).
3: Receive the user prompt s and feed it to the model to generate a continuation.
4: Initialize w<1 = s and set n the maximum length.
5: for step t = 1, 2, · · · n do
6: Compute the NTP distribution: Pt = LLM(w<t).
7: Compute the pseudorandom number: ζt = A(w<t ,Key).
8: Compute the next token: wt = S(Pt , ζt).
9: Append the history: w<(t+1) = w<twt . . Autoregressive

10: return w≤n.
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A high-level intro of watermark detection

H0 : w≤n is human written v.s. H0 : w≤n is LLM-generated.

Human-written text: wt is independent of ζt as humans don’t know A and Key.
LLM-generated text: wt depends on ζt via the decoder function S.

Take-away
Watermarking couples each token wt and a psedorandom ζt , altering their joint
distribution.

Scoring
function

Text w≤n := w1 . . .wn

Watermarking key
Score(w≤n)

Decision:
Watermarked/
not watermarked

Apply threshold
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A self-contained watermark python demo
Download:

https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py
How to use:

python watermark_demo.py –temp 1 –alpha 0.01 –model
facebook/opt-1.3b

26 / 72
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Some examples of watermarks



Green-red list watermark [Kirchenbauer et al., 2023]
Randomly split vocabulary in to green (favored) and red (disfavored) parts.
Secretly boost the prob. of green tokens, i.e., Pwm

green ∝ eδPgreen and Pwm
red ∝ Pred.

If the observed frequency of green tokens is larger than expected, claim
watermarked.

Figure from the tutorial: https://leililab.github.io/llm_watermark_tutorial/
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Green-red list watermark [Kirchenbauer et al., 2023]
Randomly split vocabulary in to green (favored) and red (disfavored) parts.
Secretly boost the prob. of green tokens, i.e., Pwm

green ∝ eδPgreen and Pwm
red ∝ Pred.

If the observed frequency of green tokens is larger than expected, claim
watermarked.

Figure from the tutorial: https://leililab.github.io/llm_watermark_tutorial/

Biased!
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The simplest unbiased watermark: Baby watermark
Definition (Unbiasedness)
A watermark is unbiased if the marginal distribution of w in (w , ζ) is still P, i.e.,

Pζ(S(P, ζ) = w) = Pw for any P and w ∈ W.

Let W = {0, 1},Pt = (Pt,0,Pt,1), and ζt be i.i.d. copies of U(0, 1).
Decoder

wt = S(Pt , ζt) =
{
0 if ζt ≤ Pt,0

1 otherwise.

If ζt is large, wt is more likely to be 1.
Statistic score for detection:

∑n
t=1(2wt − 1)(2ζt − 1).

Take-away
Statistically, an unbiased watermark is basically a sampling method from each Pt .
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First unbiased watermark: Gumbel-max [Aaronson, 2023]

Definition (Gumbel-max trick [Gumbel, 1948])
Let U1, . . . ,UK be i.i.d. copies of U(0, 1). Then,

arg max
w∈W

logUw
Pw

∼ P ≡ (Pw )w∈W .
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Definition (Gumbel-max trick [Gumbel, 1948])
Let U1, . . . ,UK be i.i.d. copies of U(0, 1). Then,

arg max
w∈W

logUw
Pw

∼ P ≡ (Pw )w∈W .

Proof.
The decoder rule is equivalent to choosing the w that minimizes 1

Pw
ln 1

Uw
. If Uw is

uniform, 1
Pw

ln 1
Uw

is Exp(Pw ), an exponential random variable with rate Pw and mean
1/Pw . The minimum of Exp(P) and Exp(Q), is again Exp(P + Q). Thus we can
reduce to the case of K = 2 tokens, for which the result can be verified by doing the
integral, i.e.,

P(Exp(P) ≤ Exp(Q)) = P
P + Q .
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First unbiased watermark: Gumbel-max [Aaronson, 2023]

Definition (Gumbel-max trick [Gumbel, 1948])
Let U1, . . . ,UK be i.i.d. copies of U(0, 1). Then,

arg max
w∈W

logUw
Pw

∼ P ≡ (Pw )w∈W .

Definition (Gumbel-max watermark)
With ζt = (Ut , . . . ,UK ) = A(w<t ,Key) (often depending on the last 5 tokens),

wt = Sgum(Pt , ζt) = arg max
w∈W

logUt,w
Pt,w

.

