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Markov Decision Process (MDP)

Figure 1: Illustration of a MDP [Perera at al., 2021]
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Discounted infinite-horizon MDPs

• An infinite-horizon MDP is represented by a tuple
M = (S,A, γ,P,R, r) with the state space S, the action
space A and the discount factor γ ∈ [0, 1).
• P : S ×A → ∆(S) represents the probability transition kernel.
• R : S ×A → [0,∞) stands for the random reward and r = ER .
• A policy π : S → A and its (Q-)value is defined to be

V π(s) = Eπ

[ ∞∑
t=0

γtr(st , at)

∣∣∣∣s0 = s

]

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(st , at)

∣∣∣∣s0 = s, a0 = a

]
• Target: find the optimal policy π∗(s) = argmaxπ V π(s) and

its value function V ∗ := V π∗ and Q∗ := Qπ∗ .
Polyak-Ruppert-Averaged Q-Learning is Statistically Efficient 4 / 28



Introduction Asymptotic Behavior Non-asymptotic Convergence Statistical Inference Conclusion References

Q-learning

• Only need to solve the Bellman equation: for (s, a) ∈ S ×A,

Q∗(s, a) = r(s, a) + γT (Q∗)(s, a)

T (Q)(s, a) = r(s, a) + γEs′∼P(·|s,a) max
a′∈A

Q(s ′, a′). (1)

• Q-learning [Watkins, 1989] is perhaps the most popular
model-free learning algorithm in RL.

Qt = (1− ηt)Qt−1 + ηt T̂t(Qt−1) where (2)

• T̂t is an independent estimate of T :

T̂t(Q)(s, a) = rt(s, a) + γ max
a′∈A

Q(st , a
′), (3)

with rt(s, a) ∼ R(s, a) and st = st(s, a) ∼ P(·|s, a) for each
state-action pair (s, a) ∈ S ×A.

Polyak-Ruppert-Averaged Q-Learning is Statistically Efficient 5 / 28



Introduction Asymptotic Behavior Non-asymptotic Convergence Statistical Inference Conclusion References

Sample Complexity of Q-learning

• Sample efficiency = # of samples to achieve ε-accuracy.
• Each generation of T̂t require O(|S × A|) samples.

• The sample efficiency of Q-learning is Õ
(
|S×A|

(1−γ)4ε2

)
tight up

to a log factor [Li et al., 2021, 2020].

• The minimax lower bound is Ω
(
|S×A|

(1−γ)3ε2

)
[Azar et al., 2013].

Question

Could we find a model-free method to close the gap on (1−γ)−1.
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Current Solutions

• Previous model-free works close the gap via variance reduction.
• Variance reduction uses the following re-centered operator

T̂ VR
t (Q) := T̂t(Q)− T̂t(Q) + T̂ (Q)

with Q the estimation in last epoch and T̂ an independent
empirical T using more data [Wainwright, 2019, Khamaru
et al., 2021].

• Q and T̂ are updated less frequently and the overall sample
complexity achieves the optimal.

Question

Could we find a simper variant of Q-learning to close the gap?
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Averaged Q-learning

• The averaged iterates generated by a stochastic approximation
(SA) algorithm has favorable asymptotic statistical
properties Ruppert [1988] and Polyak and Juditsky [1992].
• The Polyak-Ruppert averaging of Q-learning is

Q̄T =
1
T

T∑
t=1

Qt

with {Qt}t≥0 updated as in Eq. (2).
• Use the averaged iterate Q̄T rather than the last-iterate QT to

do inference.
• Application in deep RL, benefits in error reduction and

stability [Lillicrap et al., 2016, Anschel et al., 2017].
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Matrix Notation

• Let D = |S × A|. Denote the transition matrix P ∈ RD×S

• For a deterministic policy π, the introduced transition matrix
by π is Pπ := PΠπ ∈ RD×D and Pπ := ΠπP ∈ RS×S where
e i the i-th standard basis vector and

Ππ = diag{e>π(1), e
>
π(2), · · · , e

>
π(S)} ∈ {0, 1}

S×D .

