
Optimal Robust Detection for Gumbel-Max Watermarks Under Contamination
Xiang Li1, Feng Ruan2, Huiyuan Wang1, Qi Long1, Weijie J. Su1

1University of Pennsylvania, 2Northwestern University

Introduction

•Large language models (LLMs) have recently
emerged as a groundbreaking technology for
generating human-like text and other media.
•Risks arise, including misinformation, academic
integrity, and data authenticity.
•Watermark serves a provable tool to detect
machine-generated texts.

Autoregresive generation

•LLMs are probabilistic machines.
•Let W be the vocabulary and w a token therein.
•An LLMM generates each token sequentially by
sampling from a probability distribution
conditioned on previous tokens:
wt ∼ Pt where Pt =M(w1:(t−1)) is a dist. onW .

•The categorical distribution Pt is referred to
next-token prediction (NTP) distribution.

Watermarked generation

I saw a cat on a

Mat       25%

Carpet  13%

Boat      5%

Plane     3%

….         …

w1:6 = [w1, w2, w3, w4, w5, w6]

LLM

Prefix Next Token, w7 ∼ P7

 

w7 = "(P7, ζ7)
carpet

Compute

ζ7 = #(w3:6, Key)

P7 = (P7,1, ⋯, P7,K)

pseudorando

•Given a text w1:n, the detector recovers ζ1:n using
the knowledge of A and Key.
•Watermark signal is the dependence of wt on ζt.
•Watermarks face significant challenges in
maintaining robustness.

Questions Studied

Could we find the optimal robust detection rule
even for existing watermarks?
•What robust? Which watermark?

Focus: Gumbel-max watermark [4]

•Unbiasedness: We say the decoder S is unbiased
if for any P and w ∈ V ,

Pζ∼U(Ξ)(S(P , ζ) = w) = Pw.

•Decoder for Gumbel-max watermark:

Sgumb(P , ζ) = arg max
w∈W

 1
Pw
· logUw


where ζ = (U1, . . . , U|W|) with Uk i.i.d.∼ U(0, 1).
•Sgumb is unbiased due to the Gumbel-max trick.

Previous detection framework

Find a pivotal statistic Yt = Y (wt, ζt) such that
•Under H0, wt ⊥ ζt so Yt ∼ µ0 for any Phuman,t.
•Under H1, wt = S(ζt,Pt) so that
Yt ∼ Y (S(ζt,Pt), ζt). Hence, Yt|Pt ∼ µ1,Pt

.
•Hypothesis testing [2]:

H0 : Yt i.i.d.∼ µ0 v.s. H1 : Yt|Pt ∼ µ1,Pt
∀t ∈ [n].

•Limitation: All tokens are either human-written
or LLM-generated.

Summary

•Model the robust watermark detection problem as mixture detection problem.
•GoF tests achieve the optimal detection boundary and optimal P∆-efficiency rate without any priors.
•GoF tests outperform other detection methods in detecting rates and robustness.

Goodness-of-fit (GoF) test [1]

•The empirical CDF of p-values:
Fn(r) = 1

n

∑n
t=1 1pt≤r where pt = 1− Yt.

• Introduce a scalar convex function indexed by s:

φs(x) =


x log x− x + 1, if s = 1,
1−s+sx−xs
s(1−s) , if s 6= 0, 1,
− log x + x− 1, if s = 0.

•The φs-divergence between Ber(u) and Ber(v) is

Ks(u, v) = vφs

(
u

v

)
+ (1− v)φs

(1− u
1− v

)
.

•For s ∈ [−1, 2], we reject H0 if
nS+

n (s) = sup
r∈(0,1)

nKs(Fn(r), r)1Fn(r)>r is larger

than a given critical value γn,α.
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Robust detection

Example: A student modifies the LLM-generated
text due to personalization or detection escape.
•Use a few tokens to compute pseudorandom
numbers. For example, ζt = A(wt−5:t−1, Key),
using the last 5 tokens.
•A modified token will turn the watermark signals
in the next few 5 tokens to noise, due to
A(wt−5:t−1, Key) ⊥ A(w′t−5:t−1, Key).
•New hypothesis testing for robustness:

H0 : Yt ∼ µ0 ∀t ∈ [n] versus
Hmix

1 : Yt|Pt ∼ (1− ηt)µ0 + ηtµ1,Pt
∀t ∈ [n]

•Here ηt ∈ {0, 1} is i.i.d. or Markovian.
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Optimal detection boundary

An extreme case: sparse detection [3].
•E ηt = εn with εn � n−p and p ∈ (0, 1].
• 1−maxw∈W Pt,w = ∆n for all t ∈ [n] with

∆n � n−q and q ∈ (0, 1).
If E ηt = 0 or maxw Pt,w = 1, H0 merges with Hmix

1 .
When the robust detection is possible.
• If q + 2p > 1, H0, Hm

1 merge asym. No test is
efficient.
• If q + 2p < 1, H0, Hm

1 separate asym. The
likelihood-ratio test works but is not practical.

Adaptive optimality of GoF tests. If γn,α �
log log n, the Type I & II errors of the GoF test→ 0
if n→∞ if q + 2p < 1 and s ∈ [−1, 2].
Failure of sum-based tests. Consider the
sum-based test that rejects H0 if ∑n

t=1 h(Yt) ≥
n · E0 h(Y ) + Θ(1) · n1

2 · poly(log n). The detection
boundary for this test is q + p = 1/2 for all non-
decreasing, (∆n, εn)-free, and continuous h.

Optimal efficiency rate

P-efficiency [2]. Defined as the rate of exponen-
tial decrease in Type II errors for a fixed significance
level α and the worst-case alternative within a belief
set P .

lim
n→∞ sup

Pt∈P ,∀t∈[n]

1
n

log P1(Sn ≤ γn,α) = −RP(Sn).

Optimal efficiency rate. Let s ∈ (0, 1), εn ≡
ε ∈ (0, 1] and ∆n ≡ ∆ ∈ (0, 1).
RP∆(any dect. rule) = DKL(µ0, (1− ε)µ0 + εµ1,P ?

∆
)

= RP∆(GoF)
where P ?

∆ is the least-favorable NTP distribution
whose first b 1

1−∆c coordinates are 1−∆.
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