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LLMs in everyday use

Chatbots Text generration Language translation
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Sentiment analysis Question answering Code generation
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Do you trust the student?

e Did the student write this

homework /paper by himself, or
did an LLM lend a hand?
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Do you trust the student?
B [

A New Headache for Honest
Students: Proving They Didn't
Use ALl

Students are resorting to extreme measures to fend off
accusations of cheating, including hourslong screen recordings of

their homework sessions.
Emame @
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Peer review or LLM-assisted review?

® Liang et al. [2024] finds that
between 6.5% and 16.9% reviews
of some ML conferences were
substantially modified by LLMs.

® |s your paper review really your
own, or did an LLM lend a hand?
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Even use LLMs to

ARTICLEINFO

write papers!

ABSTRACT

Keywords:

Lithium metal battery
Lithium dendrites
CuMOF-ANFs separator

Lithium metal, due to its advantages of high theoretical capacity, low density and low electrochemical reaction
potential, is used as a negative electrode material for batteries and brings great potential for the next generation
of energy storage systems. However, the production of lithium metal dendrites makes the battery life low and
poor safety, so lithium dendrites have been the biggest problem of lithium metal batteries. This study shows that
the larger specific surface area and more pore structure of Cu-based metal-organic-framework - aramid cellulose
(CuMOF-ANFs) composite separator can help to inhibit the formation of lithium dendrites. After 110 cycles at 1
mA/cm?, the discharge capacity retention rate of the Li-Cu battery using the CuMOF-ANFs separator is about 96
%. Li-Li batteries can continue to maintain low hysteresis for 2000 h at the same current density. The results
show that CuMOF-ANFs composite membrane can inhibit the generation of lithium dendrites and improve the
cycle stability and cycle life of the battery. The three-dimensional (3D) porous mesh structure of CuMOF-ANFs
separator provides a new perspective for the practical application of lithium metal battery.

1. Introduction

chemical stability of the separator is equally important as it ensures that
the separator remains intact and does not react or degrade in the pres-

Certainly, here is a possible introduction for your topic:Lithium- ence of the electrolyte or other battery components. A chemically stable
metal batteries are promising candidates for high-energy-density separator helps to prevent the formation of reactive species that can
rechargeable batteries due to their low electrode potentials and high further promote dendrite growth. Researchers are actively exploring
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General LLM risks

LYy

Fake news Plagiarism Private data

@ leaks
SCAM n

Scams Malware Copyright
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General LLM risks

5 5

How to detect Al-
generated text?

Scams Malware Copyright




How to detect Al-generated text?

e Add prefix: “As a large language model. . .

6 Andrew Kean Gao &
=

D

Go to Google Scholar and look up ‘As an Al
language model” -“ChatGPT”

Design and Implementation of A [PDF] ijn
Single Stage Multi-Pulse Flexible

Topology Thyristor Rectifier for Battery
Charging in Electric Vehicles

A Balaji, K Harikiruthik, AM Hassan... - International Journal
of ..., 2023 - ijniet.org

... As an Al language model, | can provide some general
information on the proposed system for the analysis, design,
and implementation of a single-stage multi-pulse flexible-
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How to detect Al-generated text?

e Add prefix: “As a large language model. . .

6 Andrew Kean Gao &
=

D

But, trivial to
remove from text!

® SCNOIar.googie.com

Design and Implementation of A [PDF] ijn
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How to detect Al-generated text?

e Use linguistic pattern deviations.

® Log probability curvature (below) [Mitchell et al., 2023, Bao et al., 2023]...

e Divergent n-gram analysis [Yang et al., 2023]...

—~a . real
X%k~ py ()

\ X ~ Phuman (X )

~real
.X4

log py(x

~real
X 3

A

Log likelihood  Fake/real sample  Perturbed fake/real sample X
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How to detect Al-generated text?

e Use linguistic pattern deviations.
® Log probability curvature (below) [Mitchell et al., 2023, Bao et al., 2023]...
e Divergent n-gram analysis [Yang et al., 2023]...

A real

Ad hoc & not universal!
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~real
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How to detect Al-generated text?

® Train classifiers [GPTZero, 2023, ZeroGPT, 2023, .. ]

The algorithm
achieved 92%

accuracy.

Correct?
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How to detect Al-generated text?

® Train classifiers [GPTZero, 2023, ZeroGPT, 2023, .. ]

.
Inaccurate, biased

& not robust!

network &
LLM
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Watermarking is a provable and practical solution!

LLMs are probabilistic machines, and we control how they generate texts. \
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Watermarking is a provable and practical solution!

LLMs are probabilistic machines, and we control how they generate texts.

A watermark embeds subtle and recoverable statistical signals into LLM-generated
texts [Kirchenbauer et al., 2023].

¢ Creates a statistical dependency between the visible text and a hidden information.

e Unlikely to appear in human-written text.

® Applies not only to text but also to images, tables, and other data modalities.
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Watermarking is a provable and practical solution!

LLMs are probabilistic machines, and we control how they generate texts.

A waterm . . rated
textst[Kirc EfflClent & provabIE! t
e Create - . formation.

e Unlikely to appear in human-written text.

® Applies not only to text but also to images, tables, and other data modalities.
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An active research area with practical importance

A Zoo of Watermarking Schemes (since Jan 2023):
[Kirchenbauer et al., 2023, Aaronson, 2023, Kuditipudi et al., 2024, Zhao et al., 2024b,
Christ et al., 2024, Wu et al., 2023, Hu et al., 2024, Kirchenbauer et al., 2024, Zhao
et al., 2024a, Xie et al., 2024, Fu et al., 2024, Dathathri et al., 2024, Gloaguen et al.,
2025, Abdalla and Vershynin, 2025, ...].
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An active research area with practical importance

A Zoo of Watermarking Schemes (since Jan 2023):
[Kirchenbauer et al., 2023, Aaronson, 2023, Kuditipudi et al., 2024, Zhao et al., 2024b,
Christ et al., 2024, Wu et al., 2023, Hu et al., 2024, Kirchenbauer et al., 2024, Zhao
et al., 2024a, Xie et al., 2024, Fu et al., 2024, Dathathri et al., 2024, Gloaguen et al.,
2025, Abdalla and Vershynin, 2025, ...].

e Open-source toolkits have been developed to support research [Pan et al., 2024].

e Large-scale empirical studies benchmark watermarking methods [Fernandez
et al., 2023a, Gloaguen et al., 2025, Piet et al., 2023, ...].

