

On the Empirical Power of Goodness-of-Fit Tests in Watermark Detection

Weiqing He* Xiang Li* Tianqi Shang Li Shen Weijie Su Qi Long
 University of Pennsylvania

Why use GoF tests for watermark detection

Watermark generation and detection. In watermarked text generation, each token $w_t \sim \mathbf{P}_t$ is drawn by a decoding function \mathcal{S} as $w_t = \mathcal{S}(\mathbf{P}_t, \zeta_t)$, where \mathbf{P}_t is the next-token predictive distribution. This process induces a watermark signal—**a statistical dependence between w_t and ζ_t** —absent in human-written text, since humans lack access to ζ_t . Detection methods exploit this difference via pivotal statistics [1], defined as $Y_t = Y(w_t, \zeta_t)$, within a hypothesis-testing framework:

$$H_0: w_{1:n} \text{ is human-written} \quad \text{vs.} \quad H_1: w_{1:n} \text{ is LLM-generated.} \quad (1)$$

Property of Y : $Y(w, \zeta) \sim \mu_0$ whenever w and ζ are independent—as in human-written text—yielding the equivalent problem:

$$H_0: Y_t \sim \mu_0 \text{ i.i.d.} \quad \text{vs.} \quad H_1: Y_t \sim \text{a distribution dependent on } \mathbf{P}_t. \quad (2)$$

 Motivation: Goodness-of-fit (GoF) tests are classical tools in statistics for determining whether a sequence of i.i.d. samples comes from a specified distribution, and the formulation is highly relevant to watermark detection!

- Rich literature on GoF but almost no application on watermark.
- Reveal the limitations of existing detection methods.
- Inspire the development of new detection methods.

Key Insights

GoF tests are a simple yet powerful tool for watermark detection!

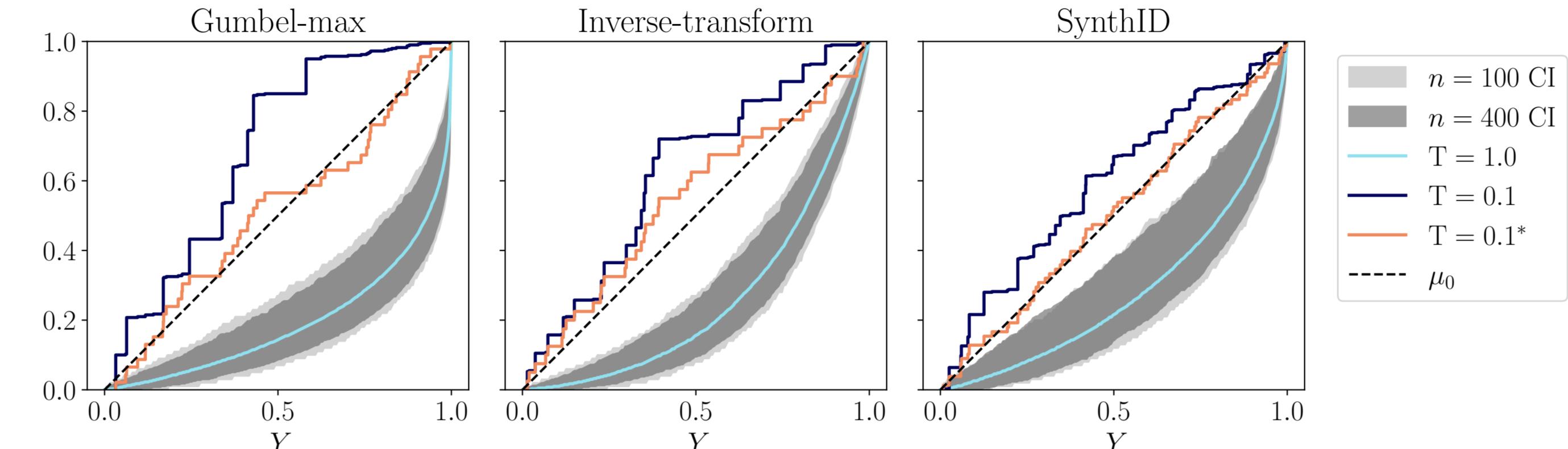
- GoF tests are highly effective at detecting watermark signals at high temperatures.
- Text repetition increases the deviation between the empirical CDF and the null distribution μ_0 , enabling GoF tests to outperform baseline methods in low-temperature settings.
- GoF tests are robust to common edits and information-rich edits.

