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Federated Learning (FL)

® FL collaboratively trains a global model from data held by
remote clients (e.g., mobile phones) [MMR*17].

e All local data are not allowed to be uploaded to the center and
the central server has access only to intermediate quantities.

e Aim to protect sensitive information, such as personal identity
information and state of health information, from unauthorized
access of service providers.

A typical application: Google Gboard word prediction.
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Problem Formulation

® K clients with the k-th client has a local dataset consisting of
i.i.d. samples from unknown distribution D.

® The central server faces the following optimization problem:

K
min f(x Zpkfk = puBep, fi(x: &) (1)

k=1

® Two consideration: (i) Data heterogeneity, i.e., different Dy;
(i) Communication efficiency
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Local SGD

® One of the simplest methods is Local SGD [Sti18].

® |t runs SGD independently in parallel on different clients and
averages the sequences only once in a while.

® Key idea: lower communication frequency to improve
communication efficiency.
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Local SGD

e xk denotes the parameter held by the k-th client at iteration t.

® gk = Vf(xK; €F) is the unbiased stochastic gradient estimator
of Vfi(x¥) with £f ~ Dy.

o 7 ={ty, t1,tp,- -} is the set of communication iterations with
En = tmi1 — tm the m-th communication interval.

® |ocal SGD runs

xklz{xa—mgi‘ ift+1¢7,
o S pq Pk [xK—megk] ift+1eT

® When t,, <t < tpmt1, we abuse the notation and let 7; = np,.
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Our Target

Our goal is to

® obtain an efficient estimate of x* = argmin, f(x) only
through the SGD iterates {x¥ }me[] ke[k]:

e provide asymptotic confidence intervals for further inference.
Three following questions:
@ how one constructs the estimator from Local SGD iterates;

® how intermittent communication and non-iid data affect its
asymptotic behavior;

©® how to quantify the variability and randomness of the
estimator.
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The Estimator

® |t is known the averaged SGD estimator obtains the optimal
asymptotic variance without any problem-dependent
knowledge [PJ92].

® We are motivated to use the average of Local SGD iterates as
the estimator,

T K
_ 1 _ _
yr==+ E Xi, where Xx; = E pkxlt‘m.
k=1

® Two levels of average: (i) over devices k; (ii) over
communication iterations t,,.
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Asymptotic Behavior

Asymptotic Normality

Let E,,, = tme1 — tm communication interval and assume

1 T T
ﬁ(ZEm O EH = v(v=1). (2)

m=1 m=1

Theorem

If Ym = Emnm o< m~* with « € (0.5,1), and E, increases in m
sufficiently slowly. Under some regularity conditions,

Vir (7T —x*) LN (o, uG_lsG_T> ,

where G is the Hessian matrix at x*, and S is the covariance
matrix of aggregated gradient noise at x*.

Statistical Estimation and Online Inference via Local SGD 12 /27



Statistical Estimation via Local SGD
ooe

Asymptotic Behavior

Remark about Asymptotic Normality

T T
: _ o-lep-T 1 -1
Variance =vG~"SG~  where ﬁ( E Em)(mE:1 E.")—v(v>1).

m=1

@ Optimal asymptotic variance when v = 1.

® Data heterogeneity doesn't effect the variance, since Local
SGD with small 5, ~ parallel SGD with large E;,nm.

©® Many diverging {E.,} have v = 1 and vanishing asymptotic
averaged communication frequency (ACF = T/Z,:;(l, En).

En(>1) v(>1) ACF
E 1 E-!
any E.<E 1 [E71,1]
Ein’m (8> 0) 1 E-'n P T
Ein’inm (8> 0) 1 E'in?InT
Em® (5 (0,1) | (1— ) | (1+BET
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The Plug-in Method

The Plug-in Method

® The plug-in methodes timates G and S by its empirical
version G and St

® Both are in form of moving average and thus can be computed
in an online manner [CLT20].
-

P PO )
® Under some regularity condition, G+ STG 1 PG 1sG .
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The Plug-in Method

Confidence Interval via Plug-in Method

® (G'SG ), can be estimated by E%-J = (a; StGr )j

® Recall that y+ = % 2,77—1:1 Xt
® To estimate j-th element X7 of x*, we can use
_ UT . v
P yT,j_Z% ;UT’JSXJ SyTu‘i‘Z% ;O’T’J —)1—047
where U1 — v and zg is (1 — a/2)-quantile of the standard
normal distribution.
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The Plug-in Method

Drawbacks of The Plug-in Method

® Accessible Hessian information

e Formulation and sharing of each V2f(xy,; £ ) requires at
least O(d?) memory and communication cost.
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Random Scaling: Functional CLT

Random scaling aims to construct an asymptotically pivotal
statistic using all information along the whole trajectory
{x¢, }1<m<7 [LLSS21].

Theorem (Functional CLT)

Under the same conditions of previous theorem, as T — oo, the
random function ¢ () weakly converges to a scaled Brownian
motion, I.e.,

t h(r,T)
¢T( TT :>\[G lgl/2g ( )
m=1
where By(+) is the d-dimensional standard Brownian motion and
h(-, T):[0,1] — [T] is the time scale function.
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Random Scaling

Random Scaling Estimator

® For any continuous functional f, f(¢7(-)) will also weakly
converge to f(/vG 1§Y2By4(-)).

® Key idea: set f be a self-standardization function to cancel out
the scale /G182,

® Find some points {ry} and studentize ¢ (1) via My :=

i (¢T(fm) - $¢T(1)> (¢T(rm) — $¢T (1))T (Fon—rm—1).

m=1
(3)
o o7 (1)" N7'é7 (1) is asymptotically pivotal (not normal)
since it weakly converges to

By(1)" [ | (Bal)-e(Ba(1) (Bul)-()Ba(1)” dr] By(1)

with g : [0,1] — [0, 1] determined by {En,}.
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Random Scaling

Random Scaling Estimator

Compared to previous work [LLSS21],
® The first to extend it to FL
e \Weaker moments assumption on noises

® Better analysis on uniformly bounding decomposed errors.
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Random Scaling

Confidence Interval via Random Scaling Estimator

® |et V1 be the empirical estimate of M+
° VT can be updated in an online manner.

® To estimate j-th element x; of x*, we can use

P <[yT,j — 92\ V1 <Xj <yr;+d54y VTJJ']) — l-q,

where gg ¢ is (1 — a/2)-quantile of the following random

variable
B.() / < (Bu(r) ()Bl(1)>2dr)l/2 )

with Bi(+) a one-dimensional standard Brownian motion.

N

® Only O(d) computation and communication cost per round.
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Conclusion

® We have established a (functional) central limit theorem for
the averaged iterates of Local SGD.

® We present two fully online inference methods.

® |ocal SGD simultaneously achieves both statistical efficiency
(i.e., optimal asymptotic variance) and communication
efficiency (i.e., vanishing ACF).

Other directions:
® Non-smooth and non-strongly-convex counterparts.
e FCLT for proximal or accelerated methods.

e \Weak assumptions on noises.
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