Statistical Estimation and Online Inference via Local SGD

Xiang Li Joint work with Jiadong Liang, Xiangyu Chang, and Zhihua Zhang

Peking University

2022/07/05

- 1 Introduction and Background
- 2 Statistical Estimation via Local SGD
- 3 Statistical Inference via Local SGD
- 4 Conclusion

Federated Learning (FL)

- FL collaboratively trains a global model from data held by remote *clients* (e.g., mobile phones) [MMR⁺17].
- All local data are not allowed to be uploaded to the center and the central server has access only to intermediate quantities.
- Aim to protect sensitive information, such as personal identity information and state of health information, from unauthorized access of service providers.
- A typical application: Google Gboard word prediction.

Problem Formulation

- K clients with the k-th client has a local dataset consisting of i.i.d. samples from unknown distribution \mathcal{D}_k .
- The central server faces the following optimization problem:

$$\min_{\mathbf{x}} f(\mathbf{x}) = \sum_{k=1}^{K} p_k f_k(\mathbf{x}) := \sum_{k=1}^{K} p_k \mathbb{E}_{\xi_k \sim \mathcal{D}_k} f_k(\mathbf{x}; \xi_k).$$
 (1)

Two consideration: (i) Data heterogeneity, i.e., different D_k;
 (ii) Communication efficiency

Statistical Estimation and Online Inference via Local SGD

Local SGD

- One of the simplest methods is Local SGD [Sti18].
- It runs SGD independently in parallel on different clients and averages the sequences only once in a while.
- Key idea: lower communication frequency to improve communication efficiency.

Local SGD

- \mathbf{x}_t^k denotes the parameter held by the k-th client at iteration t.
- $g_t^k = \nabla f_k(\mathbf{x}_t^k; \xi_t^k)$ is the unbiased stochastic gradient estimator of $\nabla f_k(\mathbf{x}_t^k)$ with $\xi_t^k \sim \mathcal{D}_k$.
- $\mathcal{I} = \{t_0, t_1, t_2, \cdots\}$ is the set of communication iterations with $E_m = t_{m+1} t_m$ the *m*-th communication interval.
- Local SGD runs

$$m{x}_{t+1}^k = \left\{ egin{array}{ll} m{x}_t^k - \eta_t \mathbf{g}_t^k & ext{if } t+1
otin \mathcal{I}, \ \sum_{k=1}^K p_k \left[m{x}_t^k - \eta_t \mathbf{g}_t^k
ight] & ext{if } t+1 \in \mathcal{I}. \end{array}
ight.$$

• When $t_m \leq t < t_{m+1}$, we abuse the notation and let $\eta_t = \eta_m$.

Our Target

Our goal is to

- obtain an efficient estimate of $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} f(\mathbf{x})$ only through the SGD iterates $\{\mathbf{x}_{t_m}^k\}_{m \in [T], k \in [K]}$,
- provide asymptotic confidence intervals for further inference.

Three following questions:

- how one constructs the estimator from Local SGD iterates;
- 2 how intermittent communication and non-iid data affect its asymptotic behavior;
- **3** how to quantify the variability and randomness of the estimator.

1 Introduction and Background

Asymptotic Behavior

- Statistical Estimation via Local SGD The Estimator
- 3 Statistical Inference via Local SGD
- 4 Conclusion

1 Introduction and Background

- 2 Statistical Estimation via Local SGD
 - The Estimator

Asymptotic Behavior

- 3 Statistical Inference via Local SGD
- 4 Conclusion

- It is known the averaged SGD estimator obtains the optimal asymptotic variance without any problem-dependent knowledge [PJ92].
- We are motivated to use the average of Local SGD iterates as the estimator,

$$ar{m{y}}_T = rac{1}{T} \sum_{m=1}^T ar{m{x}}_{t_m} \quad ext{where} \quad ar{m{x}}_{t_m} = \sum_{k=1}^K p_k m{x}_{t_m}^k.$$

 Two levels of average: (i) over devices k; (ii) over communication iterations t_m.

- 1 Introduction and Background
- 2 Statistical Estimation via Local SGD Asymptotic Behavior
- Statistical Inference via Local SGD

Asymptotic Normality

Let $E_m = t_{m+1} - t_m$ communication interval and assume

$$\frac{1}{T^2} (\sum_{m=1}^T E_m) (\sum_{m=1}^T E_m^{-1}) \to \nu (\nu \ge 1). \tag{2}$$

Theorem

If $\gamma_m = E_m \eta_m \propto m^{-\alpha}$ with $\alpha \in (0.5, 1)$, and E_m increases in m sufficiently slowly. Under some regularity conditions,

$$\sqrt{t_T} \left(ar{m{y}}_T - m{x}^*
ight) \stackrel{d}{\longrightarrow} \mathcal{N} \left(0, \
u m{G}^{-1} m{S} m{G}^{- op}
ight),$$

where **G** is the Hessian matrix at x^* , and **S** is the covariance matrix of aggregated gradient noise at x^* .

