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摘要

摘要

本论文研究如何使用在机器学习和统计学中流行的随机迭代算法来进行在线统计

推断，并分为两部分。

在第一部分，我们着重研究联邦学习。这是一种相对较新的分布式机器学习领域。

它允许端设备（例如智能手机和便携设备）协同学习一个公共的统计模型，同时禁止共

享本地生成的数据。我们分析了当前流行的局部随机梯度下降方法（Local SGD）。这是

一种多轮通讯的估计方法。它企图通过降低通讯频率来提高通讯效率。我们探讨了如

何使用同步了的平均序列构造渐近有效的置信区间。我们提出了两种方法来构造置信

区间：插值方法和随机缩放。前者利用我们建立起的渐近正态性质以及在线估计的渐

近方差矩阵来构建置信区间，而后者则利用整个 Local SGD轨迹的信息来构造渐近有

效的枢轴量。为了从理论上支持后一种方法，我们建立了一个函数中心极限定理。在

当前最弱的关于随机梯度的 2 + 𝛿矩假设下，我们证明了平均了的 Local SGD序列的部

分和过程会弱收敛于一个缩放的布朗运动。我们的结果表明这两种方法不仅通讯有效，

而且适用于在线数据。此外，当以适当的频率通讯时，Local SGD可以在逐渐减少至零

的通讯频率下达到最优的统计估计效率。

在第二部分，我们研究了仅使用单条马尔科夫数据的非线性随机逼近算法的统计

推断。主要的应用场景包括自回归数据上的随机梯度下降和强化学习中的异步 Q学习

方法。我们使用标准随机逼近框架估计目标参数，并为其部分和过程（记为 𝝓𝑇）建立

了一个函数中心极限定理。为了进一步支持这个理论，我们一方面提供了一个半参数

的渐近方差矩阵下界来展示该过程的方差最优性，另一方面刻画了在 Lévy-Prokhorov

度量下的该随机过程弱收敛的收敛速度，量化部分影响因素。我们的推断方法基于建

立的函数中心极限定理——通过选择任何连续的尺度不变的泛函 𝑓，我们可以构造出
渐近有效的枢轴量 𝑓(𝝓𝑇 )。基于此，我们能够构造一个渐近有效的置信区间。我们提出
了一个由 𝑚 ∈ ℕ索引的函数族 𝑓𝑚，并通过理论和数值手段分析了相应的拒绝概率。最

后通过数值试验验证了我们的理论的正确性以及方法的有效性。

关键词：联邦学习，统计推断，非线性随机近似，函数中心极限定理
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ABSTRACT

Online Statistical Inference for Federated Learning and
Nonlinear Stochastic Approximation

Xiang Li (Statistics)

Directed by: Prof. Zhihua Zhang

ABSTRACT

This dissertation investigates the implementation of popular stochastic iterative algo-

rithms in machine learning and statistics for online statistical inference.

In the first part, we focus on Federated Learning (FL), a relatively new field of distributed

machine learning that allows end devices (such as smartphones and portable devices) to col-

laboratively learn a shared model without sharing locally generated data points. We analyze

Local SGD, a multi-round estimation procedure that uses intermittent communication to im-

prove communication efficiency, and explore how to construct asymptotically valid confidence

intervals using synchronized iterates. We present twomethods for constructing these intervals:

the plug-in method, which estimates the asymptotic variance matrix and constructs confidence

intervals via the established asymptotic normality, and random scaling, which uses informa-

tion from the entire Local SGD trajectory to construct an asymptotically pivotal statistic. To

support the second method, we establish a functional central limit theorem that shows the

partial-sum process of averaged Local SGD iterates weakly converges to a scaled Brownian

motion under the weakest bounded 2 + 𝛿-moment assumption on stochastic gradients. Our

results demonstrate that both methods are communication-efficient and applicable to online

data. Furthermore, once communicating at an appropriate frequency, Local SGD achieves

both statistical and communication efficiency simultaneously.