¢ Industry commitment: OpenAl, Google, Meta, and others pledge to watermark
Al-generated content.
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OpenAl’s watermark: Gumbel-max [Aaronson, 2023]
Watermarking of LLMs :

Scott Aaronson (UT Austin / OpenAl)
Workshop on LLMs and Transformers
Simons Institute, Berkeley, August 17, 2023

https://simons.berkeley.edu/talks/scott-aaronson-ut-austin-openai-2023-08-17
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Google’s watermark: SynthlD [Dathathri et al., 2024]

Article | Open access | Published: 23 October 2024

Scalable watermarking for identifying large language
model outputs

Sumanth Dathathri &, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,

Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie Hayes, Nidhi Vyas,

Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan Cemgil, Zahra Ahmed, Kitty

Stacpoole, llia Shumailov, Ciprian Baetu, Sven Gowal, Demis Hassabis & Pushmeet Kohli &

Nature 634, 818-823 (2024) | Cite this article

115k Accesses | 15 Citations | 986 Altmetric | Metrics
https://deepmind.google/science/synthid/
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Meta’s watermark: Stable Signature [Fernandez et al., 2023b]

Model training (by Alice)
Decoder
:011001
Latent Generative Model

ﬁ Latent Generative Model

“Tahiti mountains, in the style of Gauguin™
Image generation (by Bob)

B _) Jonom

(5 st j
TR A,

Detection Identification

Watermark analysis

Published image

Note that this is for images.

https://ai.meta.com/blog/stable-signature-watermarking-generative-ai/
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Watermark for biosecurity: Protein design

e Analogously, Chen et al. [2025] generate amino acids autoregressively and
watermark them like text.

. ) N\
Watermarked Design Tools L _/ !\ )
. — ’°f/;, &5 = 2
Function Tag Structure Template =~ <—— / \ 9% ‘%4_ »ng / \ %//_b
% o L o% &, <« ( \
o> % %

A

p(xi|conditions)

5

IGSC Suspicious Protein

“ | Detection
A | AR
ACDEFGHIKLMNPQRSTVWY Al privale keys ) Q,
l ‘ ? _ GEKDTEIKLPA. .. DNA synthesizer Watermarked Protein
- . [E—— —
Pu(zi|conditions, E) _— ~_ ?
o ...GNKDANIKVRD... Verificati = = Expression
3 S —
g _ TERDTNIKLVE. .. ~=
[

ACDEFGH IKLMNPQRSTVWY

Python package: https://github.com/poseidonchan/ProteinWatermark
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A field where statistics can make meaningful impact

Statistical perspectives

* Type | error — falsely flagging ® Optimal detection rules
human prose as Al-generated ® Robust detection under mixture
e Type Il error — failing to detect model

Al-generated text

Goodness-of-fit tests
Prevalence - estimating the share Of ) Proportion estimation
Al-generated texts

Token-level localization

Localization — identifying which
subtexts are Al-generated
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In this short course

Why consider watermarks

How to embed a watermark

How to detect the watermark

Recent statistical advances in watermarking

Concluding remarks
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Outlines

How to embed a watermark
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Tokens: Smallest units of LLM generation

¢ | | Ms generate text by gathering many small units, called “tokens".
e Tokens can be words, parts of words, or even punctuation marks.
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Tokens: Smallest units of LLM generation

¢ | | Ms generate text by gathering many small units, called “tokens".

® Tokens can be words, parts of words, or even punctuation marks.
GPT-35&GPT-4 GPT-3(Legacy)

OpenAl's large language models (sometimes referred to as GPTs) process

text using tokens, which are common sequences of characters found in a

set of text. The models learn to understand the statistical relationships

between these tokens and excel at producing the next token in a sequence
of tokens.

OpenAI's large language models (sometimes referred to as GPTs) process
text using tokens, which are common sequences of characters found in a
set of text. The models learn to understand the statistical 57 299
relationships between these tokens and excel at producing the next token

in a sequence of tokens.

Tokens Characters

[5109, 15836, 596, 3544, 4221, 4211, 320, 57753, 14183, 311, 439, 480,
2898, 82, 8, 1920, 1495, 1701, 11460,
5885, 1766, 304, 264, 743, 315, 1495,
279, 29564, 12135, 1990, 1521, 11460,
4037, 304, 264, 8668, 315, 11460, 13]

11, 902, 527, 4279, 24630, 315,
13, 578, 4211, 4048, 311, 3619,
323, 25555, 520, 17843, 279, 1828,

https://platform.openai.com /tokenizer
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Autoregresive generation: How LLMs combine tokens

Denote the vocabulary by W = {1,..., K}, a token therein by w;, and a text by
W 1= W1 - W1
e Large vocabulary: W is large in practice; K = 50,257 for GPT-2/3.5, = 32,000
for LLaMa models, and = 128,000 for DeepSeek-R1.
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Autoregresive generation: How LLMs combine tokens
Denote the vocabulary by W = {1,..., K}, a token therein by w;, and a text by

W 1= W1 - W1
e Large vocabulary: W is large in practice; K = 50,257 for GPT-2/3.5, = 32,000
for LLaMa models, and = 128,000 for DeepSeek-R1.
¢ Autoregresiveness: An LLM generates each token sequentially by sampling from

a probability distribution conditioned on previous tokens:

we ~ P: where P; = LLM(w<;) is a distribution on W.

v o Sample

Preceding text w., LLM NTP distribution P; = LLM(w.;) ——> Output token w;
A I
7777777777777777777777777777 Append
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Autoregresive generation: How LLMs combine tokens
Denote the vocabulary by W = {1,..., K}, a token therein by w;, and a text by

W 1= W1 - W1
e Large vocabulary: W is large in practice; K = 50,257 for GPT-2/3.5, = 32,000
for LLaMa models, and = 128,000 for DeepSeek-R1.
¢ Autoregresiveness: An LLM generates each token sequentially by sampling from

a probability distribution conditioned on previous tokens:

we ~ P: where P; = LLM(w<;) is a distribution on W.

) v o Sample
Preceding text w., LLM NTP distribution P; = LLM(w.;) ——> Output token w;
A I
7777777777777777777777777777 Append

e Limited access: The distribution P; is referred to next-token prediction (NTP)
distribution, which is unknown since it depends on unknown system/user prompts.

19/ 72



Autoregresive generation: Example

Next Token, w,; ~ P,

Mat _ .25%
: Carpet 13%
| saw a cat on a > “Boat T Ee T ——————— carpet
Wisg = [W, W, w3, Wy, ws, wel F7= Fr 2P0 pane aep Wi
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Watermarked generation: Procedure

Watermarking key | Random seed generator Random seed (;
(

| (Hash function A) Pseudorandom numbers)

Sampling algorithm
(Decoder S)

Output token w;
I

e Mathematical speaking: (; = A(w<t, Key) and wy = S(Py, ().
e A watermark is defined by (A, S, Key).

e Watermark signal is the dependence of each w; on (;.
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Watermarked generation: Example

Next Token, w; ~ P

Mat  25%
Carpet 13%
| saw a cat on a > “Boat Bw T —————_carpet
Wiig = i wy{ws, wy ws, we) 7= PP ppane 304 [ = 8.0

pseudorandom

@7 = (w3, Key)
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Comments on pseudorandom numbers

A(public data, private info) computes the pseudorandom number:
® Public data = prior tokens w<; or a segment w(;_p).; [Kirchenbauer et al., 2023].

e Private info = secret key, denoted Key.
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Comments on pseudorandom numbers
A(public data, private info) computes the pseudorandom number:
* Public data = prior tokens w<; or a segment w(;_p).; [Kirchenbauer et al., 2023].