Variance
$$= \nu \boldsymbol{G}^{-1} \boldsymbol{S} \boldsymbol{G}^{-\top}$$
 where $\frac{1}{T^2} (\sum_{m=1}^T E_m) (\sum_{m=1}^T E_m^{-1}) \rightarrow \nu (\nu \geq 1)$.

- **1** Optimal asymptotic variance when $\nu = 1$.
- 2 Data heterogeneity doesn't effect the variance, since Local SGD with small $\eta_m \approx$ parallel SGD with large $E_m \eta_m$.
- **3** Many diverging $\{E_m\}$ have $\nu=1$ and vanishing asymptotic averaged communication frequency (ACF = $T/\sum_{m=0}^{T-1} E_m$).

$E_m (\geq 1)$	$ u(\geq 1)$	ACF
Е	1	E^{-1}
any $E_m \leq E$	1	$[E^{-1}, 1]$
$E \ln^{\beta} m \ (\beta > 0)$	1	$E^{-1} \ln^{-eta} T$
$E \ln^{\beta} \ln m \ (\beta > 0)$	1	$E^{-1}\ln^{-eta}\ln T$
Em^{β} $(\beta \in (0,1))$	$(1-\beta^2)^{-1}$	$(1+\beta)E^{-1}T^{-\beta}$

- 1 Introduction and Background
- 2 Statistical Estimation via Local SGD
- 3 Statistical Inference via Local SGD
 The Plug-in Method
 Random Scaling
- 4 Conclusion

- 1 Introduction and Background
- 2 Statistical Estimation via Local SGD
- Statistical Inference via Local SGD The Plug-in Method

- The plug-in methodes timates **G** and **S** by its empirical version $\hat{\boldsymbol{G}}_{\tau}$ and $\hat{\boldsymbol{S}}_{\tau}$
- Both are in form of moving average and thus can be computed in an online manner [CLT+20].
- Under some regularity condition, $\hat{\boldsymbol{G}}_{\tau}^{-1} \hat{\boldsymbol{S}}_{\tau} \hat{\boldsymbol{G}}_{\tau}^{-\top} \overset{p.}{\to} \boldsymbol{G}^{-1} \boldsymbol{S} \boldsymbol{G}^{-\top}$.

- $(\boldsymbol{G}^{-1}\boldsymbol{S}\boldsymbol{G}^{-\top})_{jj}$ can be estimated by $\widehat{\sigma}_{T.i}^2 = (\widehat{\boldsymbol{G}}_T^{-1}\widehat{\boldsymbol{S}}_T\widehat{\boldsymbol{G}}_T^{-\top})_{jj}$
- Recall that $\bar{\mathbf{y}}_T = \frac{1}{T} \sum_{m=1}^T \bar{\mathbf{x}}_{t_m}$.
- To estimate j-th element x_i^* of x^* , we can use

$$\mathbb{P}\left(\bar{\boldsymbol{y}}_{T,j}-z_{\frac{\alpha}{2}}\sqrt{\frac{\widehat{\nu}_{T}}{t_{T}}}\widehat{\sigma}_{T,j}\leq\boldsymbol{x}_{j}^{*}\leq\bar{\boldsymbol{y}}_{T,j}+z_{\frac{\alpha}{2}}\sqrt{\frac{\widehat{\nu}_{T}}{t_{T}}}\widehat{\sigma}_{T,j}\right)\rightarrow1-\alpha,$$

where $\widehat{\nu}_T \to \nu$ and $z_{\frac{\alpha}{2}}$ is $(1 - \alpha/2)$ -quantile of the standard normal distribution.

Drawbacks of The Plug-in Method

- Accessible Hessian information
- Formulation and sharing of each $\nabla^2 f_k(\bar{\mathbf{x}}_{t_m}; \xi_{t_m}^k)$ requires at least $O(d^2)$ memory and communication cost.

2 Statistical Estimation via Local SGD

1 Introduction and Background

- Statistical Inference via Local SGD Random Scaling

Random scaling aims to construct an asymptotically pivotal statistic using all information along the whole trajectory $\{\bar{\mathbf{x}}_{t_m}\}_{1 \le m \le T}$ [LLSS21].