In the second part, we investigate the statistical inference of nonlinear stochastic approx-

imation algorithms using a single trajectory of Markovian data. Our approach has practical

applications in various scenarios, such as Stochastic gradient descent (SGD) on autoregres-

sive data and asynchronous Q-Learning. We estimate the target parameter using the standard

stochastic approximation (SA) framework and establish a functional central limit theorem for

its partial-sum process, denoted by 𝝓𝑇 . To further support this theory, we provide, on one

hand, a semi-parametric efficient asymptotic variance matrix lower bound to demonstrate the

III
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variance optimality of the process. On the other hand, we characterize the convergence rate

of weak convergence of this stochastic process under the Lévy-Prokhorov metric, quantifying

some influencing factors. The functional central limit theorem serves as the foundation for

our inference method. By selecting any continuous scale-invariant functional 𝑓 , the asymp-
totic pivotal statistic 𝑓(𝝓𝑇 ) becomes accessible, enabling us to construct an asymptotically

valid confidence interval. We propose a family of functionals 𝑓𝑚, indexed by 𝑚 ∈ ℕ, and
analyze the corresponding rejection probability through theoretical and numerical means. Our

simulation results demonstrate the validity and efficiency of our method.

KEY WORDS: Federated learning, Statsitical inference, Nonlinear stochastic approximation,

Functional central limit theorem

IV



Contents

Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Preliminaries on Weak Convergence in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Statistical Estimation and Online Inference via Local SGD. . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.1.2 Chapter Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.2 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.2.1 Local SGD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.3 Statistical Estimation via Local SGD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.3.1 Asymptotic Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.4 Statistical Inference via Local SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

2.4.1 The plug-in Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

2.4.2 Random Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

2.5 Proof Sketch of Theorem 2.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

2.6 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

2.7 Numerical Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

2.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

Chapter 3 Online Statistical Inference for Nonlinear Stochastic Approximation withMarko-

vian Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

3.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

3.2 Problem Setup and Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

3.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

3.2.2 Examples of Nonlinear Stochastic Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

3.3.1 Functional Central Limit Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

3.3.2 Consistency Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

V



Peking University PhD Thesis

3.3.3 Semiparametric Efficient Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

3.3.4 Functional Weak Convergence Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

3.4 Proof Sketches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

3.4.1 Proof of Theorem 3.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

3.4.2 Establishment of (𝐿2, 𝑎𝑡√𝜂𝑡)-consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
3.4.3 Proof of Theorem 3.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

3.4.4 Proof of Theorem 3.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

3.4.5 Preliminaries on the Lévy-Prokhorov Metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

3.4.6 Proof of Theorem 3.3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

3.5 Online Statistical Inference Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

3.5.1 A Family of Scale-invariant Functional 𝑓𝑚. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

3.5.2 Online Computation Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

3.5.3 A Qualitative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

3.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.1 Linear regression with autoregressive noises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6.2 Asynchronous Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6.3 Logistic regression with Markovian data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 4 Conclusion and Future Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix A Omitted Proofs for Theorem 2.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 Proof of Lemma 2.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2 Proof of Lemma 2.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.3 Proof of Lemma A.2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.4 Proof of Lemma 2.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.5 Proof of Lemma 2.5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.6 Proof of Lemma 2.5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.7 Proof of Lemma 2.5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix B Omitted Proofs for Theorem 3.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.1 Proof of Lemma 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

VI



Contents

B.2 Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.3 Proof of Lemma 3.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.4 Proof of Lemma B.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.5 Proof of Lemma B.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.6 Proof of Lemma B.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.7 Properties of Recursion Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Appendix C Omitted Proofs for Theorem 3.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.1 Proof of Lemma 3.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.2 Proof of Lemma 3.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.3 Proof of Lemma 3.4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.4 Proof of Lemma 3.4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.5 Proof of Lemma 3.4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.6 Proof of Lemma 3.4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.7 Proof of Lemma 3.4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Appendix D Omitted Proofs for Theorem 3.3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.1 Proof of Corollary 3.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.2 Proof of Lemma 3.4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.3 Proof of Lemma D.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

D.4 Proof of Lemma D.2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

D.5 Proof of Lemma D.2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D.6 Additional Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

北京大学学位论文原创性声明和使用授权说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

VII





Chapter 1 Introduction

Chapter 1 Introduction

Statistical estimation and statistical inference are two fundamental concepts in statistics

that are used to make sense of data and draw meaningful conclusions from it[1-2]. Statistical

estimation is the process of using sample data to estimate unknown parameters of a popula-

tion, such as its mean or standard deviation. This is typically done using point estimates. On

the other hand, statistical inference is the process of using sample data to draw conclusions

about the population from which the sample was drawn. This can involve hypothesis testing,

where we test a claim about a population parameter, or constructing confidence intervals to

estimate the uncertainty around our estimates. Typically, statistical inference is more difficult

than statistical estimation because the former needs to figure out the inherent uncertainty and

variability in real-world data while the later only cares about a point estimation.