Embedded signal: selected Uwt tends to be larger.
Implemented internally at OpenAI.
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Many other unbiased watermarks

Binary undetectable watermark [Christ et al., 2024].
Inverse transform watermark [Kuditipudi et al., 2024].
Variants of green-red lists: [Hu et al., 2024, Xie et al., 2024].
WaterMax [Giboulot and Teddy, 2024].
SynthID by tournament sampling [Dathathri et al., 2024].
...

There are also many biased watermarks, which are beyond this short course. See
surveys in [Ji et al., 2025, Zhao et al., 2025].
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Outlines

Why consider watermarks

How to embed a watermark

How to detect the watermark

Recent statistical advances in watermarking

Concluding remarks
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Hypothesis testing formulation

Human-written
When text is written by a human, wt , ζt
are independent, since the human simply
cannot compute ζt .

LLM-generated
When text is generated by the LLM,
wt , ζt are dependent because of the
decoder: wt = S(Pt , ζt).

1. Can always compute ζt = A(w<t ,Key), which are iid copies of ζ.
2. Dataset = tokens w≤n := w1w2 · · ·wn + pseudorandom ζ≤n := ζ1ζ2 · · · ζn.
3. All the NTP distributions P≤n := P1P2 · · ·Pn are unknown.

H0 : w1:n by human

(wt , ζt) | (w<t , ζ<t) d= Pt × ζ

H1 : w1:n by watermarked LLM

(wt , ζt) | (w<t , ζ<t) d= (S(ζ,Pt), ζ)
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A challenge: Unknown NTP distributions

H0 : w1:n is by human vs H1 : w1:n is by watermarked LLM

Hypothesis testing

Under H0, (wt , ζt) | (w1:t−1, ζ1:t−1) d= Pt × ζ

Under H1, (wt , ζt) | (w1:t−1, ζ1:t−1) d= (S(ζ,Pt), ζ)

Neyman-Pearson lemma resorts to the log-likelihood ratio test:

PH1(w1:n, ζ1:n)
PH0(w1:n, ζ1:n) =


1

P1,w1 ···Pn,wn
if S(Pt , ζt) = wt for all t

0 otherwise

But P1, . . . ,Pn as nuisance are unknown to the verifier, and worse, are varying!
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A challenge: Unknown NTP distributions
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A practical approach: Pivot under the null [Li et al., 2025a]
Find a pivotal statistic Yt = Y (wt , ζt) such that

Under H0, Yt ∼ µ0, regardless of Pt

Under H1, Yt ∼ Y (S(ζt ,Pt), ζt), whose distribution is denoted µ1,Pt

w

ζ

Y ∼ µ0

H0

Independent

w

ζ

Y | P ∼ µ1,P

H1

S(P , ·)

Example: Yt = (2wt − 1)(2ζt − 1) ∼ U(−1, 1) under H0 for the baby watermark.
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Hypothesis testing via pivoting
Find a pivotal statistic Yt = Y (wt , ζt) such that

Under H0, Yt ∼ µ0, regardless of Pt

Under H1, Yt ∼ Y (S(ζt ,Pt), ζt), whose distribution is denoted µ1,Pt

Hypothesis testing via pivoting

H0 : Yt
iid∼ µ0, t = 1, . . . , n vs H1 : Yt |Pt ∼ µ1,Pt , t = 1, . . . , n

Not unique, may lead to information loss, but convenient.
A good choice of Y should have a similar distributional shift for any Pt .
Test distributional difference rather than independence using test score
Th =

∑n
t=1 h(Yt) for some score function h. Reject H0 if Th is larger than a

threshold.
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Pseudocode for watermark detection

Algorithm Watermark Detection
1: Inputs: a text w≤n, hash function A, secret Key, and significance level α.
2: Simulate n iid samples from the pivotal distributionµ0.
3: Set q̂n as the empirical (1 − α)-quantile of those null samples, if its theoretical

counterpart is hard to compute.
4: Initialize w<1 by any prefix.
5: for step t = 1, 2, · · · , n do
6: Compute the pseudorandom number: ζt = A(w<t ,Key).
7: Compute the pivotal statistic: Yt = Y (wt , ζt).
8: Compute the test score: T = Score(Y≤n).
9: Claim: LLM-generated if T > q̂n otherwise human-written.
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Pivot for Gumbel-max watermark
The pivotal statistic is Y ars

t = Ut,wt given that Sgum(P, ζ) = arg maxw
log ζw

Pw
and

ζt = (Ut,1, . . . ,Ut,K ).
Under H0, Y ars

t
iid∼ µ0 = U(0, 1).