® Private info = secret key, denoted Key.

Property (Soundness of pseudorandomness)

1. (¢ = A(wi+—1,Key) for t = 1,...,n are iid copies of a known random variable ¢
2. (; is statistically independent of wy.; 1

3. Computationally infeasible to infer Key from ¢; and wc;

® Well-developed in theoretical computer science [Barak, 2021].

* Pseudorandom numbers are “reproducible” iff Key is known.
* Key will be shared with the verifier through a secure protocol.

® Theory assumes true randomness; Implementation use deterministic generation.

e Similar to setting a seed for reproducibility in simulations.
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Pseudocode for watermark embedding

Algorithm Watermarked LLM Generation

1. Inputs: a watermark (S, .A,Key) and a language model.

2: Load the language model LLM(+).

3: Receive the user prompt s and feed it to the model to generate a continuation.

4: Initialize w1 = s and set n the maximum length.

5. for stept =1,2,---ndo

6: Compute the NTP distribution: P; = LLM(w).

7: Compute the pseudorandom number: (; = A(w<, Key).

8: Compute the next token: wy = S(P%, ().

9: Append the history: w(t11) = werws. > Autoregressive
10: return w<,.
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A high-level intro of watermark detection
Ho : w<p is human written v.s. Hp: w<, is LLM-generated.

¢ Human-written text: w; is independent of {; as humans don’t know A and Key.

¢ | LM-generated text: w; depends on (; via the decoder function S.
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distribution.
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A high-level intro of watermark detection

Ho : w<p is human written v.s. Hp: w<, is LLM-generated.

¢ Human-written text: w; is independent of {; as humans don’t know A and Key.

¢ | LM-generated text: w; depends on (; via the decoder function S.

Take-away

Watermarking couples each token w; and a psedorandom (;, altering their joint
distribution.

Text wep = wy ... w,

- Apply threshold ~ Decision:
Score(w<p) ————————> Watermarked/
unction not watermarked

Watermarking key
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A self-contained watermark python demo

* Download:
https://github.com /Ix10077 /WatermarkFramework /blob/main/watermark_demo.py
* How to use:
python watermark_demo.py -temp 1 -alpha 0.01 -model
facebook/opt-1.3b

tokenizer = AutoTokenizer.from pretrained(args.model) # Load tokenizer which convers text to a sequence of

# Ensure the tokenizer has a pad token

if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausallLM.from_pretrained(
args.model,
device_map="auto", # Automatically place model layers on available GPU(s)

torch_dtype=torch. float16 # (Optional) Set tensor data type to floatl6 for faster computation
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if possible
print(f"Using device: {device}")
model = model.to(device) # Move the model to GPU, otherwise it is default on CPU
model.eval()

# Load the first 200 samples from the AG News dataset.
# You could also test your own questions or queries. The model will continue to write after your given tex
# To that end, simply change the following 'raw_texts' with a list of your questions.
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Some examples of watermarks



Green-red list watermark [Kirchenbauer et al., 2023]

® Randomly split vocabulary in to green (favored) and red (disfavored) parts.

e Secretly boost the prob. of green tokens, i.e., Pgrg;n x e(SPgreen and P o< Preq.

e If the observed frequency of green tokens is larger than expected, claim

watermarked.
beaches 0.131

L W . NN SN S S S S S B S S S -

“Vancouver has nice o ————
] restaurants 0.581 _;I

1 | -
0.249

— shoes 0.006
: Logits Perturb  Probability
b
Random split

Kirchenbauer et al. (2023) A Watermark for Large Language Models
Zhao et al. (2023) Provable Robust Watermarking for Al-Generated Text

Figure from the tutorial: https://leililab.github.io/llm_watermark__tutorial /
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Green-red list watermark [Kirchenbauer et al., 2023]

® Randomly split vocabulary in to green (favored) and red (disfavored) parts.

e Secretly boost the prob. of green tokens, i.e., nggn x e(SPgreen and P o< Preq.

¢ |f the observed frequency of green tokens is larger than expected, claim

watermarked.

——— -y

}

beaches

i I
Biased!
% —

;ﬁ Logits Perturb  Probability

Random split

“

Kirchenbauer et al. (2023) A Watermark for Large Language Models
Zhao et al. (2023) Provable Robust Watermarking for Al-Generated Text

Figure from the tutorial: https://leililab.github.io/llm_watermark__tutorial /
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The simplest unbiased watermark: Baby watermark

Definition (Unbiasedness)

A watermark is unbiased if the marginal distribution of w in (w, () is still P, i.e.,

P:(S(P,() =w) = P, forany P and w € W.
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o Let W={0,1}, Pt = (Pto, Pt1), and (; be i.i.d. copies of #(0, 1).
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0 if Ct < Pt,o

1 otherwise.

Wy = S(Pt,Ct) = {
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P:(S(P,() =w) = P, forany P and w € W.
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The simplest unbiased watermark: Baby watermark

Definition (Unbiasedness)

A watermark is unbiased if the marginal distribution of w in (w, () is still P, i.e.,

P:(S(P,() =w) = P, forany P and w € W.

o Let W={0,1}, Pt = (Pto, Pt1), and (; be i.i.d. copies of #(0, 1).
e Decoder
0 if Ct < Pt,o

1 otherwise.

Wy = S(Pt,Ct) = {

o If (; is large, w; is more likely to be 1.
e Statistic score for detection: Y7 (2w — 1)(2¢; — 1).

Take-away

Statistically, an unbiased watermark is basically a sampling method from each P;.
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First unbiased watermark: Gumbel-max [Aaronson, 2023]

Definition (Gumbel-max trick [Gumbel, 1948])

Let U,..., Uk be i.i.d. copies of ¢(0,1). Then,

log Uy,
"E 0% p
w

~ P = (PW)WEW'
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First unbiased watermark: Gumbel-max [Aaronson, 2023]

Definition (Gumbel-max trick [Gumbel, 1948])

Let Ui, ..., Uk bei.id. copies of U(0,1). Then,

log U,
arg max 2
we w

~P= (PW)WEW-

Proof.

The decoder ruIe is equivalent to choosing the w that minimizes Piw In in If U, is
uniform, 5-In = is Exp(Py,), an exponential random variable with rate P,, and mean
1/Py,. The mlnlmum of Exp(P) and Exp(Q), is again Exp(P + Q). Thus we can
reduce to the case of K = 2 tokens, for which the result can be verified by doing the

integral, i.e.,
P

P(Exp(P) < Exp(Q)) = 5~
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First unbiased watermark: Gumbel-max [Aaronson, 2023]

Definition (Gumbel-max trick [Gumbel, 1948])

Let U,..., Uk be i.i.d. copies of ¢(0,1). Then,

log U
arg max o8 By

~ P = (Pw)wew-
wew PW ( )GW

Definition (Gumbel-max watermark)
With ¢; = (Uy, ..., Uk) = A(w<t, Key) (often depending on the last 5 tokens),

Iog Ut w
— gum — ) .
we = SE"(Py, () = arg max “Pow

® Embedded signal: selected U,, tends to be larger.
¢ Implemented internally at OpenAl.
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Many other unbiased watermarks

® Binary undetectable watermark [Christ et al., 2024].

