Communication-Efficient Distributed SVD via Local Power lterations

Abstract

We study distributed computing of the truncated
singular value decomposition problem.

e We develop an algorithm that we call
LocalPower for improving communication
efliciency.

e We theoretically show that under certain
assumptions LocalPower lowers the required
number of communications by a factor of p to
reach a constant accuracy:.

e We also show that the strategy of periodically

decaying p helps obtain high-precision

solutions.

e We conduct experiments to demonstrate the
effectiveness of LocalPower.

Introduction

The truncated singular value decomposition
(SVD) which has broad applications in machine
learning.

Let aj,--- ,a, € RY be sampled i.i.d. from some
fixed but unknown distribution. The goal is to

Com'aute the k (k < min{d,n}) singular vectors
OfA [al,..., n] - RnXd.

Let Vi € R* contain the top k singular

vectors. The power iteration and its variants such

as Krylov subspace iterations are common
approaches to the truncated SVD. They have
O(nd) space complexity and O(ndk)
per-iteration time complexity.

When either n or d is big, the data matrix

A € R™ may not fit in the memory, making
standard single-machine algorithms infeasible.

Communication costs can outweigh computation

costs in large-scale matrix computation problems.

'Thus 1t 1s crucial to save communication as
possible.
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Distributed Power Iteration

To compute the top k right singular vectors of A,
denoted by Vi,

e Power iteration repeats

Y <— MZ7Z and Z <+— orth(Y)

where M = iATA and Z € R>*_ The column
space of Z will converges to V. geometrically:.

e In a distributed setting, we partition A as
A=A, .- Allwith A; € RS*¢
o Distributed power iteration (DPI) performs an

agoregation after each device runs one power
iteration. See Figure 1.

o DPI needs Q( o

Ok —0k+1
obtaln an e-accurate solution. Here, o; 1s the j-th

log (f)) communications to

largest singular value of the matrix M.
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Figure 1:Distributed Power iteration

LocalPower

Our main idea is to reduce the frequency of com-
munications (see Figure 2). In this way, we hope
to reduce the communication and synchronization

costs and thereby improving the scalability.

e Between two communications, every worker node
locally runs power iteration p times.

e Distributed power iteration is a special case of
LocalPower with p = 1.

e We propose three variants to improve the
performance of LocalPower (see next block).
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Figure 2:LocalPower

Three Variants

e Decaying p to obtain a high-accurate solution.

e For stability, using orthogonal procrustes
transformation (OPT) to post-processes Y1, as

Y?ﬁloﬁf) where
O\ = n |ZW0 — zW° 1
t al(”)%gin t t IF ( )

O,@ has a closed form:
O/ = W, W,
where W, XW/ is the SVD of (Zi")TZ".
o Sign-fixing replaces O in eqn. (1) by
i (1)
D) = argiin Z\'D -7,V (2)

where D). denotes all the £ >?_>k diagonal matrices

with £1 diagonal entries. D;”’ can be computed

in O(kd) time by

D}, 5] = sen[ (2[5, 20D | Vg e [k

Theoretical Analysis

e If local data matrices A;’s are similar enough, i.e.,
n = maxHM — M,

1€|m)| HM 9 7
is small enough or p is not too large, LocalPower

needs O (1 24

POL—O0k+1

o For pure aggregation, we need n = O( \/émp)

where k = |[M]|||MT||. When OPT is used, we
only need n = O(e).

log (f)) communications.

e OPT relaxes the restriction on matrix similarities.

Experiments

We use 15 datasets available on the LIBSVM. The n

data samples are randomly shuffled and then parti-

tioned among m nodes so that each node has s = ;}l

samples. All the algorithms start from the same ini-
tialization Y. We fix the target rank to £ = 5. For
limited space, we select some typical result from our
paper.
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Figure 3:Different p and O on Covtype (581,012 x 54).
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Figure 4:Left: OPT and sign-fixing are more stable on A9a.
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Right: typical convergence of the decay strategy on Covtype.
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Figure 5:Left: The smaller m, the faster convergence as well
as the smaller error. Right: The error depends positively on p

and m. Both are on Covtype.

Conclusion

e LocalPower are more efficient than DPI.

e OPT and sign-fixing are more stable than pure
aggregation.

e Decaying p helps us better trade-off the
communication efficiency and final error.