Under H1, the CDF of µ1,Pt is P1(Y ars
t ≤ r |Pt) =

∑K
k=1 Pt,k r1/Pt,k .
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Detection for Gumbel-max watermark

Definition (Default detection for Gumbel-max)
Aaronson [2023] rejects H0 if the following Thars is larger than a given threshold:

Thars =
n∑

t=1
hars(Y ars

t ) where hars(y) = − log(1− y).

Under H0, hars(Y ars
t ) iid∼ Exp(1) so that E0[Tars] = n.

Under H1, E1[Tars] ≥ n +
(
π2

6 − 1
)∑n

t=1 E1Ent(Pt) where Ent(Pt) is Shannon
entropy defined by −

∑K
k=1 Pt,k logPt,k .

Using the same Y ars
t , Fernandez et al. [2023a] finds that − log(1− y) works

better than the variant log y .

The demo includes totally four detection rules (with other two mentioned latter):
https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py
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Motivation from a statistical perspective

Questions
Find an efficiency measure to rank different detection rules?
What is the “optimal” score function h?
Find the optimal detection rule according to the efficiency measure?
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Detection efficiency
Fixing Type I error, a detection rule is preferred if it has a higher power.

However, the comparison depends on the unknown NTP distributions P≤n.

Minimax viewpoint: the lowest power over all NTP distributions?
All detection rules are powerless as Y (wt , ζt) has the same distribution under H0
and H1 if Pt has an entry of 1.

Class-dependent efficiency
Select a class P that is believed to
contain all P≤n.
Evaluate efficiency by the
least-favorable power attained over P.
What is a reasonable class P?

0.0 0.2 0.4 0.6 0.8 1.0
maxw∈W Pw

102

103

Top prob. from ChatGPT-3.5-turbo.

39 / 72



Detection efficiency
Fixing Type I error, a detection rule is preferred if it has a higher power.

However, the comparison depends on the unknown NTP distributions P≤n.
Minimax viewpoint: the lowest power over all NTP distributions?

All detection rules are powerless as Y (wt , ζt) has the same distribution under H0
and H1 if Pt has an entry of 1.

Class-dependent efficiency
Select a class P that is believed to
contain all P≤n.
Evaluate efficiency by the
least-favorable power attained over P.
What is a reasonable class P?

0.0 0.2 0.4 0.6 0.8 1.0
maxw∈W Pw

102

103

Top prob. from ChatGPT-3.5-turbo.

39 / 72



Detection efficiency
Fixing Type I error, a detection rule is preferred if it has a higher power.

However, the comparison depends on the unknown NTP distributions P≤n.
Minimax viewpoint: the lowest power over all NTP distributions?

All detection rules are powerless as Y (wt , ζt) has the same distribution under H0
and H1 if Pt has an entry of 1.

Class-dependent efficiency
Select a class P that is believed to
contain all P≤n.
Evaluate efficiency by the
least-favorable power attained over P.
What is a reasonable class P?

0.0 0.2 0.4 0.6 0.8 1.0
maxw∈W Pw

102

103

Top prob. from ChatGPT-3.5-turbo.

39 / 72



Detection efficiency
Fixing Type I error, a detection rule is preferred if it has a higher power.

However, the comparison depends on the unknown NTP distributions P≤n.
Minimax viewpoint: the lowest power over all NTP distributions?

All detection rules are powerless as Y (wt , ζt) has the same distribution under H0
and H1 if Pt has an entry of 1.

Class-dependent efficiency
Select a class P that is believed to
contain all P≤n.
Evaluate efficiency by the
least-favorable power attained over P.
What is a reasonable class P?

0.0 0.2 0.4 0.6 0.8 1.0
maxw∈W Pw

102

103

Top prob. from ChatGPT-3.5-turbo.
39 / 72



A class of NTP distributions

∆-regular distribution class:

P∆ := {P = (P1, · · · ,Pk) : max
k

Pk ≤ 1−∆}.

Chopping off deterministic NTP distributions of the form (0, . . . , 0, 1, 0, . . . , 0).
Closely related to the temperature parameter in LLMs.
Shannon entropy satisfies

Ent(P) =
∑

Pw log 1
Pw
≥
∑

Pw (1− Pw ) ≥
∑

Pw ·∆ = ∆.
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Asymptotic class-dependent efficiency

Theorem (Least-favorable detection efficiency)
Fixing Type I error in (0, 1), the pivot-based test statistic Th =

∑
h(Yt) satisfies

lim sup
n→∞

[Type II error] 1n ≤ exp(−RP(h)),

where P-efficiency rate RP(h) is defined as

RP(h) = − inf
θ≥0
{θE0[h(Y )] + log φP,h(θ)} with φP,h(θ) = sup

P∈P
E1,P [e−θh(Y )].
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RP(h) = − inf
θ≥0
{θE0[h(Y )] + log φP,h(θ)} with φP,h(θ) = sup

P∈P
E1,P [e−θh(Y )].