Theorem (Functional CLT)

Under the same conditions of previous theorem, as $T \to \infty$, the random function $\phi_T(\cdot)$ weakly converges to a scaled Brownian motion, i.e.,

$$\phi_{T}(r) := \frac{\sqrt{t_{T}}}{T} \sum_{m=1}^{h(r,T)} (\bar{\boldsymbol{x}}_{t_{m}} - \boldsymbol{x}^{*}) \Rightarrow \sqrt{\nu} \boldsymbol{G}^{-1} \boldsymbol{S}^{1/2} \mathsf{B}_{d}(r)$$

where $B_d(\cdot)$ is the d-dimensional standard Brownian motion and $h(\cdot, T) : [0, 1] \to [T]$ is the time scale function.

Random Scaling Estimator

- For any continuous functional f, $f(\phi_T(\cdot))$ will also weakly converge to $f(\sqrt{\nu} \mathbf{G}^{-1} \mathbf{S}^{1/2} \mathsf{B}_d(\cdot))$.
- Key idea: set f be a self-standardization function to cancel out the scale $\sqrt{\nu} \mathbf{G}^{-1} \mathbf{S}^{1/2}$.
- Find some points $\{r_m\}$ and studentize $\phi_T(1)$ via $\Pi_T :=$

$$\sum_{m=1}^{I} \left(\phi_{T}(r_{m}) - \frac{m}{T} \phi_{T}(1) \right) \left(\phi_{T}(r_{m}) - \frac{m}{T} \phi_{T}(1) \right)^{\top} (r_{m} - r_{m-1}).$$

• $\phi_T(1)^T \Pi_T^{-1} \phi_T(1)$ is asymptotically pivotal (not normal) since it weakly converges to

$$\mathsf{B}_{d}(1)^{\top} \left[\int_{0}^{1} \left(\mathsf{B}_{d}(r) - g(r) \mathsf{B}_{d}(1) \right) \left(\mathsf{B}_{d}(r) - g(r) \mathsf{B}_{d}(1) \right)^{\top} dr \right]^{-1} \mathsf{B}_{d}(1)$$
(4)

with $g:[0,1] \rightarrow [0,1]$ determined by $\{E_m\}$.

Compared to previous work [LLSS21],

- The first to extend it to FL
- Weaker moments assumption on noises
- Better analysis on uniformly bounding decomposed errors.

- Let $\hat{\boldsymbol{V}}_T$ be the empirical estimate of Π_T
- \hat{V}_T can be updated in an online manner.
- To estimate j-th element x_i^* of x^* , we can use

$$\mathbb{P}\left(\left[\bar{\boldsymbol{y}}_{T,j}-q_{\frac{\alpha}{2},g}\sqrt{\widehat{\boldsymbol{V}}_{T,jj}}\leq\boldsymbol{x}_{j}^{*}\leq\bar{\boldsymbol{y}}_{T,j}+q_{\frac{\alpha}{2},g}\sqrt{\widehat{\boldsymbol{V}}_{T,jj}}\right]\right)\rightarrow1-\alpha,$$

where $q_{\frac{\alpha}{2},g}$ is $(1-\alpha/2)$ -quantile of the following random variable

$$B_1(1) / \left(\int_0^1 (B_1(r) - g(r)B_1(1))^2 dr \right)^{1/2}$$
 (5)

with $B_1(\cdot)$ a one-dimensional standard Brownian motion.

• Only O(d) computation and communication cost per round.

- 1 Introduction and Background
- 2 Statistical Estimation via Local SGD
- 3 Statistical Inference via Local SGD
- **4** Conclusion

Conclusion

- We have established a (functional) central limit theorem for the averaged iterates of Local SGD.
- We present two fully online inference methods.
- Local SGD simultaneously achieves both statistical efficiency (i.e., optimal asymptotic variance) and communication efficiency (i.e., vanishing ACF).

Other directions:

- Non-smooth and non-strongly-convex counterparts.
- FCLT for proximal or accelerated methods.
- Weak assumptions on noises.

Thanks for listening!

References

- [CLT⁺20] Xi Chen, Jason D Lee, Xin T Tong, Yichen Zhang, et al. Statistical inference for model parameters in stochastic gradient descent. The Annals of Statistics, 48(1):251–273, 2020.
- [LLSS21] Sokbae Lee, Yuan Liao, Myung Hwan Seo, and Youngki Shin. Fast and robust online inference with stochastic gradient descent via random scaling. arXiv preprint arXiv:2106.03156, 2021.
- [MMR⁺17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics (AISTATS), 2017.
 - [PJ92] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM journal on control and optimization, 30(4):838–855, 1992.
 - [Sti18] Sebastian U Stich. Local SGD converges fast and communicates little. arXiv preprint arXiv:1805.09767, 2018.