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The rise of large language models (LLMs)
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How to evaluate different LLMs?

Current evaluation methods rely heavily on standardized benchmarks.
Collect or design questions and measure the accuracy of model responses.
The MMLU (Massive Multitasks Language Understanding [Hendrycks et al.,
2021]) datasets consists of 16,000 multiple-choice questions across 57 academic
subjects (such as elementary mathematics, US history, computer science and law).
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LLMs are rapidly evolving in terms of MMLU scores
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Could we trust these released scores?

Higher scores do not imply overall superiority (relative comparison).
Example: PaLM scores 69.6% vs. GPT-3.5’s 65% on MMLU, yet GPT-3.5 is far
stronger in coding and math.

Scores themselves are not fully reliable (absolute comparison).
The scores are sensitive to slight question perturbations (e.g., changing choice
orders, prompts, choice symbols) [Alzahrani et al., 2024].
Scores fail to generalize to harder math questions [Huang et al., 2025].

On other benchmarks, LLMs reach performance saturation very quickly.
Benchmark contamination [Sainz et al., 2023].
Post-training changes the way an LLM expresses its knowledge.
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A complementary evaluation: LMArena Score

To address the limitations of static benchmarks, the LMArena (a.k.a. Chatbot
Arena [Chiang et al., 2024]) introduces a dynamic, preference-based evaluation.
Users vote on pairwise comparisons of model responses, and an Elo-style rating is
updated accordingly (winners gain points and losers lose points).
This approach captures real-world human preferences and maintains
differentiation when benchmark scores saturate.
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Indistinguishable performance among first-tier LLMs

Arena scores of top models
are very close.
Relative ranking depends on
the competing (random)
pool.
Not an absolute measure.
A single win does not
necessarily indicate strong
capacity, but the overall
score reflects the model’s
relative strength across
many battles.
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An evaluation crisis
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An evaluation crisis

Some causes of the crisis
Benchmark contamination [Sainz
et al., 2023].
Overfitting through repeated
leaderboard submissions [Singh
et al., 2025].
Narrow test-time optimization
strategies [Leech et al., 2024].
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An alternative perspective for LLM evaluation
Central question
Could we evaluate LLMs by estimating their “unseen” capacity or knowledge?

We offer an affirmative answer by proposing a statistical framework KnowSum.
We show its effectiveness through three distinct applications for estimating
countable knowledge.
Joint work with

Jiayi Xin Qi Long Weijie Su
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Our method: Overview

How Many Theorems
Does an LLM Know?
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Our method: KnowSum
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Steps 2 & 3
standardize answers.
Verification reduces
hallucination.
Clustering reduces
redundancy.
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How to extrapolate from seen to unseen

Problem formulation
Let ns denote the number of responses that appear exactly s ≥ 1 times in the first n
observation. For an extrapolation factor t > 0, we aim to estimate n0(t), the number
of new responses expected to appear in the next t · n prompts, using the observed
frequency counts {ns}s≥1.

The same setting as estimating the number of unseen species.

The Good–Turing (GT) estimator [Good, 1953] uses

N̂GT
unseen(t) = −

∞∑
s=1

(−t)sns .

When t = 1, it is n1 − n2 + n3 − n4 + n5 − · · · .
The GT estimator is unbiased but has large variance, making it unstable.
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Derivation for the GT estimator
Species trapping model [Fisher et al., 1943]

There are S species in total. Suppose we observe n species during one unit of
time, say over the interval [−1, 0].
After trapping for t units of time, let xs(t) denote # of captures from species s.
We model xs(t) ∼ Poisson(λs · (t + 1)), and assume that the behavior in [−1, 0]
is representative of the entire period [0, t].

ns = E[# of species observed exactly s times in [−1, 0]] = S
∫ ∞
0

e−λλ
s

s! dG(λ)

n0(t) = E[# of species observed in (0, t] but not in [−1, 0]] = S
∫ ∞
0

e−λ(1− e−λt) dG(λ)

By applying Taylor expansion w.r.t. λ, we obtain

n0(t) = −
∞∑
s=1

(−t)sns .
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Smoothed Good–Turing (SGT) estimator
Goal: estimate the number of new items that will appear in the next t · n queries,
given the frequency counts {ns}s≥1 from first n observations.

SGT estimator [Orlitsky et al., 2016] uses a random truncation L and define

N̂SGT
unseen(t) := E

[
−

L∑
s=1

(−t)sns
]
.

A famous instance is the ET estimator, where L ∼ Bin(k, 1/(t + 1)) is binomial
with k trials and success probability 1/(t + 1) [Efron and Thisted, 1976].

N̂ET
unseen(t) =

k∑
s=1

hs ns , hs = −(−t)s P
(
Bin

(
k, 1

t+1

)
≥ s

)
.

ET estimator is minimax optimal when k is adaptively set [Orlitsky et al., 2016].
In our experiments, we employ this with k tuned from {6, 8, 10} and t = 100.
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Application 1: Knowledge estimation

Query the LLM Nquery times with a fixed prompt, each time requesting Nans
instances of domain-specific knowledge.
Use external databases for validation (e.g., Wikipedia) and cluster the responses
based on their unique external identifiers (e.g., canonical URL).
(Nquery,Nans) = (30,000, 20) for theorems and (3,000, 50) for diseases.

