Asymptotic Behaviors of Projected Stochastic Approximation: A Jump Diffusion Perspective

Jiadong Liang; Yuze Han; Xiang Li; Zhihua Zhang

Loopless Projection Stochastic Approximation

- We aim to solve the following problem

$$
\min _{\boldsymbol{x}} \mathbb{E}_{\zeta \sim \mathscr{D}} f(\boldsymbol{x}, \zeta) \text { subject to } \boldsymbol{A}^{\top} \boldsymbol{x}=\mathbf{0}
$$

- The LPSA first performs as $\boldsymbol{x}_{n+\frac{1}{2}}=\boldsymbol{x}_{n}-\eta_{n} \nabla f\left(\boldsymbol{x}_{n}\right)+\eta_{n} \xi_{n}$ with a martingale difference sequence $\left\{\xi_{n}\right\}$.
- Then we independently cast a coin with the head probability p_{n} and obtain $\omega_{n} \sim \operatorname{Bernoulli}\left(p_{n}\right)$. If $\omega_{n}=1$, we perform one step of projection onto the null space of \boldsymbol{A}^{\top}. Otherwise, we let $\boldsymbol{x}_{n+1}=\boldsymbol{x}_{n+\frac{1}{2}}$.
- It's obvious that Local SGD is a specialized case of LPSA under federated learning scenario.

Convergence Rate Analysis

- Let $\eta_{n}=\eta_{0} n^{-\alpha} ; p_{n}=\min \left\{\eta_{n}^{\beta}, 1\right\}$ with $\beta \in[0,1)$.
- Theorem 3.1

Under appropriate assumptions, for (i) $0<\alpha<1$ or (ii) $\alpha=1$ with $\eta_{0}>2 / \mu$ (μ is the strong convexity parameter), we have

$$
\mathbb{E}\left\|\boldsymbol{u}_{n}-\boldsymbol{x}^{\star}\right\|^{2}=\mathcal{O}\left(n^{-\alpha \min \{1,2-2 \beta\}}\right)
$$

Where $\boldsymbol{u}_{n}=\mathscr{P}_{A^{\perp}}\left(\boldsymbol{x}_{n}\right)$.

- As β decreases, i.e. the projection happens more frequently, $\mathbb{E}\left\|\boldsymbol{u}_{n}-\boldsymbol{x}^{\star}\right\|^{2}$ converges faster. What's more, we can find a phase transition when β goes cross 0.5.

Asymptotic Behavior via Diffusion Approximation

- Frequent Projection $\beta \in[0,1 / 2)$
. Let $\check{\boldsymbol{u}}_{n}:=\frac{\boldsymbol{u}_{n}-\boldsymbol{x}^{*}}{\sqrt{\eta_{n-1}}}$. And let $\overline{\boldsymbol{u}}_{t}^{(n)}$ be the continuous random process which starts at $\check{\boldsymbol{u}}_{n}$ and takes value $\check{\boldsymbol{u}}_{n+m}$ at time point $\eta_{n}+\cdots+\eta_{n+m-1}$.
- The trajectory is presented in the form shown on the right.

Asymptotic Behavior via Diffusion Approximation

- Theorem 3.3.

Let regular assumptions hold. Then the sequence of random processes $\left\{\overline{\boldsymbol{u}}_{t}^{(n)}: t \geq 0\right\}_{n=1}^{\infty}$ converges weakly to the stationary weak solution of the following SDE:

$$
d \mathbf{X}_{t}=-\mathscr{P}_{A^{\perp}}\left(\nabla^{2} f\left(x^{\star}\right)-\frac{1}{2 \eta_{0}} \mathbf{1}_{\{\alpha=1\}} \mathbf{I}_{d}\right) \mathbf{X}_{t} d t+\mathscr{P}_{A^{\star}} \Sigma\left(x^{\star}\right)^{\frac{1}{2}} d \mathbf{W}_{t} .
$$

Further, the rescaled sequence $\left\{\check{\boldsymbol{u}}_{n}\right\}_{n=1}^{\infty}$ converges weakly to the invariant distribution of this dynamics.