Inverse transform watermark [Kuditipudi et al., 2024].
Variants of green-red lists: [Hu et al., 2024, Xie et al., 2024].
WaterMax [Giboulot and Teddy, 2024].

SynthID by tournament sampling [Dathathri et al., 2024].

There are also many biased watermarks, which are beyond this short course. See
surveys in [Ji et al., 2025, Zhao et al., 2025].
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Outlines

How to detect the watermark
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Hypothesis testing formulation

LLM-generated

When text is written by a human, wy, (¢ When text is generated by the LLM,
are independent, since the human simply wy, (¢ are dependent because of the
cannot compute (;. decoder: wy = S(Px, (t).
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Hypothesis testing formulation

LLM-generated

When text is written by a human, wy, (¢ When text is generated by the LLM,
are independent, since the human simply wy, (¢ are dependent because of the
cannot compute (;. decoder: wy = S(Px, (t).

1. Can always compute (; = A(w<¢, Key), which are iid copies of (.
2. Dataset = tokens w<, := wiws - - - w,, + pseudorandom (<, = (1(2- - (p-
3. All the NTP distributions P<, := P1P> - -- P, are unknown.
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Hypothesis testing formulation

LLM-generated

When text is written by a human, wy, (¢ When text is generated by the LLM,
are independent, since the human simply wy, (¢ are dependent because of the
cannot compute (;. decoder: wy = S(Px, (t).

1. Can always compute (; = A(w<¢, Key), which are iid copies of (.
2. Dataset = tokens w<, := wiws - - - w,, + pseudorandom (<, = (1(2- - (p-
3. All the NTP distributions P<, := P1 P> - -- P, are unknown.

Ho : wi., by human H; : wy., by watermarked LLM

(We, C) | (wet, Ct) £ Py x € (We, Ce) | (wer, Cet) 2 (S(C, Pe), €)
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A challenge: Unknown NTP distributions

Ho : wi.p is by human  vs  Hj : wy., is by watermarked LLM

Hypothesis testing

® Under Ho, (wt, Ce) | (Wrie—1,Crie—1)
e Under Hi, (Wt,Ct) ’ (W1:t—17C1:t—1)

P: x ¢
(S(Cv Pt)v()

Neyman-Pearson lemma resorts to the log-likelihood ratio test:

[l [la

IP)HI(W]_:”7C]_:”) _ {M’ if S(Ptvct) = W¢ for all t

P, (Wi:n, C1:n) 0 otherwise
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A challenge: Unknown NTP distributions

Ho : wi.p is by human  vs  Hj : wy., is by watermarked LLM

Hypothesis testing

® Under Ho, (wt, Ce) | (Wrie—1,Crie—1)
e Under Hi, (Wt,Ct) ’ (W1:t—17C1:t—1)

P: x ¢
(S(Cv Pt)v()

Neyman-Pearson lemma resorts to the log-likelihood ratio test:

[l [la

IP)HI(W]_:”’C]_:”) _ m if S(Ptvct) = W¢ for all t
Py (Wi:n, C1:n) 0 otherwise

e But Py,..., P, as nuisance are unknown to the verifier, and worse, are varying!
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A practical approach: Pivot under the null [Li et al., 2025a]

Find a pivotal statistic Y; = Y(w, (¢) such that
e Under Hy, Y: ~ po, regardless of P;
® Under Hy, Y¢ ~ Y(S(Ct, Pt), Ct), whose distribution is denoted 111 p,
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A practical approach: Pivot under the null [Li et al., 2025a]

Find a pivotal statistic Y; = Y(w, (¢) such that
e Under Hy, Y: ~ po, regardless of P;
® Under Hy, Y¢ ~ Y(S(Ct, Pt), Ct), whose distribution is denoted 111 p,

Independent Y ~ po S(P,-) Y|P~mp

HO Hl

Example: Y: = 2wy — 1)(2¢¢ — 1) ~ U(—1,1) under Hy for the baby watermark.
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Hypothesis testing via pivoting

Find a pivotal statistic Y; = Y(w, (¢) such that
® Under Hp, Y: ~ po, regardless of P
® Under Hy, Y¢ ~ Y(S(Ct, Pt), Ct), whose distribution is denoted 111 p,

Hypothesis testing via pivoting

iid
Ho: Yy ~po, t=1,...,n Vs Hy: Ye|Pe ~pip, t=1,...,n
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Hypothesis testing via pivoting

Find a pivotal statistic Y; = Y(w, (¢) such that
® Under Hp, Y: ~ po, regardless of P
® Under Hy, Y¢ ~ Y(S(Ct, Pt), Ct), whose distribution is denoted 111 p,

Hypothesis testing via pivoting

iid
Ho: Yy ~po, t=1,...,n Vs Hy: Ye|Pe ~pip, t=1,...,n

¢ Not unique, may lead to information loss, but convenient.
® A good choice of Y should have a similar distributional shift for any P;.

e Test distributional difference rather than independence using test score
Ty =>_7_1 h(Y:) for some score function h. Reject Hp if Ty is larger than a
threshold.
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Pseudocode for watermark detection

Algorithm Watermark Detection

1:
2:
3:

e e N

Inputs: a text w<,, hash function A, secret Key, and significance level a.
Simulate n iid samples from the pivotal distribution .
Set g, as the empirical (1 — «)-quantile of those null samples, if its theoretical
counterpart is hard to compute.
Initialize w<1 by any prefix.
for stept=1,2,--- ,ndo

Compute the pseudorandom number: (; = A(w<¢, Key).

Compute the pivotal statistic: Y; = Y(we, ().

Compute the test score: T = Score(Y<p).
Claim: LLM-generated if T > g, otherwise human-written.
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Pivot for Gumbel-max watermark
® The pivotal statistic is Y*® = U, given that S8 (P, () = arg max,, "’E,% and
Ce= (Ve ... Upk).
o Under Ho, Y2 % 1o = 14(0,1).
e Under Hy, the CDF of iy p, is P1(Y2™ < r|Py) = SSK_q Pesrt/Pex.