In nowadays modern statistics, both of them are facing great challenges due to the incred-

ibly large data volume generated by ubiquitous man-machine interaction[3]. Browsers gather

shopping history, cellphones collect keyboard inputs, potable devices record sporting activity,

and, institutions (e.g., banks and hospitals) copy service information. In these real applications,

two difficulties arises, namely the large data volume and its online generation.

The first challenge is related to the size of the dataset, which may be too large to fit into

memory or process on a single machine. In these cases, a distributed settingmust be considered

where data points are generated on different devices. Once data points are generated locally,

it would be privacy-destructive to upload these raw data points to an unauthenticated central

server (that often locates in privates companies or governmental institutes). Furthermore, it vi-

olates privacy and policies because many rigorous data protection regulations are launched to

regulate personal data usage such as EU/UK General Data Protection Regulation (GDPR)[4].

To address this difficulty, Federated Learning (FL) has been proposed as a solution, which

allows multiple devices to collaboratively learn a shared statistical model without sharing lo-

cal datasets directly[5]. In this way, FL can protect sensitive information that data contain,

such as personal identity information and state of health information, from unauthorized ac-

cess of service providers. However, limited data access, together with memory constraints,

communication budget, and computation restrictions, makes traditional statistical estimation

and inference methods inapplicable in the FL scenario[6-7].

The second challenge arises when data points are generated continuously, making it phys-
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ically impossible to collect them all in one dataset pool. Selecting only a small portion of these

points can result in loss of information and statistical power. Additionally, as new data points

arrive, it becomes computationally inefficient to redo the estimation from the expanded dataset,

which can cause significant delays in real-time applications such as online recommendation

and autonomous driving. To address this challenge, we need an estimation procedure that is

adaptive to the streaming data setting, allowing us to do incremental updates when new data

points arrive without requiring a full re-estimation of the model. This is the essence of online

learning[8] and reinforcement learning[9], which enable agents to make decisions in real-time

based on incoming data while adapting to changes in the underlying environment.

To handle these two challenges posed by a big volume of streaming data, efficient on-

line algorithms have been the developed for statistical estimation. For example, in federated

learning, Local SGD is proposed to improve communication efficiency by decreasing commu-

nication frequency[10]. More specifically, Local SGD runs stochastic gradient descent (SGD)

independently in parallel on different clients and averages the sequences only once in a while.

It has been shown to have superior performance in training efficiency and scalability[11], and

converge fast in terms of communication[12-16]. In reinforcement learning, Q-Learning is per-

haps the most popular model-free approach to estimate the optimal value function, which is

the optimal expected accumulated rewards of taking a given action in a given state[17]. In prac-

tice, one key feature of Q-learning is that its observed data is generated from a trajectory of

Markov chain. More specifically, by performing an action at the current state, only an instant

reward variable and the next state are observed, which implies only incomplete and noisy data

are available. It has been show that once assuming a bounded mixing time for the underlying

Markov chain, non-asymptotic convergence rates are still accessible[18-21].

Despite significant progress in achieving fast and even optimal non-asymptotic conver-

gence guarantees for both FL and RL, conducting statistical inference in these contexts remains

an open problem. The main difficulty is to quantify the randomness of a proposed estimate

and further to propose an effective online procedure to construct confidence intervals.

In the case of FL, an effective statistical inference method must balance communication

efficiency (that is less communication starving), statistical heterogeneity (that is adaptive to

the different local data distributions), and statistical efficiency, with the goal of achieving the

Cramér–Rao lower bound. A classic approach is one-shot averaging or divide-and-conquer

method that performs only one communication to average the output of each devices for dis-

tributed tasks[22-28]. As equivalent to the single-agent setting, one-shot averaging is simple
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and easy to analyze, whose asymptotic convergence has been studied extensively in the early

years[29-32]. Typically, one-shot averaging works well when the bias of the predictor returned

by each client is much smaller than the variance[33]. When each device has a sufficient number

of data that are generated independently from (nearly) the same distribution, a small estimation

error is well guaranteed in theory[24, 34]. However, the statistical heterogeneity in FL is likely

to render the predictor outputted by each device a larger bias and makes the one-shot average

invalid. Another approach focuses on a multi-communication procedure due to its stable per-

formance and weak requirement on local dataset size[35-36]. An extreme example is parallel

SGD[37] that alternates between one independent step of SGD in parallel and one synchro-

nization. However, the feature that parallel SGD (as well as its many variants) performs one

communication per round would incur huge communication costs in an online setting where

the data arrive sequentially. By contrast, Local SGDperforms one communication after several

(even an increasing number of) rounds and intuitively improve the communication efficiency.

