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Introduction Problem Setup Convergence Result

Federated Learning (FL), also known as federated
optimization, allows multiple parties to
collaboratively train a model without data sharing.

FL lets the user devices (aka worker nodes)
perform most of the computation and a central
parameter server update the model parameters
using the descending directions returned by the
user devices.

A typical application is to learn user behaviors
across mobile phones, where the task is the next-
word prediction. The following figure is from [1].
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learning: Challenges, methods, and future
directions[J]. IEEE Signal Processing Magazine,
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Three Unique Characters

First, the training data are massively distributed
over an incredibly large number of devices, and the
connection between the central server and a device
Is slow. Typically, the technique of local update is
used to reduce communication frequency and thus
to prove communication efficiency.

> Communication Efficiency.

Second, unlike the traditional distributed learning
systems, the FL system does not have control over
users' devices. For example, unavailable WiFi
access makes mobile phones offline. It is thus
impractical to require all the devices to be active.

> Partial Participation.

Third, the training data are non-i.i.d. (precisely
meaning data are independent but not identically
distributed.). Hence, the data available locally fail to
represent the overall distribution.

> Statistical Heterogeneity.

There have been much efforts on developing
convergence guarantees for FL algorithms based
on the assumptions that (1) the data are iid and (2)
all the devices are active. The reference can be
checked up in our paper.

These two assumptions obviously violate the
second and third characters of FL, making previous
analysis less practical and realistic.

Our work aim to provide analysis for a classic
algorithm used in FL, given more realistic
assumptions that live in harmony with FL.

The FedAvg Algorithm

First, the central samples a small portion of active
device, denoted by S;.

We consider the following distributed optimization

model:
mm { Zkak }

Where N is the number of devices, p, Is the weight
of the k-th device. Suppose the k-th device holds
ny data points: xy 1, Xg 2.... Xk n k- 1he local
objective is given by

where [ is a user-specified loss function. For
example, the L2 loss for linear regression and the
log loss for logistic regression.

Then, the central server broadcasts the latest
model, wy, to the active devices.

Third, every active device (say, the k-th) lets w; =
w, and then performs E (>=1) local updates:
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where 1, ; is the learning rate (a.k.a. the step
size) and x5, ; is a sample uniformly chosen from
the local data.

Lastly, the server aggregates the local models,
Wi g, Wh k,..., Wi g to produce the new global
model w, . Because of the non-iid and partial
device participation issues, the aggregation step
can vary.

Two Device Sampling Methods

We consider two device sampling methods that
generate the active set S;:

(1) S1:sample K indices randomly selected with
replacement according to p, v5,..., Dy-
(2) S2:(assuming p; = -+ = pg) sample K

indices randomly from [N] without replacement.

We made the following typical assumptions. They
are quite standard in optimization literature.

(A1) F;, are all L-smooth, i.e., it satisfies
F(vV) < E(w) + (v = W) V(W) +

v — wl3
(A2) F, are all u-strongly convex, i.e., it satisfies
f(v) = f(w) + (v —w) Vf(w) +

(A3) Uniformly bounded variance:

V Fy, (wf,gf) — VI, (Wf) ||2 < o}
(A4) Uniformly bounded second moments:
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Let (A1)-(A4) hold and L, u, gy, G be defined
therein. Let k = u’ Yy = max(9k, E) and the

learning rate n; = . For Fedavg, we have
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and C depends on the sampling methods.

ForS1,C = —EZG2 for S2, C = W=K)* p26q2.
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Some Finding From the Result

(1) About E: to find an & accuracy solution, the
requires round is about
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(2) About K: weak dependence.

(3) About sampling methods: S2 should be better
while S1 is more practical.

The Importance of Learning Rate Decay

Diminishing learning rates is crucial for the
convergence of FedAvg in the non-iid setting.

Specifically, we can construct a ridge regression
model (which is strongly convex and smooth) so
that with full batch size, E > 1, and any fixed and
sufficiently small step size, FedAvg will converge to
sub-optimal points.

In particular, let w* be the solution produced by
FedAvg with a small enough and constant learning
rate n and w™ be the true optimal points. Then

W™ —wil, = QU(E = 1)n) - [[w7]

—— mnist unbalanced‘
—— mnist balanced
— synthetic(0, 0)
— synthetic(1, 1)

(8]
S
O

200 -

Required rounds (7./E)

100 1

2.5 — K=10
0.935 - \ k=30
0.930 _
2.0 \ K=70
0.925 - — K=100
185 190

0 50 100 150 200
Round (7/E)

0.43
2.0 1
o M

1.5

1é0 260
10 | L
0.5 1

0 50 100 150 200
Round (7/E)

Original
—— Scheme |
—— Scheme II (T)

Global loss