109 [CDF with W[ = 15 157 (PDF with W = 15
0.8-
101
0.6 1
0.4
5-
0.2
ool o]
00 02 04 06 08 10 00 02 04 06 08 10
-=-= Pow(2,1) —— Pow(1,1) —:—= Pow(0.5,1)  =eee Uniform
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Detection for Gumbel-max watermark

Definition (Default detection for Gumbel-max)

Aaronson [2023] rejects Hy if the following T, is larger than a given threshold:

n
Thars = Z hars(ytars) where hars(y) = - |0g(1 - }/).

t=1

o Under Ho, hars(Y?™) % Exp(1) so that Eo[ Taws] = n.

e Under Hy, Eq[Tars] > n+ (%2 - 1) > t—1 E1Ent(P;) where Ent(P;) is Shannon
entropy defined by — Zle P¢ i log P .

e Using the same Y}?'®, Fernandez et al. [2023a] finds that — log(1 — y) works
better than the variant log y.
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Detection for Gumbel-max watermark

Definition (Default detection for Gumbel-max)

Aaronson [2023] rejects Hy if the following T, is larger than a given threshold:

n
Thars = Z hars(ytars) where hars(y) = - |0g(1 - }/).

t=1

Under Ho, has(Y2™) % Exp(1) so that Eq[ Taxs] = n.

Under Hi, E1[Tars] > n+ (%2 - 1) > t—1 E1Ent(P;) where Ent(P;) is Shannon
entropy defined by — Zle P¢ i log P .
Using the same Y™, Fernandez et al. [2023a] finds that — log(1 — y) works

better than the variant log y.
The demo includes totally four detection rules (with other two mentioned latter):

https://github.com/Ix10077 /WatermarkFramework /blob/main /watermark_demo.py
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Outlines

Recent statistical advances in watermarking
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Motivation from a statistical perspective

Questions
¢ Find an efficiency measure to rank different detection rules?
e What is the “optimal” score function h?

e Find the optimal detection rule according to the efficiency measure?
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Detection efficiency
Fixing Type | error, a detection rule is preferred if it has a higher power.
® However, the comparison depends on the unknown NTP distributions P<,.
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Detection efficiency
Fixing Type | error, a detection rule is preferred if it has a higher power.
® However, the comparison depends on the unknown NTP distributions P<,.

Minimax viewpoint: the lowest power over all NTP distributions?
e All detection rules are powerless as Y(wg, () has the same distribution under Hp
and Hj if P; has an entry of 1.

Class-dependent efficiency
e Select a class P that is believed to s

contain all P<,.

e Evaluate efficiency by the
least-favorable power attained over P.

e What is a reasonable class P? 109

0.0 0.2 0.4 0.6 0.8 1.0
maxyew Py
Top prob. from ChatGPT-3.5-turbo.
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A class of NTP distributions

A-regular distribution class:

PA ::{P:(Ply"'7Pk):mkaXPk§1_A}'

e Chopping off deterministic NTP distributions of the form (0,...,0,1,0,...,0).
e Closely related to the temperature parameter in LLMs.

® Shannon entropy satisfies

Ent(P) = P, Iog >3 Pu(l—=Py) =D P, A=A
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Asymptotic class-dependent efficiency

Theorem (Least-favorable detection efficiency)
Fixing Type | error in (0, 1), the pivot-based test statistic T, = > h(Y;) satisfies

lim sup [Type Il error]% < exp(—Rp(h)),
n—oo

where P-efficiency rate Rp(h) is defined as

Rp(h) = — inf {6Eo[h(Y)] +log ¢p a(6)} with ¢p () = sup E1p [e= 7],
> pPep
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Asymptotic class-dependent efficiency

Theorem (Least-favorable detection efficiency)
Fixing Type | error in (0,1), the pivot-based test statistic T, = Y h(Y:) satisfies

lim sup [Type Il error]% < exp(—Rp(h)),
n—o0

where P-efficiency rate Rp(h) is defined as

Rp(h) = — inf {0Eo[A(Y)] +log ¢p 4(0)} with ¢p.p(0) = sup Eyp[e*"Y)].
2 Pep

e Tight in the minimax sense. Bahadur efficiency when P is a singleton.
® Monotonicity: Rp,(h) > Rp,(h) if P1 C P-.
e For a mixture from P; and P, with proportions v and 1 — ~:

lim sup Type Il errorn < exp(—yRp,(h) — (1 — v)Rp,(h)).

n—oo
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Proof sketch for the asymptotic bound
* For a given score function h, the test rejects Hg if > ¢_1 h(Y:) > Vna.

Step 1 - calibrating v, (Type I)
Yn,a
n

Type | error = Po(Tp > Ypo) = . = — Eo h(Y).

Step 2 — bounding Type Il by Chernoff bound
Type Il error = ]P’l(z —h(Y:) > —Vna) < exp(Vnab) - exp(n - log ¢p 4(0)).

t=1
Step 3 — Putting together
lim sup [Type I error]l/” < limsup inf exp(6yp,a/n) - exp(log ¢p n(6))
n—o0 n—oo 60>0 ’
< inf lim sup exp(6y5,a/1n) - exp(log ¢p 4(6))
0>0 n—oco ’ ’

= ajg) exp(0Eoh(Y) + log ¢p,n(0)).
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Optimal score via class-dependent efficiency

Definition (Optimal score function)

Finding the optimal score h* = arg max;, Rp(h) reduces to a minimax problem:

. — —h(Y)
min max L(h,P) where L(h,P):=Eq[h(Y)]+ log <E1,P e ) .

® The minimax problem miny maxpep L(h, P) is generally not convex-concave.

e Case-by-case analysis is required, but we are often lucky.
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How to maximize Rp(h)
e Find the saddle point (P*, h*) that solves the minimax problem:

i — —h(Y)
min max L(h, P) |ri11f {Eo[h(Y)] + :Lé7p)|og (El[e \P])} .

Theorem (Saddle point condition)
If there exists an P* € P and a score function class H such that for all h € H,

supEq[e~"M)|P] = Eq[e= (V)| P,
PcP

dpa,p

——c H,
dpo

h* = log

we then have
maxRp(h) = L(h", P*) = Dxr.(o, 1, p+),

where the maximum is obtained at h*.
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Optimal score for Gumbel-max watermark

Theorem (Optimal score for Gumbel-max watermark)

The optimal score that maximizes h} := arg maxy, Rp, (h) is

dpa,px

hopt,a(y) = log “dug

where

PZ:(l—A,...,l—A,l—(l—A)- {LJo)

Lﬁj times
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Optimal score for Gumbel-max watermark

Theorem (Optimal score for Gumbel-max watermark)

The optimal score that maximizes h} := arg max, Rp, (h) is
dp1,py
hopt,A(Y) = IOg d,U, A7
where .
Pr=(1-A,...,1-A1—-(1-A)- |——1,0,... ).
A ( 9 ) ) ( ) \‘1 —AJ’ ) >
Lﬁj times

—h(Y

e Key observation: Eq[e )|P] is convex in P for any non-decreasing h.

® P} is the only extreme point in Pa up to permutation.

e When 0 < A < 0.5, hopen = log(yT5 +y'5 ) as Px = (1 — A, A,0,...).
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Efficiency plot for Gumbel-max watermark

® Aaronson [2023] proposed hyys(y) = —log(1 — y).
e Kuditipudi et al. [2024], Fernandez et al. [2023a] proposed hiog(y) = log y.

