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Abstract

We study distributed computing of the truncated
singular value decomposition problem.
•We develop an algorithm that we call

LocalPower for improving communication
efficiency.
•We theoretically show that under certain
assumptions LocalPower lowers the required
number of communications by a factor of p to
reach a constant accuracy.
•We also show that the strategy of periodically
decaying p helps obtain high-precision
solutions.
•We conduct experiments to demonstrate the
effectiveness of LocalPower.

Introduction

•The truncated singular value decomposition
(SVD) which has broad applications in machine
learning.
•Let a1, · · · , an ∈ Rd be sampled i.i.d. from some
fixed but unknown distribution. The goal is to
compute the k (k < min{d, n}) singular vectors
of A , [a1, . . . , an]> ∈ Rn×d.
•Let Vk ∈ Rd×k contain the top k singular
vectors. The power iteration and its variants such
as Krylov subspace iterations are common
approaches to the truncated SVD. They have
O(nd) space complexity and O(ndk)
per-iteration time complexity.
•When either n or d is big, the data matrix

A ∈ Rn×d may not fit in the memory, making
standard single-machine algorithms infeasible.
•Communication costs can outweigh computation
costs in large-scale matrix computation problems.
Thus it is crucial to save communication as
possible.

Distributed Power Iteration

To compute the top k right singular vectors of A,
denoted by Vk,
•Power iteration repeats

Y ←− MZ and Z ←− orth
Y



where M = 1
nA
>A and Z ∈ Rd×k. The column

space of Z will converges to Vk geometrically.
• In a distributed setting, we partition A as

A> = [A>1 , · · · ,A>m] with Ai ∈ Rsi×d.
•Distributed power iteration (DPI) performs an
aggregation after each device runs one power
iteration. See Figure 1.
•DPI needs Ω

 σk
σk−σk+1

log
d
ε


 communications to

obtain an ε-accurate solution. Here, σj is the j-th
largest singular value of the matrix M.
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Figure 1:Distributed Power iteration

LocalPower

Our main idea is to reduce the frequency of com-
munications (see Figure 2). In this way, we hope
to reduce the communication and synchronization
costs and thereby improving the scalability.
•Between two communications, every worker node
locally runs power iteration p times.
•Distributed power iteration is a special case of

LocalPower with p = 1.
•We propose three variants to improve the
performance of LocalPower (see next block).
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Figure 2:LocalPower

Three Variants

•Decaying p to obtain a high-accurate solution.
•For stability, using orthogonal procrustes
transformation (OPT) to post-processes Y(i)

t+1 as
Y(i)
t+1O(i)

t where
O(i)
t = argmin

O∈Ok

∥∥∥∥∥∥∥Z(i)
t O− Z(1)

t

∥∥∥∥∥∥∥
2
F
. (1)

O(i)
t has a closed form:

O(i)
t = W1W>

2 ,

where W1ΣW>
2 is the SVD of (Z(i)

t )>Z(1)
t .

•Sign-fixing replaces O(i) in eqn. (1) by
D(i)
t = argmin

D∈Dk

∥∥∥∥∥∥∥Z(i)
t D− Z(1)

t

∥∥∥∥∥∥∥
2
F
, (2)

where Dk denotes all the k × k diagonal matrices
with ±1 diagonal entries. D(i)

t can be computed
in O(kd) time by

D(i)
t [j, j] = sgn

 〈Z(i)
t [:, j] ,Z(1)

t [:, j]〉
, ∀ j ∈ [k].

Theoretical Analysis

• If local data matrices Ai’s are similar enough, i.e.,

η , max
i∈[m]

‖Mi −M‖2

‖M‖2
,

is small enough or p is not too large, LocalPower
needs O

1
p

σk
σk−σk+1

log
d
ε


 communications.

•For pure aggregation, we need η = O( ε√
kpκp

)
where κ = ‖M‖‖M†‖. When OPT is used, we
only need η = O(ε).
•OPT relaxes the restriction on matrix similarities.

Experiments

We use 15 datasets available on the LIBSVM. The n
data samples are randomly shuffled and then parti-
tioned among m nodes so that each node has s = n

m

samples. All the algorithms start from the same ini-
tialization Y0. We fix the target rank to k = 5. For
limited space, we select some typical result from our
paper.
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Figure 3:Different p and O on Covtype (581, 012× 54).
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Figure 4:Left: OPT and sign-fixing are more stable on A9a.
Right: typical convergence of the decay strategy on Covtype.
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Figure 5:Left: The smaller m, the faster convergence as well
as the smaller error. Right: The error depends positively on p
and m. Both are on Covtype.

Conclusion

•LocalPower are more efficient than DPI.
•OPT and sign-fixing are more stable than pure
aggregation.
•Decaying p helps us better trade-off the
communication efficiency and final error.


