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Introduction

e Large language models (LLMs) have recently
emerged as a groundbreaking technology for
cenerating human-like text and other media.

e Risks arise, including misinformation, academic
integrity, and data authenticity:.

e Watermark serves a provable tool to detect
machine-generated texts.

Autoregresive generation

e LLMs are probabilistic machines.

e Let VW be the vocabulary and w a token therein.

e An LLM M generates each token sequentially by
sampling from a probability distribution

conditioned on previous tokens:
wy ~ P where Py = M(wy.;_1)) is a dist. on W.

e The categorical distribution P; is referred to
next-token prediction (NTP) distribution.

Watermarked generation

Next Token, w, ~ P

Mat | .292%,
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e GGiven a text wy.,, the detector recovers (3., using
the knowledge of A and Key.

e Watermark signal is the dependence of w; on (.

e Watermarks face significant challenges in
maintaining robustness.

Questions Studied

Could we find the optimal robust detection rule

even for existing watermarks?

e What robust? Which watermark?

Focus: Gumbel-max watermark [4]

e Unbiasedness: We say the decoder S is unbiased
if for any P and w € V,

PQNU(E)(S(Pp C:) — w) — Pw.

e Decoder tor Gumbel-max watermark:

SE (P () = arg max ¢

(1
wew

\

Py
where ¢ = (U, . .., Upy|) with U, "~

log Uw}

U(0,1).

o S&mb ig ynbiased due to the Gumbel-max trick.

Previous detection framework

Find a pivotal statistic Y; = Y (wy, (;) such that

o Under Hy, wy L (¢ so Yy ~ pp for any Pymant-

o Under Hy, wy = S((;, P;) so that
Yi ~ Y(S(Q, Pt)a Ct)- Hence, Yt\Pt ~ U1, P

e Hypothesis testing [2]:
H, Y, 4

po v.s. Hy Y|Py ~ iy p Vt € [n).

e Limitation: All tokens are either human-written
or LLM-generated.

e Model the robust watermark detection problem as mixture detection problem.

e GO
e Go.

e The empirical CDF of p-values:
F,(r) =+ %7 1p <, where p, = 1 — Y},

e Introduce a scalar convex function indexed by s:

(:Uloga:' x+ 1,
l—s+sx—a°

s(l—s) 7
—logx +x — 1,

\

Goodness-of-fit (GoF) test |1}

it s=1,
if s#0,1,
if s=0.

» The ¢,-divergence between Ber(u) and Ber(v) is

u

K, (u,v) = v, (;) (1= v)o, ( - “) |

e For s € |—1,2|, we reject Hy if

nS’(s)

re(0,1)

than a given critical value v, 4.
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H tests achieve the optimal detection boundary and optimal Pa-efficiency rate without any priors.

H tests outperform other detection methods in detecting rates and robustness.

Robust detection

Example: A student modifies the LLM-generated
text due to personalization or detection escape.

e Use a few tokens to compute pseudorandom
numbers. For example, (; = A(w;_54_1, Key),
using the last 5 tokens.

e A modified token will turn the watermark signals
in the next few 5 tokens to noise, due to

A(wy_541,Key) L A(w;_-, ,,Key).
e New hypothesis testing for robustness:
Hy:Y; ~ pg Vt € |n]  versus
H™ Yy Py~ (1 — ) o + mipn,p, VE € [n]
o Here n; € {0, 1} is i.i.d. or Markovian.
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Optimal detection boundary

An extreme case: sparse detection [3].

=n""and p € (0,1].
o1 — maxyew Py = A, for all t € [n| with

»=n"%and g € (0,1).

oK = ¢, with g,

It En; = 0 or max,, P, = 1, Hy merges with H {mX.
When the robust detection is possible.

olf g+ 2p > 1, Hy, H{" merge asym. No test is
eflicient.

olfg+2p <1, Hy,
likelihood-ratio test works but is not practical.

! separate asym. The

Adaptive optimality of GoF tests. If v, , =<
log log n, the Type I & II errors of the GoF' test — 0
ifn —o00ifg+2p<landse|—1,2].

Failure of sum-based tests. Consider the
sum-based test that rejects Hy it X7, h(Y;) >

n-Eyh(Y) + O(1) - nz - poly(log n). The detection
boundary for this test is ¢ + p = 1/2 for all non-

decreasing, (A, e, )-free, and continuous h.

Optimal efficiency rate

P-efficiency [2]. Defined as the rate of exponen-
tial decrease in Type II errors for a fixed significance
level o and the worst-case alternative within a beliet

set P.

lim
nN—o0

1
sup —log ]P)l(sn < 7%04)
PePvtcln] 1

Optimal efficiency rate. Let s € (0,1), ¢, =

e€ (0,1 and A, = A € (0,1).

Rp,(any dect. rule) = Dy (o, (1 — €)po + €p11.p2)
— RPA(GOF)

where PX is the least-favorable NTP distribution
whose first || coordinates are 1 — A.

“Rp(S,).
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