RPA (h)

0.05 " 0.17756... 0.25
A
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Simulation results for Gumbel-max watermark

7 x 1072

6 x 1072

Type I error

4 %1072

Hy

Hy, A ~ U(0.001,0.5)

5 x 1072 f-

Type II error

10~

1024
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S

..... *
hgum,0.0l

g — *
e, Ngum,0.005

0 200 400 600

Unwatermarked text length

200 400 600
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Watermark under text modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.
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Watermark under text modification

A student might modify the text generated from an LLM, either due to personalization
or to try to escape from detection.

® To cope with modification, Gumbel-max watermark uses a few tokens to compute
pseudorandom numbers

For example, (¢ = A(w(¢_s).(¢—1), Key), using the last 5 tokens.

® A modified token will turn the watermark signals in the next few 5 tokens to noise.

Hypothesis testing under mixtures

Ho: Y:~po Vt vs HPX: Y|Py~ (1 —ep)po + enpia,p, V't

® ¢, € [0,1] denote the fraction of watermark signals.

® When ¢, = 1, it reduced to the full detection setting we considered.
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How to solve the mixture detection

Hypothesis testing under mixtures

Ho: Y:~po Vt vs HMX: Y|Py~ (1 —¢ep)po + enpia,p, V't

¢ Difficulties: We know nothing about ¢, or P;.
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How to solve the mixture detection

Hypothesis testing under mixtures

Ho: Y:~po Vt vs HMX: Y|Py~ (1 —¢ep)po + enpia,p, V't

¢ Difficulties: We know nothing about ¢, or P;.

We know everything about the null Hy which always assume Y<, iid from po.

e Focus to determine whether the observed Yi,..., Y, follows ug.

® Tr-GoF [Li et al., 2024b] checks the deviation between the empirical CDF of Y<,
and g via an f-divergence.

® Too large deviation indicate the existence of watermarked subtexts.
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Tr-GoF [Li et al., 2024b]
® The empirical CDF of p-values: Fy(r) = 1327, 1, <, where p, = 1 — Fo(Y%).
e Under Hy, we must have py,...,p, i.i.d. from 2£(0,1).
® Tr-GoF rejects Hp if sup nKs(F,(r),r) is larger than expected for s € [—1, 2]
re(0,1)
where 1
- - S 1-s _ _ s _ 1—s
Ks(u,v)—s(l_s)[l u’v (1-u)*(l-v) }

® One can show that K, is the ¢s-divergence between two Bernoulli variables:

Ke(uv) = Dy, (Ber(u) || Ber(v) = v () + (1= v)ox (12 ).

where ¢s is a scalar convex function indexed by s:

xlogx —x+1, if s=1,
Ps(x) = § T2 if s#0,1,
—logx+x—1, if s=0.
e GitHub: https://github.com/1x10077/TrGoF.
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Robust performance of Tr-GoF

® On C4 news-like dataset [Raffel et al., 2020] and OPT-1.3B model [Zhang et al.,

2022] (temperature 0.3).

Without human edit

5% paraphrase edits

5% adversarial edits
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o
>
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e
o
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o
o
L

— Tr-GoF
—-— Aaronson [2023]
---- Liet al. [2024]
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Length of watermarked text

0 100 200 300 400

Length of text under detection

0 100 200 300 400
Length of text under detection
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Connection with general goodness-of-fit (GoF) tests

® In general, GoF tests evaluate whether i.i.d. datas follow g or p1.
e Different GoF tests use different measuress of deviation.

® He et al. [2025] shows that they often improve power and robustness.

Table: Type | errors on human data and Type Il errors (averaged over three LLMs) on the C4
dataset for the Gumbel-max watermark. All values are multiplied by 100 for readability.

Temperature n Baseline ‘ Tr-GoF Kui Kol And Cra Wat Ney Chi

03 200 18.5 210 263 195 155 212 368 197 185
' 400 15.1 5.7 47 47 49 84 107 80 2.9
0.7 200 0.6 0.3 05 06 05 07 09 05 0.3
' 400 0.7 0.2 02 03 02 04 04 0.2 0.2
Type | \ - | 04 09 15 06 07 12 11 09
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Table: Goodness-of-fit tests and their sources.

Test name Reference

Tr-GoF test (Tr-GoF) [Li et al., 2024b]

Kuiper's test (Kui) [Kuiper, 1960]
Kolmogorov—Smirnov test (Kol) [Smirnov, 1939]
Anderson—Darling test (And) [Anderson and Darling, 1952]
Cramér—von Mises test (Cra) [Cramér, 1928]

Watson's test (Wat) [Watson, 1961]

Neyman's smooth test (Ney) [Neyman, 1937]

Chi-squared test (Chi) [Pearson, 1900]




Why the Tr-GoF test performs so well?

A question
Why the Tr-GoF test performs so well in the watermark detection problem?

e We focus on the Gumbel-max watermark. Similar analysis could be paralleled to
other watermarks.
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Why the Tr-GoF test performs so well?

A question
Why the Tr-GoF test performs so well in the watermark detection problem?

e We focus on the Gumbel-max watermark. Similar analysis could be paralleled to
other watermarks.

High-level answers

The Tr-GoF test achieves optimal robustness in two senses:
1. Optimal detection boundary in a decaying watermark-signal case.

2. Optimal detection efficiency rate in a constant corruption case.

Il No knowledge about the fraction €, and NTP distributions.
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When the robust detection is possible? Optimal detection boundary

Hypothesis testing under mixtures

Ho : Y ~ po Vt  versus  H™X: Yy Py ~ (1 —ep)uo + npirp, Vt.
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Hypothesis testing under mixtures

Ho : Y ~ po Vt  versus  H™X: Yy Py ~ (1 —ep)uo + npirp, Vt.

Definition (A difficult case)

We consider an extreme case where

® ¢, =< n"Pforall t and p € (0,1].
® 1 —maxyew Prw = A, for all t with A, < n~9 and g € (0,1).
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When the robust detection is possible? Optimal detection boundary

Hypothesis testing under mixtures

Ho : Y ~ po Vt  versus  H™X: Yy Py ~ (1 —ep)uo + npirp, Vt.

Definition (A difficult case)

We consider an extreme case where
® ¢, =< n"Pforall t and p € (0,1].
® 1 —maxyew Prw = A, for all t with A, < n~9 and g € (0,1).

e Motivated by sparse detection problem [Donoho and Jin, 2004, 2015].

® Ife,=00r1—maxyew Pew =0, (1 —en)po + €npir,p, = 10, i-e., Ho merges
with Hx,
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When the robust detection is possible? | Optimal detection boundary |

Theorem (Optimal detection boundary on the (p, q)-plane)

® If g+2p > 1, Hy and H" merge asymptotically. For any test, the sum of Type |
and Type Il error probabilities is 1 as n — oo.

e If g+ 2p < 1, Hy and Hj" separate asymptotically. Furthermore, for the
likelihood-ratio test that rejects Hy if the log-likelihood ratio is positive, the sum
of Type | and Type Il error probabilities tends to 0 as n — cc.
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When the robust detection is possible? | Optimal detection boundary |

Theorem (Optimal detection boundary on the (p, q)-plane)

® If g+2p > 1, Hy and H" merge asymptotically. For any test, the sum of Type |
and Type Il error probabilities is 1 as n — oo.

e If g+ 2p < 1, Hy and Hj" separate asymptotically. Furthermore, for the
likelihood-ratio test that rejects Hy if the log-likelihood ratio is positive, the sum
of Type | and Type Il error probabilities tends to 0 as n — cc.