Though Local SGD and its many variants improve communication efficiency for many feder-

ated estimation tasks, no works consider to quantify the randomness of obtained estimates, let

alone perform statistical inference. To the best of our knowledge, no inference method for FL

has met the criteria mentioned early.

In RL, a satisfactory statistical inference method must not only be statistically efficient

but also be able to handle trajectory Markovian data. Early works in RL often rely on the

generator assumption, which assumes independent rewards and independent next states for all

state-action pairs. However, even with this assumption of independence and completeness,

quantifying the randomness for RL algorithms in an online manner is challenging, as there is

no direct access to the curvature information for estimating the asymptotic variance. In con-

trast, in the case of stochastic gradient descent (SGD), once the Hessian matrix is available, one

can use a plug-in estimator or a batch-mean estimator for the asymptotic variance under i.i.d.

data[38-39]. To address this issue in RL, most existing works on statistical inference mainly

rely on bootstrap-based methods, where multiple perturbed iterates are maintained to approx-

imate the asymptotic variance matrix when the number of perturbed iterates is sufficiently

large[40-43]. However, this line of study has several limitations. First, most existing works

focus on the off-policy evaluation (OPE) problem, where the agent evaluates the performance

of a hypothetical policy using only offline i.i.d. log data. As OPE is essentially a linear prob-

lem, it is unclear whether this approach can be extended to nonlinear problems. Second, few

works consider the Markovian data setting. One exception is[43], which, however, still focuses
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on OPEs. Lastly, bootstrap-based methods require multiple oracles that the agent is able to

evaluate the values of stochastic incremental updates at different parameters while keeping

the source of randomness unchanged. This oracle is only feasible in environments where the

agent can fully control the environment. Without complete control of the environment, there is

currently no known method to estimate the asymptotic variance in the presence of Markovian

data. To summarize, conducting statistical inference under the existence of Markovian data

and without multiple oracles remains an open research problem.

In this thesis, we are motivated to tackle the challenge of conducting statistical inference

in these two challenging settings. The contributions of the thesis related both to theoretical

and practical sides of our findings are listed in the next section along with a brief explanation.

1.1 Contributions of the Thesis

Before we give a detailed overview with precise definitions and explanations of the con-

cepts briefly introduced above, we present the list of the main contributions of the thesis from

a high-level perspective, and we cite the related publications. Detailed descriptions for each

point will be given in Sections 2.1.1 and 3.1.1 respectively.

Statistical inference for FL In order to perform statistical inference in federated learning

(FL), an optimization algorithm must be chosen first to estimate the target parameter. Local

SGD is selected here due to its simplicity and representativeness in FL. The reason is that as

the key feature of Local SGD, local updates or intermittent communication has motivated a

lot federated algorithms to improve communication efficiency in application such as device

sampling[5, 44], distributed PCA[45-46]., non-convex optimization[12], and minimax optimiza-

tion[47-49]. Local SGD is the simplest in the sense that it is the very combination of local

updates and SGD. It runs SGD independently in parallel on different devices and averages the

sequences only occasionally[5].

Chapter 2 focuses on Local SGD and establishes its asymptotic normality. We find that

local updates, or intermittent communication, introduce an interesting trade-off between statis-

tical and communication efficiency (see Section 2.3.1 in Chapter 2). By decaying the commu-

nication frequency at an appropriate rate, Local SGD can achieve both efficiency measures.

Based on the asymptotic normality, an online plug-in estimator for the asymptotic variance

is proposed. When the second-order information, such as the Hessian matrix, is not avail-

able, a non-parametric inference method is then proposed. The key idea is to construct an
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asymptotically pivotal statistic by using information along the whole Local SGD trajectory.

To support this method, a functional central limit theorem is established, which shows that

the averaged iterates of Local SGD converge weakly to a scaled Brownian motion under the

currently weakest 2 + 𝛿 moment condition on stochastic gradients. This method is more com-

putationally efficient and memory-friendly than the plug-in method. Numerical experiments

are conducted to illustrate both inference methods.

This contribution is based on the following publication[50]. Before preparing this work

in statistical inference for Local SGD, the author has already applied local updates for other

applications, such as providing the non-asymptotic convergence rate for a variant of Local

SGD[51], and proposing efficient algorithms for decentralized optimization[12] or distributed

PCA[46]. To maintain simplicity and relevance, these papers are not included in this thesis.

