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Introduction

The classic Q-Learning:
Qt = (1− ηt)Qt−1 + ηtT̂t(Qt−1) where
T̂t(Q)(s, a) = rt(s, a) + γmax

a′∈A
Q(st, a′),

is the empirical estimate of the Bellman operator
T (Q)(s, a) = r(s, a) + γEs′∼P (·|s,a) max

a′∈A
Q(s′, a′).

•Many analysis for the last-iterate QT , while the
averaged iterate Q̄T is less well understood,

Q̄T = 1
T

T∑
t=1
Qt.

•Classic results imply under mild regularity
conditions,

√
T (Q̄T −Q∗) d→ Z ∼ N (0,VarQ),

where the asymptotic variance VarQ is given by
VarQ := (I − γP π∗)−1Var(Z)(I − γP π∗)−> (1)

with Z ∈ RD, Z(s, a) = [T̂t(Q)− T (Q)](s, a).

Questions Studied

An observation from
√
T (Q̄T −Q∗) d→ Z :√

TE‖Q̄T −Q∗‖∞
→E‖Z‖∞ ≈

√
lnD

√
‖diag(VarQ)‖∞.

•How to obtain a valid non-asymptotic bound?
• Is this asymptotic variance VarQ optimal?
•Can we do statistical inference without
estimating VarQ ?

Discounted infinite-horizon MDPs

•M = (S,A, γ, P,R, r) with γ ∈ [0, 1).
•P : S ×A → ∆(S): probability transition kernel.
•R : S ×A → [0,∞): random reward, r = ER.
•A policy π : S → A with its (Q-)value defined by

Qπ(s, a) = Eπ
∞∑
t=0
γtr(st, at)

∣∣∣∣∣∣s0 = s, a0 = a

 .
•Assume unique optimal policy π∗.

Non-asymptotic Convergence

Assume 0 ≤ R(s, a) ≤ 1 for all (s, a).
• If ηt = t−α with α ∈ (0.5, 1), E‖Q̄T −Q∗‖∞ =

O
√‖diag(VarQ)‖∞

√√√√lnD
T

+
√

lnD
(1− γ)3

1
T 1−α
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+ Õ

 1
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1
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+ γ
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1
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 .
•The dominant term (in red) is of the same
magnitude as the variance-reduced Q-learning.
• If ηt = 1

1+(1−γ)t, E‖Q̄T −Q∗‖∞ =

O


√√√√√‖Var(Z)‖∞

(1− γ)2

√√√√lnD
T

 + Õ
 1

(1− γ)6
1
T

 .
•Because ‖diag(VarQ)‖∞ ≤ 1

(1−γ)2‖Var(Z)‖∞, this
rate is slightly lose. (How to tighten it? Unclear).
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Figure 1:Log-log plots of the sample complexity T (ε, γ) ver-
sus the asymptotic variance ‖diag(VarQ)‖∞ where T (ε, γ) =
inf{T : E‖Q̄T −Q∗‖∞ ≤ ε} in a γ-discounted MDP.

Conclusion

•Averaged Q-learning achieves both the worst-case and instance-dependent optimality asymptotically.
•The asymptotic variance of averaged Q-learning is optimal among all RAL estimators.
•We established a FCLT that facilitates online statistical inference.

Semiparametric Statistics

•Our MDP modelM has parameter θ = (P,R).
•The transition P is parametric due to discrete
action-state space, while the random reward is
totally non-parametric.
• (Unformal) An estimator is regular if its limiting
distribution is unaffected by local changes in the
data generating process.
• (Unformal) An estimator Q̂T is asymptotically
linear with a measurable random function
φ(rt,Pt) ∈ RD such that
√
T (Q̂T −Q∗) = 1√

T

T∑
t=1
φ(rt,Pt) + oP(1), (2)

where D = {(rt,Pt)}t∈[T ] is the collected i.i.d.
data and φ(·, ·) is referred to as an influence
function satisfying that Eφ(rt,Pt) = 0 and
Eφ(rt,Pt)φ(rt,Pt)> is finite and nonsingular.

Optimal Variance

We prove the following results.
•RAL = regular and asymptotically linear.
•Given the dataset D, the asymptotic variance
matrix of any RAL estimator Q̂T of Q∗
computed from D satisfying

lim
T→∞

TE(Q̂T −Q∗)(Q̂T −Q∗)>�VarQ,
where A � B means A−B is positive
semidefinite.
•The averaged iterate Q̄T is the optimal RAL
estimator for Q∗ due to
√
T
(
Q̄T −Q∗

)
= 1√

T

T∑
t=1

(I−γP π∗)−1Zt+oP(1),

where Zt = (rt − r) + (Pt − P )V ∗.
Averaged Q-Learning iterates has the optimal
asymptotic variance matrix.

Functional Central Limit Theorem

We can do statistical inference without estimating
VarQ by using the FCLT.
•Given {Qt}t∈[T ], its partial-sum processes is

φT (r) := 1√
T

bTrc∑
t=1

(Qt −Q∗), r ∈ [0, 1]. (3)

•We assume that (i) sups,aER4(s, a) <∞; (ii) π∗
is unique; and (iii) ηt = t−α(0.5 < α < 1).
•We show the following weak convergence

φT (·) w→ VarQ1/2BD(·), (4)
where VarQ is defined in (1) and BD is the
standard D-dim Brownian motion on [0, 1].

Online Statistics Inference

•By continuous mapping theorem, for any
continuous functional f : D[0, 1]→ R,

f (φT ) d→ f (VarQ1/2BD).
•Once f is scale-invariant, we have
f (VarQ1/2BD) = f (BD) and thus

f (φT )︸ ︷︷ ︸
(1) a pivotal statistic relying on Q∗ and D

(2) can be computed online efficiently

d→ f (BD)︸ ︷︷ ︸
known distribution

.

•Confidence intervals for Q∗ can be obtained by
inverting some constraint regime on f (φT ).
•We find a f following the spirit of t-statistics:

f (B) := B(1)>
(∫ 1

0
B̄(r)B̄(r)>dr

)−1
B(1)

with B̄(r) = B(r)− rB(1).
•A numerical illustration:
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