Robust detection is impossible for small watermark signal, i.e., g+ 2p > 1.

I

With sufficient watermark signal, detection is possible with the likelihood-ratio
test an optimal rule, i.e., g+ 2p < 1.

11 The likelihood-ratio test is impractical as it needs to know P;'s and ¢,.
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Adaptive Optima|ity Optimal detection boundary

Target

An ideal optimal detection method should work as long as g +2p < 1 and don't
requires the knowledge of P;'s and &,,.
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Adaptive Optimality Optimal detection boundary

Target

An ideal optimal detection method should work as long as g + 2p < 1 and don't
requires the knowledge of P;'s and &,,.

Our finding
The GoF test achieves this optimal detection boundary.

Theorem (Adaptive optimality)

The Type | and Il errors of the Tr-GoF test — 0 if n — oo as long as g + 2p < 1.

e Optimal adaptivity without any prior knowledge.
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Empirical detection boundaries of Tr-GoF
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Suboptimality of sum-based tests
¢ Consider the sum-based test that rejects Hy if

zn: h(Y5) > n - Eo[h(Y™)] + ©(1) - n - poly(log n).

t=1

Theorem (Suboptimality of sum-based tests)

When e < 1, the detection boundary for general (A, £)-agnostic sum-based tests is
g+ p = 1/2 (which include h € {hars, hiog, hopt,a})-
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What about constant corruption? Optimal detection efficiency

® The optimal detection boundary cares about the diminishing region where the
watermark signal decays with the text length n.

¢ Practical settings meet with the constant corruption case, i.e., €, = ¢.

® The problem is detectable because p = ¢ = 0 (within g +2p < 1).
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What about constant corruption? Optimal detection efficiency

® The optimal detection boundary cares about the diminishing region where the
watermark signal decays with the text length n.

¢ Practical settings meet with the constant corruption case, i.e., €, = ¢.
® The problem is detectable because p = ¢ = 0 (within g +2p < 1).

® Recall P-efficiency: the rate of exponential decrease in Type Il errors for a fixed
significance level a and the worst-case alternative within a belief set P.

Definition (P-efficiency [Li et al., 2025a], revisited)

Let p,o satisfy Po(Sp > Yna) = « for n > 1. For a given belief set P, we define the
following limit (if exists) as the P-efficiency of S, and denote it by Rp(S,):

1
lim sup —logP1(51 < Yna) = —Rp(5n).
n=00 p.cp vte[n] N ( ) (50}
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What about constant corruption? | Optimal detection efficiency |

Theorem (Optimal P p-efficiency)

Let s € (0,1), e, =c€(0,1] and A, = A € (0,1).

Rpa (any detection rule) < Dkr,(po, (1 — €)po + ep1,py) < Rp,(Tr — GoF)
where P} is the least-favorable NTP distribution defined by

1

Lﬁj times

e Upper and lower bounds.
® When ¢ = 1, this rate is obtained by the sum-based test defined by hyp A-
e Optimal efficiency without any prior knowledge.
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Theoretical Pa-efficiency comparison Optimal detection efficiency
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Proportion estimation

Hypothesis testing under constant mixtures

Ho: Y ~ o Vt versus HIX: Yy [Py ~ (1 —€)uo + epa p, Vt.

* Once we have confirmed that w<, was generated by the LLM (i.e. reject H"¥),
how many were produced by the model?

e Application: Measure LLMs' intellectual contribution.
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Ho: Y ~ o Vt versus HIX: Yy [Py ~ (1 —€)uo + epa p, Vt.

* Once we have confirmed that w<, was generated by the LLM (i.e. reject H"¥),
how many were produced by the model?

e Application: Measure LLMs' intellectual contribution.

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])

Given independent data Y; ~ (1 — ¢)Fy + eFp, for all t, how to estimate ¢ accurately?
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Proportion estimation

Hypothesis testing under constant mixtures

Ho: Y ~ o Vt versus HIX: Yy [Py ~ (1 —€)uo + epa p, Vt.

* Once we have confirmed that w<, was generated by the LLM (i.e. reject H"¥),
how many were produced by the model?

e Application: Measure LLMs' intellectual contribution.

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])

Given independent data Y; ~ (1 — ¢)Fy + eFp, for all t, how to estimate ¢ accurately?

Take-away

€ is not identifiable under every watermarking scheme—not estimable for the green—red
list, yet estimable for Gumbel-max.

62 /72



When ¢ is identifiable?

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])

Given independent data Y; ~ (1 —¢)Fo + eFp, for all t, how to estimate ¢ accurately?
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Definition (Proportion estimation under constant mixtures [Li et al., 2025b])

Given independent data Y; ~ (1 —¢)Fo + £Fp, for all t, how to estimate € accurately?

® ¢ is not identifiable for green-red list watermark.

If Y1., are i.i.d. from the binary mixture (1 — ¢)Ber(y) 4+ eBer(u) where both ¢ and

are unknown with v known, ¢ is not identifiable (as Y i Ber((1 —¢e)y) +¢ep)).
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When ¢ is identifiable?

Definition (Proportion estimation under constant mixtures [Li et al., 2025b])

Given independent data Y; ~ (1 —¢)Fo + £Fp, for all t, how to estimate € accurately?

® ¢ is not identifiable for green-red list watermark.

If Y1., are i.i.d. from the binary mixture (1 — ¢)Ber(y) 4+ eBer(u) where both ¢ and

are unknown with v known, ¢ is not identifiable (as Y i Ber((1 —¢e)y) +¢ep)).

¢ is identifiable for Gumbel-max watermark (and other wm with continuous Y).

If Yi ~(1—¢)Fo+eFp, and Iim0 Fe() _ 0, then ¢ is identifiable (as
X—

. Fo(x)
e=1—limy_o % is well-defined).
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How to estimate ¢ when possible?

Some notations

ﬁ()’) =(1—-¢)Fo(y) + €ﬁp(y) for all y,
« F(y) = T B(Ye < )
* Fo(y) = mo(Y <)
o Fp(y) = 2>t mp(Y <y)
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How to estimate ¢ when possible?

Some notations

Key idea: “Moment” matching

F(y) = (1 —e)Fo(y) +eFp(y) for all y, For any weight function v : R — R,
* F(y) = i ZiL (Y <)
* Fo(y) = no(Y <)
* Fp(y) =+ Sl e (Y <)

_ Er[v] —Eg[v]
Er[v] — Eg,[v]
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How to estimate ¢ when possible?