Detection Procedure

Require: Token sequence $w_{1:n}$; watermark decoder \mathcal{S} ; significance level α ; CDF under the null F_0 .

- 1: **Compute Y_t and p -values:** $p_t = 1 - F_0(Y_t)$, $t = 1, \dots, n$ from $w_{1:n}$.
- 2: **Sort** $p_{(1)} \leq \dots \leq p_{(n)}$.
- 3: **Compute test statistic:** $D_n \leftarrow \max_{1 \leq i \leq n} \max \left(p_{(i)} - \frac{i-1}{n}, \frac{i}{n} - p_{(i)} \right)$.
- 4: **if** $D_n > \gamma_\alpha$ **then:** **Reject** H_0 .
- 5: **else:** **Do not reject** H_0 .
- 6: **end if**

Illustration of GoF tests



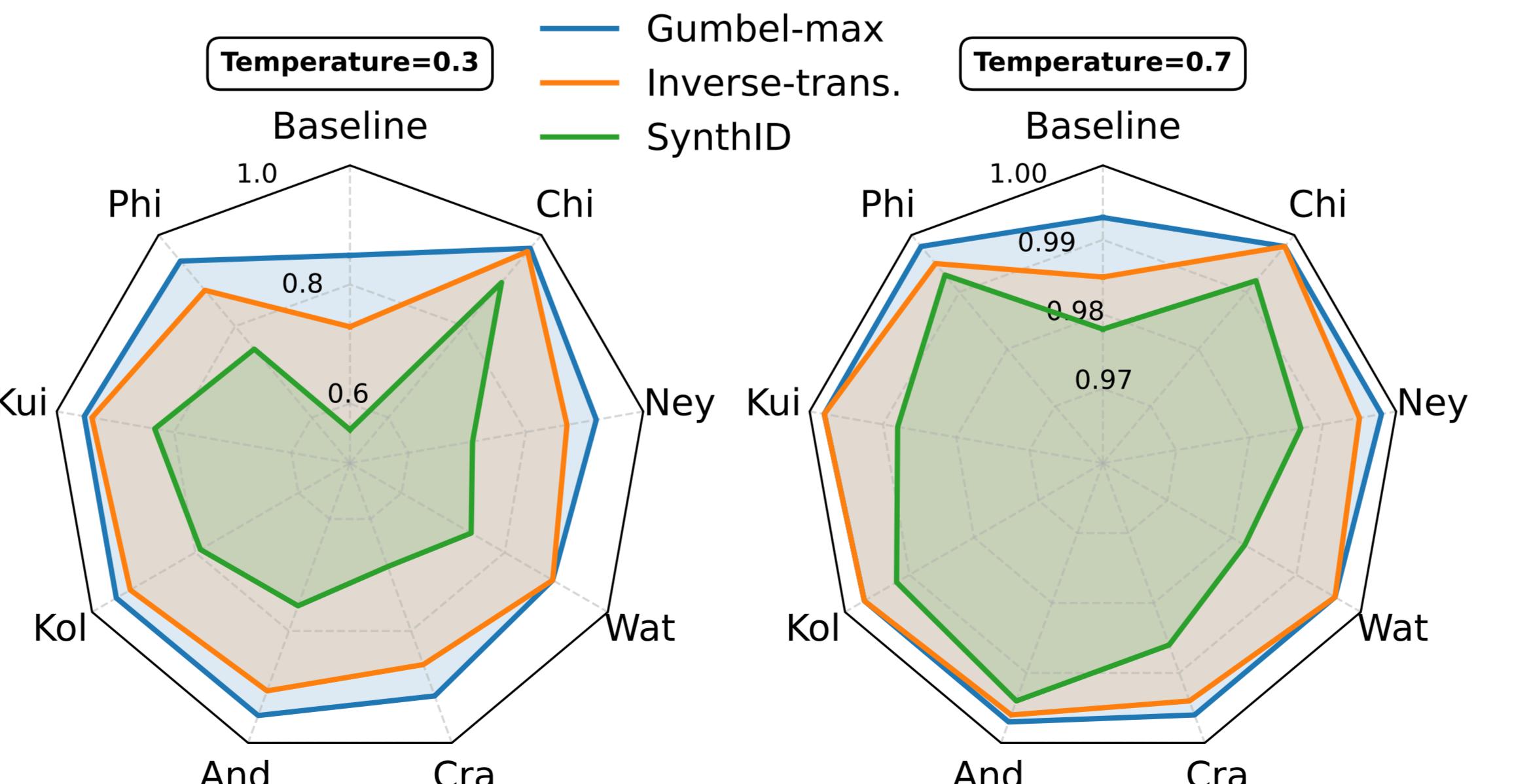
- GoF tests capture **distribution-level deviations**, typically by measuring the gap between the empirical and theoretical CDFs under the null hypothesis.
- GoF tests are particularly effective at high temperatures. The CDF difference is already apparent at $n = 100$, and increasing n further primarily reduces statistical variance.
- Repetition introduces step-like shapes of the CDF at low temperature that pushes the distribution away from the null.