Tight in the minimax sense. Bahadur efficiency when P is a singleton.
Monotonicity: RP1(h) ≥ RP2(h) if P1 ⊂ P2.
For a mixture from P1 and P2 with proportions γ and 1− γ:

lim sup
n→∞

Type II error
1
n ≤ exp(−γRP1(h)− (1− γ)RP2(h)).
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Proof sketch for the asymptotic bound
For a given score function h, the test rejects H0 if

∑n
t=1 h(Yt) ≥ γn,α.

Step 1 – calibrating γn,α (Type I)

Type I error = P0
(
Tn ≥ γn,α

)
= α. =⇒ γn,α

n −−−→
n→∞

E0 h(Y ).

Step 2 – bounding Type II by Chernoff bound

Type II error = P1(
n∑

t=1
−h(Yt) ≥ −γn,α) ≤ exp(γn,αθ) · exp(n · log φP,h(θ)).

Step 3 – Putting together

lim sup
n→∞

[Type II error]1/n ≤ lim sup
n→∞

inf
θ≥0

exp(θγn,α/n) · exp(log φP,h(θ))

≤ inf
θ≥0

lim sup
n→∞

exp(θγn,α/n) · exp(log φP,h(θ))

= inf
θ≥0

exp(θE0h(Y ) + log φP,h(θ)).
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Optimal score via class-dependent efficiency

Definition (Optimal score function)
Finding the optimal score h? = arg maxh RP(h) reduces to a minimax problem:

min
h

max
P∈P

L(h,P) where L(h,P) := E0[h(Y )] + log
(
E1,P e−h(Y )

)
.

The minimax problem minh maxP∈P L(h,P) is generally not convex-concave.
Case-by-case analysis is required, but we are often lucky.
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How to maximize RP(h)
Find the saddle point (P?, h?) that solves the minimax problem:

min
h

max
P∈P

L(h,P) = inf
h

{
E0[h(Y )] + sup

P∈P
log
(
E1[e−h(Y )|P]

)}
.

Theorem (Saddle point condition)
If there exists an P? ∈ P and a score function class H such that for all h ∈ H,

sup
P∈P

E1[e−h(Y )|P] = E1[e−h(Y )|P?], (P?)

h? := log dµ1,P?

dµ0
∈ H, (h?)

we then have
max

h
RP(h) = L(h?,P?) = DKL(µ0, µ1,P?),

where the maximum is obtained at h?.
44 / 72



Optimal score for Gumbel-max watermark

Theorem (Optimal score for Gumbel-max watermark)
The optimal score that maximizes h?∆ := arg maxh RP∆(h) is

hopt,∆(y) = log
dµ1,P?

∆

dµ0
,

where
P?

∆ =
(
1−∆, . . . , 1−∆︸ ︷︷ ︸
b 1
1−∆ c times

, 1− (1−∆) ·
⌊ 1
1−∆

⌋
, 0, . . .

)
.

Key observation: E1[e−h(Y )|P] is convex in P for any non-decreasing h.
P?

∆ is the only extreme point in P∆ up to permutation.

When 0 < ∆ < 0.5, hopt,∆ = log
(
y

∆
1−∆ + y

1−∆
∆
)
as P?

∆ = (1−∆,∆, 0, . . .).
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Efficiency plot for Gumbel-max watermark
Aaronson [2023] proposed hars(y) = − log(1− y).
Kuditipudi et al. [2024], Fernandez et al. [2023a] proposed hlog(y) = log y .
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Simulation results for Gumbel-max watermark
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Watermark under text modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.

To cope with modification, Gumbel-max watermark uses a few tokens to compute
pseudorandom numbers

For example, ζt = A(w(t−5):(t−1),Key), using the last 5 tokens.
A modified token will turn the watermark signals in the next few 5 tokens to noise.

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t vs Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t

εn ∈ [0, 1] denote the fraction of watermark signals.
When εn ≡ 1, it reduced to the full detection setting we considered.

48 / 72



Watermark under text modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.