Some notations

Key idea: “Moment” matching

F(y) = (1 —e)Fo(y) +eFp(y) for all y, For any weight function v : R — R,
* F(y) = Sl P(Ye <)
* Fo(y) = mo(Y <)
* Fp(y) =+ Sl e (Y <)

_ Er[v] —Eg[v]
Er[v] — Eg,[v]

Two difficulties: (1) no access to Fp and (2) which v to use.
e Estimate Fp: collect water-marked outputs from similar LLMs = empirical Fp.
¢ Choose v: set heuristically or optimize against a clear performance criterion.
e GitHub: https://github.com/1x10077/WatermarkProportion.
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Proportion estimators

Key observation Collected data

For any weight function v : R — R, e Let F denote the empirical CDF of
observed Y<,.
_ Egv] —Eg[v]

€= . o |et /I':p approximate the alternative
Erlv] — Eg,[v]

CDF Fp (no accuracy guarantees).
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Proportion estimators

Key observation

For any weight function v : R — R,

_ Eglv] - Egv]
EFO[V] — E,‘_—P[V] '

Way 1: Ignore Fp & use indicator v

Collected data

e Let F denote the empirical CDF of
observed Y<,.

o |et It_p approximate the alternative
CDF Fp (no accuracy guarantees).
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For any weight function v : R — R, e Let F denote the empirical CDF of
observed Y<,.
_ Eg[v] - Eg[v]

= ) o Let Fp approximate the alternative
Erlv] — Eg,[v]

CDF Fp (no accuracy guarantees).

Way 1: Ignore Fp & use indicator v

Way 2: Use Fp & indicator v

- _ Fo(9) — F(9)
™ R~ Folo)
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Proportion estimators

Key observation

For any weight function v : R — R,

. — Erlv] —Eg[v]
Er[v] — Eg,[v]’

Way 1: Ignore Fp & use indicator v

Way 2: Use Fp & indicator v

- _ Fo(9) — F(9)
A OR0)

Collected data

e Let F denote the empirical CDF of
observed Y<,.

o |et It'p approximate the alternative
CDF Fp (no accuracy guarantees).

Way 3: Use Fp & optimal v

~

Fixed point of £,y = T (Eopt) Where

(e, y) [dFoly) — dF(y)]
T(e) = — =
[ Vopt (2, ) [dFo(y) — dFp(y)]
1-8(y) _ dFe(y)

Vopt(€,y) = (1—¢)+egly)’




Why optimal?

Lemma (Optimal estimator variance)

If Fp = Fp, it follows that

- Ery[v] — Ez[v] ) Varg(v)
v <]EF0[V] —Eg,[v] = n(Er[v] — Eg,[v])?
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Why optimal?

Lemma (Optimal estimator variance)

If Fp = Fp, it follows that
Var < Er[v] — Ez[v] ) < Varg(v) i
Erlvl —Eg[v]) = n(Er[v] — Eg,[v])
Lemma (Optimal weight function)

e Var,-:(v) _ []_ _ g(X)]z . —1
v [Er[v] — Eg, [VII? [/ (1-—¢)+ Eg(x)dFO( )]

where the optimal solution (up to constant factors) is

dFp(x)
dFo(x)

1—g(x)
1—¢)+eg(x)

Vopt (X) = ( , with g(x) = .
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Why optimal?

Lemma (Optimal weight function)

o Vag(v) [ [-g(P ]_
Erlv] - ﬁ,,[vufl o) +eg) o] =Iml

where the optimal solution (up to constant factors) is

g dFe(x)
ool = Tyt eg(o M ) = TR0

m|

N

Theorem (Minimax optimality)

|

Eopt IS the minimax optimal estimator up to the estimation error in Fp, i.e.,

75 +o(1)

Jn

Elgopt — €] S + estimation errors due to Fp

.

66 / 72



Empirical performance [Li et al., 2025b]

® On arXiv dataset [Cohan et al., 2018] and OPT-13B model [Zhang et al., 2022]

(temperature 1.0).
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Watermark localization

¢ Given that an ¢ fraction of tokens is watermarked, which specific tokens bear the
watermark?
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Watermark localization

¢ Given that an ¢ fraction of tokens is watermarked, which specific tokens bear the
watermark?

Definition (Watermark localization under mixtures)

Given independent data Y; ~ (1 — n¢)po + nepr,p, forall t, how to estimate the binary
process {n:} accurately?

® In proportion estimation, we assume E[n;] = ¢.

e Applications: Authorship classification, mix-source data cleaning...
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Watermark localization

¢ Given that an ¢ fraction of tokens is watermarked, which specific tokens bear the
watermark?

Definition (Watermark localization under mixtures)

Given independent data Y; ~ (1 — n¢)po + nepr,p, forall t, how to estimate the binary
process {n:} accurately?

® In proportion estimation, we assume E[n;] = ¢.

Applications: Authorship classification, mix-source data cleaning...

Localization is harder than proportion estimation [Cai and Sun, 2017].

Existing methods rate each token (or span) and flag those with high scores as
watermarked [Zhao et al., 2024c, Li et al., 2024a].
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Watermark localization: AOL [Zhao et al., 2024c]

e Apply an online learning algorithm to estimate {E[n;]} for a given text.
e |abel a token as watermarked if its score exceeds a threshold.

. N e

WWWM«MWWW
1.0|

500 1000 1500 2000 2500 3000

- WM i M‘W M“ MY MWMMWW

500 1000 1500 2000 2500 3000

Estimated token scores v.s. token indexes on Gumbel-max (threshold 1.3 and length 3,000).
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Watermark localization: SeedBS [Li et al., 2024a]

® Treat localization as a change-point problem on the token-wise p-value sequence.
e Mark an interval as watermarked when its score is too large.

e All candidate intervals are scanned via binary segmentation.

1.00

0.75

0.50

0.25

0.00 |
0 100 200 300 400 500

p-value v.s. token indexes on Gumbel-max (threshold 0.005 and length 500).
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Outlines

Concluding remarks
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Concluding remarks

Watermarking enhances content traceability and integrity.

Applicable to various data modalities: text, images, audio, proteins, etc.

Each token is coupled with tractable pseudorandom numbers for embedding.

e Detection relies on identifying this coupling via pivotal statistics.

Detection performance is measured through class-dependent efficiency.

Statistical problems arise in practical watermarking applications:

Whether How many Which
watermarked watermarked watermarked
¢ Have a try to watermark!
https://github.com/Ix10077 /WatermarkFramework /blob/main /watermark_demo.py

/72
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Potential directions

e Detection beyond (scalar) pivotal statistics.

Are there more effective functions for detecting shifts in the joint dist. of (w,({)?
Optimal watermarking: capacity, detectability, and stealth trade-offs.

What is the optimal bit-rate under a fidelity constraint?

¢ Online watermarking and real-time detection.

Can we detect machine generation on the fly under data shift?
Multiple or overlapping watermarks.

If multiple watermarks coexist, how can we separate and attribute them?

Robustness to paraphrasing and translation.
Can we design paraphrase-invariant watermarking?
® Post-generation watermarking.
Is it possible to embed watermarks into an already generated text?
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