# A Statistical Analysis of Polyak-Ruppert Averaged Q-learning

#### Introduction

The classic Q-Learning:

$$Q_t = (1 - \eta_t)Q_{t-1} + \eta_t \widehat{\mathcal{T}}_t(Q_{t-1}) \text{ where}$$
$$\widehat{\mathcal{T}}_t(Q)(s, a) = r_t(s, a) + \gamma \max_{a' \in \mathcal{A}} Q(s_t, a'),$$

is the empirical estimate of the Bellman operator

$$\mathcal{T}(Q)(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a' \in \mathcal{A}} Q(s',a').$$

• Many analysis for the last-iterate  $Q_T$ , while the averaged iterate  $Q_T$  is less well understood,

$$\bar{Q}_T = \frac{1}{T} \sum_{t=1}^T Q_t.$$

• Classic results imply under mild regularity conditions,

$$\sqrt{T}(\bar{\boldsymbol{Q}}_T - \boldsymbol{Q}^*) \xrightarrow{d} \boldsymbol{\mathcal{Z}} \sim \mathcal{N}(\boldsymbol{0}, \mathsf{Var}_{\boldsymbol{Q}}),$$

where the asymptotic variance  $Var_Q$  is given by  $\operatorname{Var}_{\boldsymbol{Q}} := (\boldsymbol{I} - \gamma \boldsymbol{P}^{\pi^*})^{-1} \operatorname{Var}(\boldsymbol{Z}) (\boldsymbol{I} - \gamma \boldsymbol{P}^{\pi^*})^{-\top} \quad (1)$ with  $\boldsymbol{Z} \in \mathbb{R}^D$ ,  $\boldsymbol{Z}(s, a) = [\widehat{\boldsymbol{\mathcal{T}}_t}(Q) - \boldsymbol{\mathcal{T}}(Q)](s, a)$ .

#### **Questions Studied**

- An observation from  $\sqrt{T}(\bar{\boldsymbol{Q}}_T \boldsymbol{Q}^*) \xrightarrow{d} \mathcal{Z}$ :  $\sqrt{T\mathbb{E}}\|ar{oldsymbol{Q}}_T-oldsymbol{Q}^*\|_\infty$  $\rightarrow \mathbb{E} \| \mathcal{Z} \|_{\infty} \approx \sqrt{\ln D} \sqrt{\| \operatorname{diag}(\operatorname{Var}_{Q}) \|_{\infty}}.$
- How to obtain a valid non-asymptotic bound?
- Is this asymptotic variance  $Var_Q$  optimal?
- Can we do statistical inference without estimating  $Var_Q$ ?

### **Discounted infinite-horizon MDPs**

•  $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \gamma, P, R, r)$  with  $\gamma \in [0, 1)$ . •  $P: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ : probability transition kernel. •  $R: \mathcal{S} \times \mathcal{A} \to [0, \infty)$ : random reward,  $r = \mathbb{E}R$ . • A policy  $\pi: \mathcal{S} \to \mathcal{A}$  with its (Q-)value defined by  $Q^{\pi}(s,a) = \mathbb{E}_{\pi} \left| \sum_{t=0}^{\infty} \gamma^{t} r(s_{t},a_{t}) \right| s_{0} = s, a_{0} = a \right|.$ • Assume unique optimal policy  $\pi^*$ .

# Xiang Li, Wenhao Yang, Jiadong Liang, Zhihua Zhang, Michael I. Jordan

Peking University, University of California Berkeley

## **Non-asymptotic Convergence**

# Assume $0 \le R(s, a) \le 1$ for all (s, a). • If $\eta_t = t^{-\alpha}$ with $\alpha \in (0.5, 1), \mathbb{E} \| \bar{\boldsymbol{Q}}_T - \boldsymbol{Q}^* \|_{\infty} =$ $\left(\sqrt{\|\text{diag}(\text{Var}_{\boldsymbol{Q}})\|_{\infty}}\sqrt{\frac{\ln D}{T}} + \frac{\sqrt{\ln D}}{(1-\gamma)^3}\frac{1}{T^{1-\frac{\alpha}{2}}}\right)$ $\mathcal{O}$ $\left(\frac{1}{(1-\gamma)^{3+\frac{2}{1-\alpha}}T} + \frac{7}{(1-\gamma)^{4+\frac{1}{1-\alpha}}T^{\alpha}}\right)$

• The dominant term (in red) is of the same magnitude as the variance-reduced Q-learning.

• If 
$$\eta_t = rac{1}{1+(1-\gamma)t}, \ \mathbb{E}\|ar{oldsymbol{Q}}_T - oldsymbol{Q}^*\|_\infty$$
 =

$$\mathcal{O}\left(\sqrt{\frac{\|\operatorname{Var}(\boldsymbol{Z})\|_{\infty}}{(1-\gamma)^2}}\sqrt{\frac{\ln D}{T}}\right) + \widetilde{\mathcal{O}}\left(\frac{1}{(1-\gamma)^6}\frac{1}{T}\right)$$

• Because  $\|\operatorname{diag}(\operatorname{Var}_{\boldsymbol{Q}})\|_{\infty} \leq \frac{1}{(1-\gamma)^2} \|\operatorname{Var}(\boldsymbol{Z})\|_{\infty}$ , this rate is slightly lose. (How to tighten it? Unclear).

# Conclusion

• Averaged Q-learning achieves both the worst-case and instance-dependent optimality asymptotically. • The asymptotic variance of averaged Q-learning is optimal among all RAL estimators. • We established a FCLT that facilitates online statistical inference.