To cope with modification, Gumbel-max watermark uses a few tokens to compute
pseudorandom numbers

For example, ζt = A(w(t−5):(t−1),Key), using the last 5 tokens.
A modified token will turn the watermark signals in the next few 5 tokens to noise.

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t vs Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t

εn ∈ [0, 1] denote the fraction of watermark signals.
When εn ≡ 1, it reduced to the full detection setting we considered.

48 / 72



Watermark under text modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.

To cope with modification, Gumbel-max watermark uses a few tokens to compute
pseudorandom numbers

For example, ζt = A(w(t−5):(t−1),Key), using the last 5 tokens.
A modified token will turn the watermark signals in the next few 5 tokens to noise.

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t vs Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t

εn ∈ [0, 1] denote the fraction of watermark signals.
When εn ≡ 1, it reduced to the full detection setting we considered.

48 / 72



Watermark under text modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.

To cope with modification, Gumbel-max watermark uses a few tokens to compute
pseudorandom numbers

For example, ζt = A(w(t−5):(t−1),Key), using the last 5 tokens.
A modified token will turn the watermark signals in the next few 5 tokens to noise.

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t vs Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t

εn ∈ [0, 1] denote the fraction of watermark signals.
When εn ≡ 1, it reduced to the full detection setting we considered.

48 / 72



How to solve the mixture detection

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t vs Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t

Difficulties: We know nothing about εn or Pt .

Key insight
We know everything about the null H0 which always assume Y≤n iid from µ0.

Focus to determine whether the observed Y1, . . . ,Yn follows µ0.
Tr-GoF [Li et al., 2024b] checks the deviation between the empirical CDF of Y≤n
and µ0 via an f -divergence.
Too large deviation indicate the existence of watermarked subtexts.
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Tr-GoF [Li et al., 2024b]
The empirical CDF of p-values: Fn(r) = 1

n
∑n

t=1 1pt≤r where pt = 1− F0(Yt).
Under H0, we must have p1, . . . , pn i.i.d. from U(0, 1).
Tr-GoF rejects H0 if sup

r∈(0,1)
nKs(Fn(r), r) is larger than expected for s ∈ [−1, 2]

where
Ks(u, v) = 1

s(1− s)
[
1− usv1−s − (1− u)s(1− v)1−s

]
.

One can show that Ks is the φs -divergence between two Bernoulli variables:

Ks(u, v) = Dφs (Ber(u) ‖ Ber(v)) = vφs

(u
v

)
+ (1− v)φs

(1− u
1− v

)
,

where φs is a scalar convex function indexed by s:

φs(x) =


x log x − x + 1, if s = 1,
1−s+sx−x s

s(1−s) , if s 6= 0, 1,
− log x + x − 1, if s = 0.

GitHub: https://github.com/lx10077/TrGoF.
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Robust performance of Tr-GoF

On C4 news-like dataset [Raffel et al., 2020] and OPT-1.3B model [Zhang et al.,
2022] (temperature 0.3).
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Connection with general goodness-of-fit (GoF) tests

In general, GoF tests evaluate whether i.i.d. datas follow µ0 or µ1.
Different GoF tests use different measuress of deviation.
He et al. [2025] shows that they often improve power and robustness.

Table: Type I errors on human data and Type II errors (averaged over three LLMs) on the C4
dataset for the Gumbel-max watermark. All values are multiplied by 100 for readability.

Temperature n Baseline Tr-GoF Kui Kol And Cra Wat Ney Chi

0.3 200 18.5 21.0 26.3 19.5 15.5 21.2 36.8 19.7 18.5
400 15.1 5.7 4.7 4.7 4.9 8.4 10.7 8.0 2.9

0.7 200 0.6 0.3 0.5 0.6 0.5 0.7 0.9 0.5 0.3
400 0.7 0.2 0.2 0.3 0.2 0.4 0.4 0.2 0.2

Type I – 0.4 0.9 1.5 0.6 0.7 1.2 1.1 0.9
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Table: Goodness-of-fit tests and their sources.

Test name Reference

Tr-GoF test (Tr-GoF) [Li et al., 2024b]
Kuiper’s test (Kui) [Kuiper, 1960]
Kolmogorov–Smirnov test (Kol) [Smirnov, 1939]
Anderson–Darling test (And) [Anderson and Darling, 1952]
Cramér–von Mises test (Cra) [Cramér, 1928]
Watson’s test (Wat) [Watson, 1961]
Neyman’s smooth test (Ney) [Neyman, 1937]
Chi-squared test (Chi) [Pearson, 1900]



Why the Tr-GoF test performs so well?