• The vector-form update rule is

πt−1 = greedy(Qt−1)

V t−1 = Ππt−1Qt−1

Qt = (1− ηt)Qt−1 + ηt(r t + γPtV t−1).
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Bellman Noise

• Z t ∈ RD be the Bellman noise at the t-th iteration, whose
(s, a)-th entry is

Zt(s, a) = T̂t(Q∗)(s, a)− T (Q∗)(s, a). (4)

• Matrix form Z t = (r t − r) + γ(Pt − P)V ∗.
• An important quantity in our analysis is the covariance matrix

of Z
Var(Z ) = Ert ,stZZ> ∈ RD×D . (5)
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Central Limit Theorem

Assumption

Assume (i) 0 ≤ sups,a R(s, a) ≤ 1; (ii) π∗ is unique; (iii)
ηt = t−α(0.5 < α < 1).

Theorem (Asymptotic normality for Q∗)

Under the assumption, we have

√
T (Q̄T −Q∗) d→ N (0,VarQ),

where the asymptotic variance is given by

VarQ = (I − γPπ∗)−1Var(Z )(I − γPπ∗)−> ∈ RD×D . (6)

Here Var(Z ) is the covariance matrix of the Bellman noise Z
defined in (5).
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Insights on Sample Efficiency

• By
√
T (Q̄T −Q∗) d→ Z ∼ N (0,VarQ) and the bounded

convergence theorem,
√
TE‖Q̄T −Q∗‖∞ → E‖Z‖∞ ≈

√
lnD

√
‖diag(VarQ)‖∞.

• Requires about T = O
(
lnD
ε2
‖diag(VarQ)‖∞

)
iterations to

ensure E‖Q̄T −Q∗‖∞ ≤ ε.
• The difficulty indicator ‖diag(VarQ)‖∞ ≤ (1− γ)−3 [Azar

et al., 2013, Khamaru et al., 2021]
• It seems averaged Q-learning could close the gap!

Question

Is the asymptotic variance optimal?
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Semiparametric Efficiency Lower Bound

• The Cramer-Rao lower bound (CRLB) assesses the hardness of
estimating a target parameter β(θ) in a parametric model Pθ
indexed by parameter θ.
• We meet semiparametric model here since the random reward
{R(s, a)}s,a is fully nonparametric.
• Our MDP modelM has parameter θ = (P,R).
• Denote the i.i.d. data we collected in T iterations is
D = {(r t ,Pt)}t∈[T ].
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Regular Asymptotically Linear (RAL) Estimator

Definition (Regular asymptotically linear)

We say that Q̂T is regular asymptotically linear (RAL) for Q∗ if it
is regular and asymptotically linear with a measurable random
function φ(r t ,Pt) ∈ RD such that

√
T (Q̂T −Q∗) =

1√
T

T∑
t=1

φ(r t ,Pt) + oP(1),

where Eφ(r t ,Pt) = 0 and Eφ(r t ,Pt)φ(r t ,Pt)
> is finite and

nonsingular. Such a φ(·, ·) is referred to as an influence function.

• An estimator is regular if its limiting distribution is unaffected
by local changes in the data-generating process.
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Regular Asymptotically Linear (RAL) Estimator

Theorem
Given the dataset D = {(r t ,Pt)}t∈[T ], for any RAL estimator Q̂T

of Q∗ computed from D = {(r t ,Pt)}t∈[T ], its variance satisfies

lim
T→∞

TE(Q̂T −Q∗)(Q̂T −Q∗)> � VarQ ,

where A � B means A− B is positive semidefinite.