## **Semiparametric Statistics**

- Our MDP model  $\mathcal{M}$  has parameter  $\theta = (P, R)$ .
- The transition P is parametric due to discrete action-state space, while the random reward is totally non-parametric.
- (Unformal) An estimator is regular if its limiting distribution is unaffected by local changes in the data generating process.
- (Unformal) An estimator  $\widehat{Q}_T$  is asymptotically linear with a measurable random function  $\boldsymbol{\phi}(\boldsymbol{r}_t, \boldsymbol{P}_t) \in \mathbb{R}^D$  such that

$$\sqrt{T}(\widehat{\boldsymbol{Q}}_T - \boldsymbol{Q}^*) = \frac{1}{\sqrt{T}} \sum_{t=1}^T \boldsymbol{\phi}(\boldsymbol{r}_t, \boldsymbol{P}_t) + o_{\mathbb{P}}(1), \quad (2)$$

where  $\mathcal{D} = \{(\boldsymbol{r}_t, \boldsymbol{P}_t)\}_{t \in [T]}$  is the collected i.i.d. data and  $\boldsymbol{\phi}(\cdot, \cdot)$  is referred to as an influence function satisfying that  $\mathbb{E}\boldsymbol{\phi}(\boldsymbol{r}_t, \boldsymbol{P}_t) = \mathbf{0}$  and  $\mathbb{E}\boldsymbol{\phi}(\boldsymbol{r}_t, \boldsymbol{P}_t)\boldsymbol{\phi}(\boldsymbol{r}_t, \boldsymbol{P}_t)^{\top}$  is finite and nonsingular.

# Numeral Validation



Figure 1:Log-log plots of the sample complexity  $T(\varepsilon, \gamma)$  versus the asymptotic variance  $\|\operatorname{diag}(\operatorname{Var}_{Q})\|_{\infty}$  where  $T(\varepsilon, \gamma) =$  $\inf\{T: \mathbb{E} \| \bar{\boldsymbol{Q}}_T - \boldsymbol{Q}^* \|_{\infty} \leq \varepsilon\}$  in a  $\gamma$ -discounted MDP.

# **Optimal Variance**

We prove the following results.

• RAL = regular and asymptotically linear. • Given the dataset  $\mathcal{D}$ , the asymptotic variance matrix of any RAL estimator  $\hat{Q}_T$  of  $Q^*$ computed from  $\mathcal{D}$  satisfying

$$\lim_{T\to\infty} T\mathbb{E}(\widehat{\boldsymbol{Q}}_T - \boldsymbol{Q}^*)(\widehat{\boldsymbol{Q}}_T - \boldsymbol{Q}^*)^\top \succeq \mathsf{Var}_{\boldsymbol{Q}},$$

where  $A \succeq B$  means A - B is positive semidefinite.

• The averaged iterate  $Q_T$  is the optimal RAL estimator for  $Q^*$  due to

$$\sqrt{T} \left( \bar{\boldsymbol{Q}}_T - \boldsymbol{Q}^* \right) = \frac{1}{\sqrt{T}} \sum_{t=1}^T (\boldsymbol{I} - \gamma \boldsymbol{P}^{\pi^*})^{-1} \boldsymbol{Z}_t + o_{\mathbb{P}}(1),$$
  
where  $\boldsymbol{Z}_t = (\boldsymbol{r}_t - \boldsymbol{r}) + (\boldsymbol{P}_t - \boldsymbol{P}) \boldsymbol{V}^*.$ 

Averaged Q-Learning iterates has the optimal asymptotic variance matrix.

## **Functional Central Limit Theorem**

- with
- × 85 ∙ 75 -65 ·

We can do statistical inference without estimating  $Var_Q$  by using the FCLT.

• Given  $\{Q_t\}_{t\in[T]}$ , its partial-sum processes is

$$\phi_T(r) := \frac{1}{\sqrt{T}} \sum_{t=1}^{\lfloor Tr \rfloor} (\mathbf{Q}_t - \mathbf{Q}^*), r \in [0, 1].$$
(3)

• We assume that (i)  $\sup_{s,a} \mathbb{E}R^4(s,a) < \infty$ ; (ii)  $\pi^*$ is unique; and (iii)  $\eta_t = t^{-\alpha} (0.5 < \alpha < 1)$ .

• We show the following weak convergence

$$\boldsymbol{\phi}_T(\cdot) \xrightarrow{w} \operatorname{Var}_{\boldsymbol{Q}}^{1/2} \boldsymbol{B}_D(\cdot),$$
 (4)

where  $Var_Q$  is defined in (1) and  $B_D$  is the standard *D*-dim Brownian motion on [0, 1].

### **Online Statistics Inference**

• By continuous mapping theorem, for any continuous functional  $f : \mathbb{D}[0,1] \to \mathbb{R}$ ,  $f(\boldsymbol{\phi}_T) \xrightarrow{d} f(\operatorname{Var}_{\boldsymbol{Q}}^{1/2} \boldsymbol{B}_D).$ • Once f is scale-invariant, we have  $f(\operatorname{Var}_{\boldsymbol{Q}}^{1/2}\boldsymbol{B}_D) = f(\boldsymbol{B}_D)$  and thus  $f(\boldsymbol{B}_D)$ (1) a pivotal statistic relying on  $Q^*$  and  $\mathcal{D}$ known distribution (2) can be computed online efficiently • Confidence intervals for  $Q^*$  can be obtained by

inverting some constraint regime on  $f(\phi_T)$ . • We find a f following the spirit of t-statistics:

$$(\boldsymbol{B}) := \boldsymbol{B}(1)^{\top} \left( \int_0^1 \bar{\boldsymbol{B}}(r) \bar{\boldsymbol{B}}(r)^{\top} dr \right)^{-1} \boldsymbol{B}(1)$$
$$\bar{\boldsymbol{B}}(r) = \boldsymbol{B}(r) - r \boldsymbol{B}(1).$$

• A numerical illustration:

