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Loopless Projection Stochastic Approximation
• We aim to solve the following problem 

                             


• The LPSA first performs as   with  a martingale 
difference sequence . 


• Then we independently cast a coin with the head probability  and obtain 
. If , we perform one step of projection onto the null 

space of . Otherwise, we let .


• It’s obvious that Local SGD is a specialized case of LPSA under federated 
learning scenario.

min
x

𝔼ζ∼𝒟 f(x, ζ) subject to A⊤x = 0

xn+ 1
2

= xn − ηn ∇f (xn) + ηnξn

{ξn}

pn
ωn ∼ Bernoulli (pn) ωn = 1

A⊤ xn+1 = xn+ 1
2
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Convergence Rate Analysis
• Let  with .


• Theorem 3.1 
Under appropriate assumptions, for (i)  or (ii)  with 

 (  is the strong convexity parameter), we have 
                     
Where .


• As  decreases, i.e. the projection happens more frequently,  
converges faster. What’s more, we can find a phase transition when  goes 
cross .

ηn = η0n−α; pn = min{ηβ
n ,1} β ∈ [0,1)

0 < α < 1 α = 1
η0 > 2/μ μ

𝔼 un − x⋆ 2
= 𝒪 (n−α min{1,2−2β})

un = 𝒫A⊥ (xn)
β 𝔼 un − x⋆ 2

β
0.5
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Asymptotic Behavior via Diffusion Approximation
• Frequent Projection 


•  Let . And let  be the continuous random process which starts 

at  and takes value  at time point .


• The trajectory is presented in the 
form shown on the right.

β ∈ [0,1/2)

ǔn :=
un − x*

ηn−1
u(n)

t

ǔn ǔn+m ηn + ⋯ + ηn+m−1
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Asymptotic Behavior via Diffusion Approximation
• Theorem 3.3. 
Let regular assumptions hold. Then the sequence of random 
processes  converges weakly to the stationary weak 
solution of the following SDE: 

       . 

Further, the rescaled sequence  converges weakly to the 
invariant distribution of this dynamics.

{u(n)
t : t ≥ 0}∞

n=1

dXt = − 𝒫A⊥ (∇2f (x⋆) −
1

2η0
1{α=1}Id) Xtdt + 𝒫A⊥Σ (x⋆)

1
2 dWt

{ǔn}∞
n=1
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Asymptotic Behavior via Jump Approximation
• Occasional Projection .


• Let  and . And we define  as the cadlag process 
which starts at  and take values ,  at time points 

  
and   
respectively.

β ∈ (1/2,1)

vn = 𝒫A (xn) v̌n = ηβ−1
n−1 vn v(n)

t
v̌n v̌n+m+ 1

2
v̌n+m+1

(ηβ
n + ⋯ + ηβ

n+m−1)−
ηβ

n + ⋯ + ηβ
n+m−1
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Asymptotic Behavior via Jump Approximation
• Theorem 3.4 

Let regular assumptions hold. Then the sequence of cadlag stochastic 
processes  weakly converges to the stationary weak solution 
of the following Jump-SDE: 
                        . 
Further, the rescaled sequence  weakly converges to the invariant 

distribution of this dynamics, i.e., 

{v(n)
t : t ≥ 0}∞

n=1

dYt = − ∇f (x⋆) dt − Yt− ⋅ Nγ(dt)
{v̌n}∞

n=1

−
∇f (x⋆)
∇f (x⋆)

⋅ ℰ
∇f (x⋆)

γ
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Asymptotic Behavior via Jump Approximation
• Corollary 1 
Let regular assumptions hold. Then for , 

 converges to a non-zero vector 




• Remark: From the above derivation, for the choice , when  varies, our 
algorithm has an interesting bias-variance tradeoff.

β ∈ (1/2,1)
ûn := ηβ−1

n−1 (un − x⋆)
1
γ {𝒫A⊥ (∇2f (x⋆) −

1 − β
η0

1{α=1}I) 𝒫A⊥}
†

(𝒫A⊥ ∇2f (x⋆)∇f (x⋆))
pn ∝ ηβ

n β
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Interesting Bias-Variance Tradeoff
• Order of fluctuation: 


• Order of Bias: 


• When  
The fluctuation caused by the randomness of gradient queries in every iteration 
dominates the optimization accuracy.


• When  
Manipulated by the biases formed by the accumulation of skewed updates in the 
unconstrained state within each ‘inner loop’

𝒪(η1/2
n )

𝒪(η1−β
n )

β ∈ [0,1/2)

β ∈ [1/2,1)
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The End
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