Theorem
The averaged iterate Q̄T is a RAL estimator for Q∗ due to

√
T
(
Q̄T −Q∗

)
=

1√
T

T∑
t=1

(I − γPπ∗)−1Z t + oP(1).
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Instance-dependent Convergence

Theorem

• If ηt = t−α with α ∈ (0.5, 1), E‖Q̄T −Q∗‖∞ =

O

(√
‖diag(VarQ)‖∞

√
lnD

T
+

√
lnD

(1− γ)3
1

T 1−α
2

)

+ Õ

(
1

(1− γ)3+ 2
1−α

1
T

+
γ

(1− γ)4+ 1
1−α

1
Tα

)
.

• If ηt = 1
1+(1−γ)t , E‖Q̄T −Q∗‖∞ =

O

(√
‖Var(Z )‖∞

(1− γ)2

√
lnD

T

)
+ Õ

(
1

(1− γ)6
1
T

)
.
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Instance-dependent Convergence

• Match the instance optimality

Ω

(√
‖diag(VarQ)‖∞

√
lnD

T

)
.

• Sample complexity of variance-reduced Q-learning is

O

(√
‖diag(VarQ)‖∞

√
lnD

T

)
+ Õ

(
1

(1− γ)2
1
T

)
.

• Not sure on whether linearly rescaled step sizes can match the
lower bound since

‖diag(VarQ)‖∞ ≤
1

(1− γ)2 ‖Var(Z )‖∞
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Instance-dependent Convergence
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Figure 2: Log-log plots of the sample complexity T (ε, γ) versus the
asymptotic variance ‖diag(VarQ)‖∞ (left) and versus the discount
complexity parameter (1− γ)−1 (right).
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Functional Central Limit Theorem (Donsker’s Invariance Principle)

• With {Xt}t≥0 i.i.d. r.v.’s with mean zero and unit variance

and Sn =
∑n

t=1 Xi , the CLT yields ST√
T

d .→ N (0, 1).

• Define φT (r) =
SbTrc√

T
with r ∈ [0, 1]. The implies

φT (r)
w .→ B1(r) with B1 the 1-dim Brownian motion on [0, 1].
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Functional Central Limit Theorem (FCLT)

In our case, define the standardized partial-sum processes as

φT (r) :=
1√
T

bTrc∑
t=1

(Qt −Q∗), r ∈ [0, 1].

Theorem (FCLT)

Under the same assumptions,

φT (·) w→ VarQ1/2BD(·), (7)

where VarQ is defined in (6) and BD(·) is the standard
D-dimensional Brownian motion on [0, 1]. That is, for any given
integer n ≥ 1 and any 0 ≤ t1 < · · · < tn ≤ 1,

(φT (t1), · · · ,φT (tn))
d→ VarQ1/2(BD(t1), · · · ,BD(tn)).
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Functional Central Limit Theorem (FCLT)

• By continuous mapping theorem, for any functional f on
Càdlàg functions,

f (φT )
d→ f (VarQ1/2BD(·)).

• Construct a asymptotic pivotal statistic for inference.

Proposition

Letting f be a self-standalization function, we have

φT (1)>
(∫ 1

0
φT (r)φT (r)>dr

)−1

φT (1)

d→ BD(1)>
(∫ 1

0
BD(r)BD(r)>dr

)−1

BD(1).
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FCLT for Statistic Inference

A close combination of optimization and statistics.

φT (1)>
(∫ 1

0
φT (r)φT (r)>dr

)−1

φT (1)

d→ BD(1)>
(∫ 1

0
BD(r)BD(r)>dr

)−1

BD(1).

• The l.h.s. is a pivotal quantity involving samples and Q∗.
• The pivotal quantity can computed fully.
• The r.h.s. is a known distribution (quantiles can be computed

via simulation)
• Not the only choice of f .
• No need to estimate VarQ which is not easy.
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Conclusion

• Averaged Q-learning is asymptotically optimal, achieving the
established semeparametric Cramer-Rao lower bound.
• Averaged Q-learning achieves both the worst-case and

instance-dependent optimality.
• We established a FCLT that helps conduct online statistical

inference.

Thanks for listening!
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