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Introduction

The classic (Q-Learning:

Qr = (1 —n) Qi1 + 77t7A'(Qt—1) where

THQ)(s, a) = ri(s, a) + vy max Q(s;, ).

is the empirical estimate of the Bellman operator
T(Q)(Sv CL) — T(Sa CL) T <1:S’NP(-IS,&) Iar,leaj{ Q(‘S,a a/)°

» Many analysis for the last-iterate )7, while the
averaged iterate ()7 is less Well understood,

QT—_ZQt

e Classic results imply under mﬂd regularity
conditions,

VT(Qr — Q") % Z ~ N(0, Varg),
where the asymptotic variance Varg 1s given by
Varg := (I — vP™ ) Var(Z)(I —vP™ )" (1)
with Z € RP, Z(s,a) = [TA(Q) — T(Q)](s, a).

Questions Studied

An observation from VT(Qr — Q*) % Z
\/T ) ‘Q_T o Q*Hoo

—E ~ ag(Varg) (oo

e How to obtain a valid non-asymptotic bound?’

e [s this asymptotic variance Varg optimal?
e Can we do statistical inference without
estimating Varg 7

Discounted infinite-horizon MDPs

o M= (S, A~ P,R,r) with v € [0, 1).

o P: S x A— A(S): probability transition kernel.
o R: S x A—|0,00): random reward, r = ER.

o A policy m: § — A with its (Q-)value defined by

©.@)
QW(Sa a,) =E; | > WtT(St, Clt) So = S,ap = a| .
t=0 |

e Assume unique optimal policy 7*.

Non-asymptotic Convergence

Assume 0 < R(s,a) < 1 for all (s, a).
olf n, =t with a € (0.5,1), E|[|Q7 — Q*||c =

0 (miag(wr@)oo\mf = J@M)

+ 5( : L J : )
(1 =)l (1 =gyt

e The dominant term (in red) is of the same
magnitude as the variance-reduced Q-learning.

Q|| =
/ HVar(Z)HOO D) 11
N\ >\ T ) (1 - ’7)6T) |
e Because Hdlag(VarQ)H n 2H\/ar( )| 00, this
rate is slightly lose. (How to tlghten it? Unclear).

oltn = 1+(1—

O
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Numeral Validation

----- Baseline,k=1

—— Linear,k=0.85

—— Poly.,a=0.51,k=0.89
— Poly.,a=0.55,k=0.93
—— Poly.,a=0.6,k=1.01
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Figure 1:Log-log plots of the sample complexity T'(e,~) ver-

sus the asymptotic variance ||diag(Varg)||eo where T'(g,7y) =
inf{T : E[|Qr — Q|| < €} in a y-discounted MDP.

Conclusion

e Averaged )-learning achieves both the worst-case and instance-dependent optimality asymptotically.

e The asymptotic variance of averaged ()-learning is optimal among all RAL estimators.
e We established a FCLT that facilitates online statistical inference.

Semiparametric Statistics

o Our MDP model M has parameter 8 = (P, R).

e The transition P is parametric due to discrete
action-state space, while the random reward is
totally non-parametric.

o (Unformal) An estimator is regular if its limiting
distribution is unaffected by local changes in the
data generating process.

o (Unformal) An estimator Q7 is asymptotically
linear with a measurable random function

&(r:, P;) € RY such that

VI(@r— Q) = =3 élr, P) +os(1), (2

where D = {(r¢, B}) }+¢r) is the collected i.i.d.
data and ¢(-, -) is referred to as an influence
function satisfying that E¢(ry, P;) = 0 and
Lo(rs, P (1, Py)' is finite and nonsingular.

Optimal Variance

We prove the following results.

e RAL = reqular and asymptotically linear.

e Given the dataset D, the asymptotic variance
matrix of any RAL estimator Q7 of Q*
computed from D satistying

Am TE(Qr — Q)(Qr — Q") = Varg,

where A > B means A — B is positive
semidefinite.

o The averaged iterate Q7 is the optimal RAL
estimator for Q* due to

VT(@r-Q)= %

(ri—7)+ (P — P)V*

Averaged (-Learning iterates has the optimal
asymptotic variance matrix.

> (I—~P™)"' Zi+o0p(1),

where Z; =

Functional Central Limit Theorem

We can do statistical inference without estimating
Varg by using the FCLT.
o Given { Q) }+epr), its partial-sum processes is

1]

¢r(r) = ﬁ tzzl (Q:—Q"),re(0,1.  (3)

» We assume that (i) sup, , ER*(s, a) < oo; (ii) 7*
is unique; and (iii) g, = (0.5 < a < 1),
e We show the following weak convergence
¢r(-) % Varg'*Bp(-), (4)
where Varg is defined in (1) and Bp is the
standard D-dim Brownian motion on [0, 1].

Online Statistics Inference

e By continuous mapping theorem, for any
continuous functional f : D|0, 1] — R,

f(ér) % f(Varg'”Bp).
e Once f is scale-invariant, we have

f(Varg'’Bp) = f(Bp) and thus
f(or) o

(1) a pivotal statistic relying on Q* and D
(2) can be computed online efficiently

e Confidence intervals for Q* can be obtained by
inverting some constraint regime on f(¢r).

f(Bp)

known distribution

e We find a f following the spirit of t-statistics:

f(B):=B(1)' (/01 B(T)B(T)Tdr)_l B(1)
with B(r) = B(r) — rB(1).

e A numerical illustration:
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