A question
Why the Tr-GoF test performs so well in the watermark detection problem?

We focus on the Gumbel-max watermark. Similar analysis could be paralleled to
other watermarks.

High-level answers
The Tr-GoF test achieves optimal robustness in two senses:

1. Optimal detection boundary in a decaying watermark-signal case.
2. Optimal detection efficiency rate in a constant corruption case.

!!! No knowledge about the fraction εn and NTP distributions.
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When the robust detection is possible? Optimal detection boundary

Hypothesis testing under mixtures
H0 : Yt ∼ µ0 ∀t versus Hmix

1 : Yt |Pt ∼ (1− εn)µ0 + εnµ1,Pt ∀t.

Definition (A difficult case)
We consider an extreme case where

εn � n−p for all t and p ∈ (0, 1].
1−maxw∈W Pt,w = ∆n for all t with ∆n � n−q and q ∈ (0, 1).

Motivated by sparse detection problem [Donoho and Jin, 2004, 2015].
If εn = 0 or 1−maxw∈W Pt,w = 0, (1− εn)µ0 + εnµ1,Pt = µ0, i.e., H0 merges
with Hmix

1 .
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When the robust detection is possible? Optimal detection boundary

Theorem (Optimal detection boundary on the (p, q)-plane)

If q + 2p > 1, H0 and Hm
1 merge asymptotically. For any test, the sum of Type I

and Type II error probabilities is 1 as n→∞.
If q + 2p < 1, H0 and Hm

1 separate asymptotically. Furthermore, for the
likelihood-ratio test that rejects H0 if the log-likelihood ratio is positive, the sum
of Type I and Type II error probabilities tends to 0 as n→∞.

=⇒ Robust detection is impossible for small watermark signal, i.e., q + 2p > 1.
=⇒ With sufficient watermark signal, detection is possible with the likelihood-ratio

test an optimal rule, i.e., q + 2p < 1.
!!! The likelihood-ratio test is impractical as it needs to know Pt ’s and εn.
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Adaptive optimality Optimal detection boundary

Target
An ideal optimal detection method should work as long as q + 2p < 1 and don’t
requires the knowledge of Pt ’s and εn.

Our finding
The GoF test achieves this optimal detection boundary.

Theorem (Adaptive optimality)
The Type I and II errors of the Tr-GoF test → 0 if n→∞ as long as q + 2p < 1.

Optimal adaptivity without any prior knowledge.
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Empirical detection boundaries of Tr-GoF Optimal detection boundary
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Suboptimality of sum-based tests
Consider the sum-based test that rejects H0 if

n∑
t=1

h(Y ars
t ) ≥ n · E0[h(Y ars)] + Θ(1) · n

1
2 · poly(log n).

Theorem (Suboptimality of sum-based tests)
When ε < 1, the detection boundary for general (∆, ε)-agnostic sum-based tests is
q + p = 1/2 (which include h ∈ {hars, hlog, hopt,∆}).
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What about constant corruption? Optimal detection efficiency

The optimal detection boundary cares about the diminishing region where the
watermark signal decays with the text length n.
Practical settings meet with the constant corruption case, i.e., εn ≡ ε.
The problem is detectable because p = q = 0 (within q + 2p < 1).

Recall P-efficiency: the rate of exponential decrease in Type II errors for a fixed
significance level α and the worst-case alternative within a belief set P.

Definition (P-efficiency [Li et al., 2025a], revisited)

Let γn,α satisfy P0(Sn ≥ γn,α) = α for n ≥ 1. For a given belief set P, we define the
following limit (if exists) as the P-efficiency of Sn and denote it by RP(Sn):

lim
n→∞

sup
Pt∈P,∀t∈[n]

1
n logP1(Sn ≤ γn,α) = −RP(Sn).
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What about constant corruption? Optimal detection efficiency

Theorem (Optimal P∆-efficiency)

Let s ∈ (0, 1), εn ≡ ε ∈ (0, 1] and ∆n ≡ ∆ ∈ (0, 1).

RP∆(any detection rule) ≤ DKL(µ0, (1− ε)µ0 + εµ1,P?
∆

) ≤ RP∆(Tr−GoF)

where P?
∆ is the least-favorable NTP distribution defined by

P?
∆ =

(
1−∆, . . . , 1−∆︸ ︷︷ ︸
b 1
1−∆ c times

, 1− (1−∆) ·
⌊ 1
1−∆

⌋
, 0, . . .