Asymptotic Behavior via Jump Approximation

- Occasional Projection $\beta \in(1 / 2,1)$.
- Let $\boldsymbol{v}_{n}=\mathscr{P}_{A}\left(\boldsymbol{x}_{n}\right)$ and $\check{\boldsymbol{v}}_{n}=\eta_{n-1}^{\beta-1} \boldsymbol{v}_{n}$. And we define $\overline{\boldsymbol{v}}_{t}^{(n)}$ as the cadlag process which starts at $\check{\boldsymbol{v}}_{n}$ and take values $\check{\boldsymbol{v}}_{n+m+\frac{1}{2}}, \check{\boldsymbol{v}}_{n+m+1}$ at time points $\left(\eta_{n}^{\beta}+\cdots+\eta_{n+m_{-1}^{\beta}}^{\beta}\right)-$ and $\eta_{n}^{\beta}+\cdots+\eta_{n+m-1}^{\beta}$ respectively.

Asymptotic Behavior via Jump Approximation

- Theorem 3.4 Let regular assumptions hold. Then the sequence of cadlag stochastic processes $\left\{\overline{\boldsymbol{v}}_{t}^{(n)}: t \geq 0\right\}_{n=1}^{\infty}$ weakly converges to the stationary weak solution of the following Jump-SDE:

$$
d \mathbf{Y}_{t}=-\nabla f\left(\boldsymbol{x}^{\star}\right) d t-\mathbf{Y}_{t-} \cdot \mathbf{N}_{\gamma}(d t) .
$$

Further, the rescaled sequence $\left\{\check{v}_{n}\right\}_{n=1}^{\infty}$ weakly converges to the invariant distribution of this dynamics, i.e., $-\frac{\nabla f\left(\boldsymbol{x}^{\star}\right)}{\left\|\nabla f\left(\boldsymbol{x}^{\star}\right)\right\|} \cdot \mathscr{E}\left(\frac{\left\|\nabla f\left(\boldsymbol{x}^{\star}\right)\right\|}{\gamma}\right)$

Asymptotic Behavior via Jump Approximation

- Corollary 1

Let regular assumptions hold. Then for $\beta \in(1 / 2,1)$, $\hat{\boldsymbol{u}}_{n}:=\eta_{n-1}^{\beta-1}\left(\boldsymbol{u}_{n}-\boldsymbol{x}^{\star}\right)$ converges to a non-zero vector
$\frac{1}{\gamma}\left\{\mathscr{P}_{A^{\perp}}\left(\nabla^{2} f\left(\boldsymbol{x}^{\star}\right)-\frac{1-\beta}{\eta_{0}} \mathbf{1}_{\langle\alpha=1\}} \mathbf{I}\right) \mathscr{P}_{A^{\perp}}\right\}^{\dagger}\left(\mathscr{P}_{A^{+}} \nabla^{2} f\left(\boldsymbol{x}^{\star}\right) \nabla f\left(\boldsymbol{x}^{\star}\right)\right)$

- Remark: From the above derivation, for the choice $p_{n} \propto \eta_{n}^{\beta}$, when β varies, our algorithm has an interesting bias-variance tradeoff.

Interesting Bias-Variance Tradeoff

- Order of fluctuation: $\mathcal{O}\left(\eta_{n}^{1 / 2}\right)$
- Order of Bias: $\mathcal{O}\left(\eta_{n}^{1-\beta}\right)$
- When $\beta \in[0,1 / 2)$

The fluctuation caused by the randomness of gradient queries in every iteration dominates the optimization accuracy.

- When $\beta \in[1 / 2,1)$

Manipulated by the biases formed by the accumulation of skewed updates in the unconstrained state within each 'inner loop'

The End