Model Theorem only (10%) All math concepts Anatomical disease (51%) Human diseases
Nseen N̂tot SKR Nseen N̂tot SKR Nseen N̂tot SKR Nseen N̂tot SKR

¬ ChatGPT-4o-chat 702 1189 0.59 974 2410 0.40 277 732 0.38 589 1096 0.54
­ ChatGPT-3.5-turbo-chat 868 1064 0.82 1266 1703 0.74 268 278 0.96 523 706 0.74
® LLaMA-V3-70B-instruct 1432 1706 0.84 2289 2645 0.87 875 3372 0.26 1777 7564 0.23
¯ LLaMA-V3-3B-instruct 1035 1331 0.78 1717 2640 0.65 780 1375 0.57 1374 3002 0.46
° Mistral-7B-instruct-V0.1 753 1194 0.63 1313 2481 0.53 489 1723 0.28 859 1276 0.67
± Qwen2.5-7B-instruct 444 1162 0.38 663 1385 0.48 426 521 0.82 763 763 1.00
² Claude-3.7-Sonnet 120 201 0.60 147 293 0.50 115 462 0.25 213 686 0.31
³ DeepSeek-V3 148 241 0.61 162 203 0.80 86 334 0.26 193 752 0.26
´ Gemini-1.5-flash 100 515 0.19 122 478 0.26 139 143 0.97 298 306 0.97
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A gap between observed and total knowledge

All the LLMs have unexpressed math or medical knowledge.
Unseen knowledge changes model ranking, e.g.,

From the seen, ChatGPT-3.5-turbo-chat > ChatGPT-4o-chat.
From the total, ChatGPT-3.5-turbo-chat < ChatGPT-4o-chat.

The whole shape (top-k) of frequencies determines the unseen.
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Application 2: Information retrieval

Biomedical question

Document A
• MeSH keyword 1
• MeSH keyword 2

Document B
• MeSH keyword 1
• MeSH keyword 3

Document C
• MeSH keyword 2
• MeSH keyword 4

BioASQ-QA Task 12B Test
Dataset [Krithara et al., 2023].
Each question is associated with a
set of ground-truth documents,
and each document is annotated
with a list of MeSH keywords.
MeSH: Medical Subject Headings.
Totally 340 questions.
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Application 2: Information retrieval

Document retrieval: Ask each LLM to generate Boolean search queries to
retrieve relevant documents from the PubMed database. Each query consists of
MeSH keywords, combined using logical operators (AND, OR, NOT), and are
submitted to a search engine to return candidate documents.

If LLM retrieves a document in the ground-truth set, all MeSH keywords associated
are counted as valid knowledge.

Question answering: Ask each LLM to answers biomedical research questions
(curated by domain) based on the retrieved documents.

If LLM’s response is deemed correct, all MeSH keywords from the documents linked
to that question are counted as valid knowledge.
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Application 2: Information retrieval

Our methods estimates how many additional relevant MeSH keywords an LLM
could potentially retrieve if more questions were collected and evaluated under the
same manner.
Traditional IR metrics (e.g., F1 score and ROUGE score) assess retrieval and
answer quality based on document relevance.

Model Document Retrieval Question Answering
Nseen N̂tot SKR Nseen N̂tot SKR

¬ ChatGPT-4o-chat 2015 9676 0.21 2351 19965 0.12
­ ChatGPT-3.5-turbo-chat 2190 10367 0.21 1850 15733 0.12
® LLaMA-V3-70B-instruct 1990 8488 0.23 1928 14270 0.14
¯ LLaMA-V3-3B-instruct 79 396 0.20 1653 14199 0.12
° Mistral-7B-instruct-v0.1 1364 5646 0.24 630 6596 0.10
± Qwen2.5-7B-instruct 1399 4853 0.28 1585 10710 0.15
² Claude-3.7-Sonnet 2050 8831 0.23 2023 17230 0.12
³ DeepSeek-V3 2260 7750 0.30 2290 19744 0.12
´ Gemini-1.5-flash 2027 6616 0.31 2222 14898 0.15

M1 M2 M3 M4 M5 M6 M7 M8 M9
0%

5%

10%

15%

20%

(Subtask 1) Doc. F1

(Subtask 2) ROUGE

Performance on selected
traditional IR metrics.
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Application 3: Diversity measure
Query a LLM 1000 times about a possible application or an imagined dream job.
Since no ground-truth answers exist, embed the responses into semantic vectors
and group them into clusters when they are sufficiently far apart.

Model LLM Applications Dream Jobs
Nseen N̂tot SKR Nseen N̂tot SKR

¬ ChatGPT-4o-chat 165 714 0.23 409 1680 0.24
­ ChatGPT-3.5-turbo-chat 322 1339 0.24 131 560 0.23
® LLaMA-V3-70B-instruct 437 1918 0.23 344 1487 0.23
¯ LLaMA-V3-3B-instruct 428 1926 0.22 770 3386 0.23
° Mistral-7B-instruct-v0.1 658 3155 0.21 233 1093 0.21
± Qwen2.5-7B-instruct 421 1840 0.23 507 2094 0.24
² Claude-3.7-Sonnet 696 3013 0.23 133 543 0.24
³ DeepSeek-V3 17 48 0.35 7 10 0.7
´ Gemini-1.5-flash 21 37 0.57 3 10 0.3
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Concluding remarks

Evaluating the Unseen Capabilities: How Many Theorems Do LLMs Know?
(https://arxiv.org/abs/2506.02058)

KnowSum can estimate the discrete and countable knowledge well, e.g., the
number of theorems/diseases.
KnowSum is versatile and show utility in three applications.
Unseen knowledge meaningfully changes the model rank.
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Open directions

How to extract and represent the knowledge items estimated by KnowSum?
What if the number of total knowledge instances increases with time?
How to extend the framework from discrete symbols to continuous or
uncountable domains (e.g., real-valued reasoning steps)?
How to define and detect “singletons” (automatically) for abstract knowledge
(e.g., code snippets, math techniques)?
Can unseen estimation help save data collection effort by identifying when
existing data is sufficient and guiding augmentation only for rare cases?
. . . . . .
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