)
.

Upper and lower bounds.
When ε = 1, this rate is obtained by the sum-based test defined by hopt,∆.
Optimal efficiency without any prior knowledge.
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Theoretical P∆-efficiency comparison Optimal detection efficiency
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Proportion estimation

Hypothesis testing under constant mixtures
H0 : Yt ∼ µ0 ∀t versus Hmix

1 : Yt |Pt ∼ (1− ε)µ0 + εµ1,Pt ∀t.

Once we have confirmed that w≤n was generated by the LLM (i.e. reject Hmix
1 ),

how many were produced by the model?
Application: Measure LLMs’ intellectual contribution.

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])
Given independent data Yt ∼ (1− ε)F0 + εFPt for all t, how to estimate ε accurately?

Take-away
ε is not identifiable under every watermarking scheme—not estimable for the green–red
list, yet estimable for Gumbel-max.
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When ε is identifiable?

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])
Given independent data Yt ∼ (1− ε)F0 + εFPt for all t, how to estimate ε accurately?

ε is not identifiable for green-red list watermark.

Lemma
If Y1:n are i.i.d. from the binary mixture (1− ε)Ber(γ) + εBer(µ) where both ε and µ
are unknown with γ known, ε is not identifiable (as Yt

iid∼ Ber((1− ε)γ) + εµ)).

ε is identifiable for Gumbel-max watermark (and other wm with continuous Y ).

Lemma

If Yt ∼ (1− ε)F0 + εFPt and lim
x→0

F̄P(x)
F0(x) = 0, then ε is identifiable (as

ε = 1− limx→0
F̄ (x)
F0(x) is well-defined).
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How to estimate ε when possible?

Some notations
F̄ (y) = (1− ε)F0(y) + εF̄P(y) for all y ,

F̄ (y) = 1
n
∑n

t=1 P(Yt ≤ y)
F0(y) = µ0(Y ≤ y)
F̄P(y) = 1

n
∑n

t=1 µ1,Pt (Y ≤ y)

Key idea: “Moment” matching
For any weight function v : R 7→ R,

ε =
EF0 [v ]− EF̄ [v ]
EF0 [v ]− EF̄P

[v ] .

Two difficulties: (1) no access to F̄P and (2) which v to use.
Estimate F̄P : collect water-marked outputs from similar LLMs ⇒ empirical F̂P .
Choose v : set heuristically or optimize against a clear performance criterion.
GitHub: https://github.com/lx10077/WatermarkProportion.
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Proportion estimators

Key observation
For any weight function v : R 7→ R,

ε =
EF0 [v ]− EF̄ [v ]
EF0 [v ]− EF̄P

[v ] .

Collected data
Let F̂ denote the empirical CDF of
observed Y≤n.
Let F̂P approximate the alternative
CDF F̄P (no accuracy guarantees).

Way 1: Ignore F̄P & use indicator v

ε̂ini(δ) = 1− F̂ (δ)
F0(δ) .

Way 2: Use F̂P & indicator v

ε̂rfn(δ) = F0(δ)− F̂ (δ)
F0(δ)− F̂P(δ)

.

Way 3: Use F̂P & optimal v

Fixed point of ε̂opt = T̂ (ε̂opt) where

T̂ (ε) =
∫
v̂opt(ε, y)

[
dF0(y)− dF̂ (y)

]
∫
v̂opt(ε, y)

[
dF0(y)− dF̂P(y)

]
v̂opt(ε, y) = 1− ĝ(y)

(1− ε) + εĝ(y) , ĝ(y) = dF̂P(y)
dF0(y) .
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Fixed point of ε̂opt = T̂ (ε̂opt) where

T̂ (ε) =
∫
v̂opt(ε, y)

[
dF0(y)− dF̂ (y)

]
∫
v̂opt(ε, y)

[
dF0(y)− dF̂P(y)

]
v̂opt(ε, y) = 1− ĝ(y)

(1− ε) + εĝ(y) , ĝ(y) = dF̂P(y)
dF0(y) .
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Proportion estimators

Key observation
For any weight function v : R 7→ R,

ε =
EF0 [v ]− EF̄ [v ]
EF0 [v ]− EF̄P

[v ] .

Collected data
Let F̂ denote the empirical CDF of
observed Y≤n.
Let F̂P approximate the alternative
CDF F̄P (no accuracy guarantees).

Way 1: Ignore F̄P & use indicator v

ε̂ini(δ) = 1− F̂ (δ)
F0(δ) .