Experiment Settings

- 3 popular watermarks: Gumbel-max, Inverse Transform, and SynthID.
- 3 open-source LLMs: OPT-1.3B, OPT-13B, and Llama 3.1-8B.
- 4 temperature settings: $T \in \{0.1, 0.3, 0.7, 1.0\}$.
- 2 text generation tasks: text completion (C4 dataset) and long-form question answering (ELI5 dataset).

Detection Performance

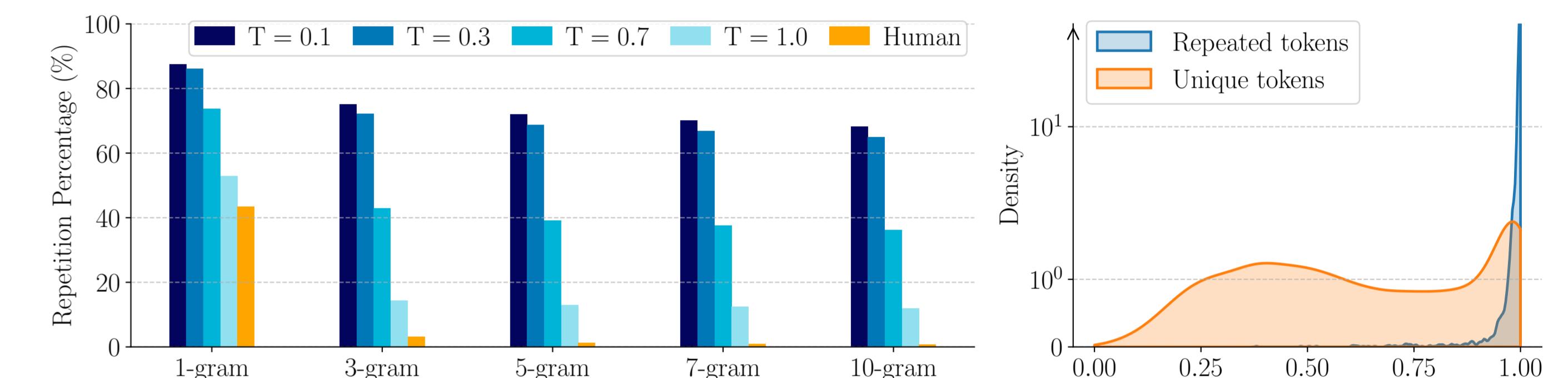
TPR @ 1% FPR



Understand the power of GoF tests

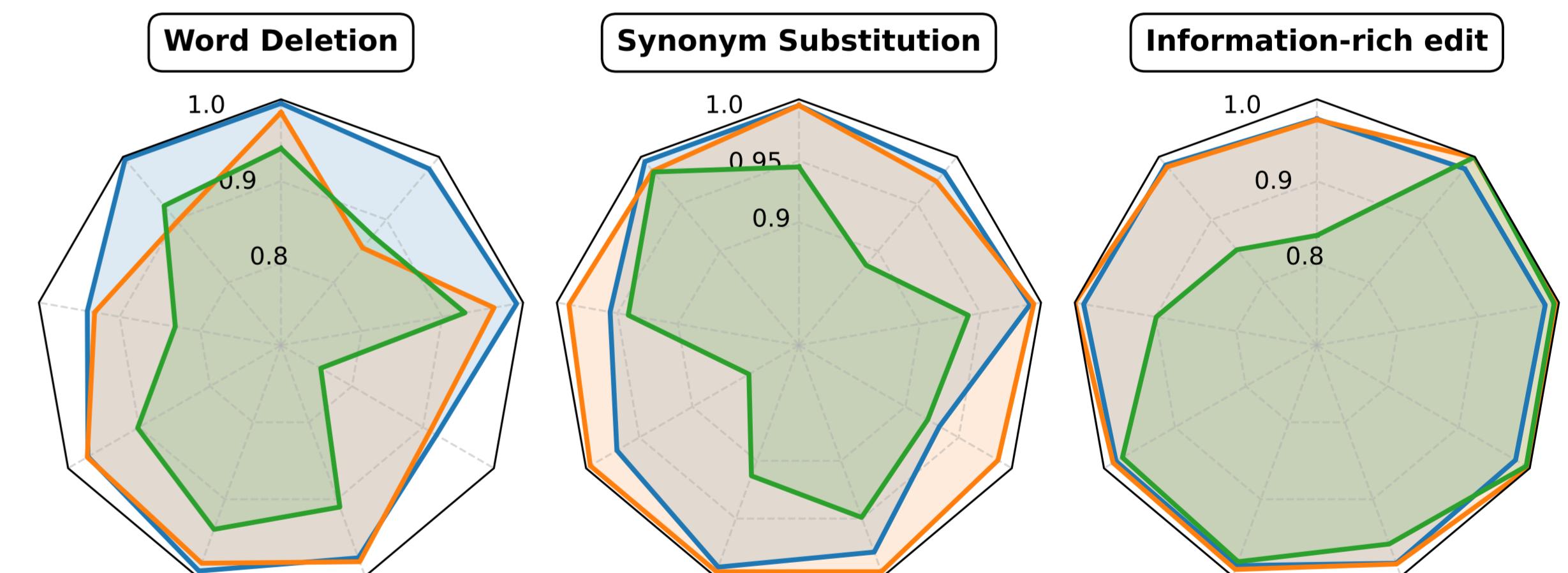
 At high temperatures: GoF can utilize the full empirical distribution (CDF) of the pivotal statistics to detect deviations from the null μ_0 . In contrast, baseline methods typically rely on sum-based statistics, which compress the data into a single value (reject H_0 if the sum $\sum_{t=1}^n h(Y_t)$ exceeds a critical threshold).

 At low temperatures: LLM tends to generate more repeated text, which reinforces low-entropy behavior and leads to repeated pivotal statistics Y_t . Repeated Y_t pushes the empirical CDF away from the null.



 GoF tests are effective at capturing CDF differences!

Robustness Evaluation



 Information-rich edits. We consider a stronger editing setting in which the hash function \mathcal{A} and secret key \mathbf{Key} are known to the user. In this case, the user can selectively modify a limited number of LLM-generated tokens to reduce watermark signals while preserving the overall quality of the text.

 The legend and axis labels are identical to those in the left plot.

References

[1] Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, and Weijie J Su. A statistical framework of watermarks for large language models: Pivot, detection efficiency and optimal rules. *The Annals of Statistics*, 53(1):322–351, 2025.