Way 2: Use F̂P & indicator v

ε̂rfn(δ) = F0(δ)− F̂ (δ)
F0(δ)− F̂P(δ)

.

Way 3: Use F̂P & optimal v

Fixed point of ε̂opt = T̂ (ε̂opt) where

T̂ (ε) =
∫
v̂opt(ε, y)

[
dF0(y)− dF̂ (y)

]
∫
v̂opt(ε, y)

[
dF0(y)− dF̂P(y)

]
v̂opt(ε, y) = 1− ĝ(y)
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Why optimal?

Lemma (Optimal estimator variance)

If F̂P = F̄P , it follows that

Var
(

EF0 [v ]− EF̂ [v ]
EF0 [v ]− EF̄P

[v ]

)
≤

VarF̄ (v)
n(EF0 [v ]− EF̄P

[v ])2

Lemma (Optimal weight function)

min
v

VarF̄ (v)
[EF0 [v ]− EF̄P

[v ]]2 =
[∫ [1− g(x)]2

(1− ε) + εg(x)dF0(x)
]−1

where the optimal solution (up to constant factors) is

vopt(x) = 1− g(x)
(1− ε) + εg(x) , with g(x) = dF̄P(x)

dF0(x) .
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Why optimal?

Lemma (Optimal weight function)

min
v

VarF̄ (v)
[EF0 [v ]− EF̄P

[v ]]2 =
[∫ [1− g(x)]2

(1− ε) + εg(x)dF0(x)
]−1

=: [τ?n ]2,

where the optimal solution (up to constant factors) is

vopt(x) = 1− g(x)
(1− ε) + εg(x) , with g(x) = dF̄P(x)

dF0(x) .

Theorem (Minimax optimality)

ε̂opt is the minimax optimal estimator up to the estimation error in F̂P , i.e.,

E|ε̂opt − ε| .
τ?n + o(1)√

n + estimation errors due to F̂P
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Empirical performance [Li et al., 2025b]
On arXiv dataset [Cohan et al., 2018] and OPT-13B model [Zhang et al., 2022]
(temperature 1.0).
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Watermark localization

Given that an ε fraction of tokens is watermarked, which specific tokens bear the
watermark?

Definition (Watermark localization under mixtures)
Given independent data Yt ∼ (1− ηt)µ0 + ηtµ1,Pt forall t, how to estimate the binary
process {ηt} accurately?

In proportion estimation, we assume E[ηt ] ≡ ε.
Applications: Authorship classification, mix-source data cleaning...
Localization is harder than proportion estimation [Cai and Sun, 2017].
Existing methods rate each token (or span) and flag those with high scores as
watermarked [Zhao et al., 2024c, Li et al., 2024a].
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Watermark localization: AOL [Zhao et al., 2024c]

Apply an online learning algorithm to estimate {E[ηt ]} for a given text.
Label a token as watermarked if its score exceeds a threshold.
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Estimated token scores v.s. token indexes on Gumbel-max (threshold 1.3 and length 3, 000).
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Watermark localization: SeedBS [Li et al., 2024a]

Treat localization as a change-point problem on the token-wise p-value sequence.
Mark an interval as watermarked when its score is too large.
All candidate intervals are scanned via binary segmentation.

p-value v.s. token indexes on Gumbel-max (threshold 0.005 and length 500).
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Concluding remarks

Watermarking enhances content traceability and integrity.
Applicable to various data modalities: text, images, audio, proteins, etc.
Each token is coupled with tractable pseudorandom numbers for embedding.
Detection relies on identifying this coupling via pivotal statistics.
Detection performance is measured through class-dependent efficiency.
Statistical problems arise in practical watermarking applications:

Whether
watermarked

How many
watermarked

Which
watermarked

Have a try to watermark!
https://github.com/lx10077/WatermarkFramework/blob/main/watermark_demo.py
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Potential directions

Detection beyond (scalar) pivotal statistics.
Are there more effective functions for detecting shifts in the joint dist. of (w , ζ)?

Optimal watermarking: capacity, detectability, and stealth trade-offs.
What is the optimal bit-rate under a fidelity constraint?

Online watermarking and real-time detection.
Can we detect machine generation on the fly under data shift?

Multiple or overlapping watermarks.
If multiple watermarks coexist, how can we separate and attribute them?

Robustness to paraphrasing and translation.
Can we design paraphrase-invariant watermarking?

Post-generation watermarking.
Is it possible to embed watermarks into an already generated text?

. . .
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