• [50]Li X, Liang J, Chang X, Zhang Z. Statistical estimation and online inference via Local

SGD[C]// Conference on Learning Theory: vol. 178. [S.l.]: PMLR, 2022: 1613-1661.

Statistical inference for nonlinear stochastic approximation In Chapter 3, we adopt a

more general approach to study Q-Learning by examining it through the lens of nonlinear

stochastic approximation (SA). Q-Learning can be seen as a recursive stochastic procedure

that aims to find the root of a given nonlinear equation. Nonlinear stochastic approximation is

a class of methods that has been studied for the past two decades[52-54]. Since Q-Learning is an

important case of the single trajectory case, the absence of multiple oracles makes it difficult

to apply previous online bootstrap methods[43]. To address this issue, we propose to utilize

trajectory information to construct an asymptotically pivotal statistic that allows us to obtain

confidence intervals by inverting it. To support this theory, we establish a functional central

limit theorem for the partial-sum process of nonlinear SA methods, denoted by 𝝓𝑇 , that shows

weak convergence to a scaled Brownian motion, even if the data is generated along a Markov

chain. To further support our findings, we provide a semiparametric efficient lower bound and

a non-asymptotic upper bound on weak convergence, measured in the Lévy-Prokhorov metric.

By selecting any continuous scale-invariant functional 𝑓 , we can make the asymptotic pivotal
statistic 𝑓(𝝓𝑇 ) accessible, which allows us to construct an asymptotically valid confidence

interval. We analyze the rejection probability of a family of functionals 𝑓𝑚 indexed by 𝑚 ∈ ℕ
through theoretical and numerical means, and the simulation results demonstrate the validity

and efficiency of our method.

This contribution is based on the following paper[55]. It is a follow-up work to our previ-

ous conference publication[21], where we analyze (synchronous) Q-Learning under a weaker
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condition, namely the synchronous setting where a generative model produces independent

samples in every iteration[56]. To overcome the difficulty brought by Markov data and itera-

tive algorithms, we made several technical extensions. See Section 3.1.1 for more details.

• [55]Li X, Liang J, Zhang Z. Online statistical inference for nonlinear stochastic approxima-

tion with Markovian data[J]. ArXiv preprint arXiv:2302.07690, 2023.

• [21]Li X, Yang W, Jiadong L, Zhang Z, Jordan M I. A statistical analysis of Polyak-Ruppert

averaged Q-learning[C]//International Conference on Artificial Intelligence and Statistics:

vol. 206. [S.l. : s.n.], 2023.

Other paper organization In Chapter 4, we provide a brief comparison of different infer-

encemethods and highlight potential future work. To facilitate comprehension of our inference

methods, we introduce some preliminaries on weak convergence in metric spaces. These con-

cepts are essential to understanding our proposed methods. All notations will be introduced in

the corresponding chapters.

1.2 Preliminaries on Weak Convergence in Metric Spaces

We will introduce some basic knowledge of weak convergence in metric spaces. See

Section 12-15 in the book of Billingsley [57] for a detailed introduction.

A Polish space is a topological space that is separable, complete, and metrizable. Let

D[0,1],ℝ𝑑 = {𝝓 ∶ càdlàg function 𝝓(𝑟) ∈ ℝ𝑑 , 𝑟 ∈ [0, 1]}

collect all 𝑑-dimensional functions which are right continuous with left limits. These functions
are also known as càdlàg functions. The 𝐽1 Skorokhod topology equips D[0,1],ℝ𝑑 with the

Skorokhod metric 𝑑S such that (D[0,1],ℝ𝑑 , 𝑑S) is a Polish space and 𝒟[0,1],ℝ𝑑 is its Borel 𝜎-field
(the 𝜎-field generated by all open subsets) in the Skorokhod metric. In particular, denoting by
Λ the class of strictly increasing continuous mappings 𝜆 ∶ [0, 1] → [0, 1] with 𝜆(0) = 0 and

𝜆(1) = 1, we have for any 𝝓1,𝝓2 ∈ D[0,1],ℝ𝑑 ,

𝑑S(𝝓1,𝝓2) = inf
𝜆∈Λ

max
{

sup
0≤𝑠<𝑡≤1 |ln

𝜆(𝑡) − 𝜆(𝑠)
𝑡 − 𝑠 | , sup

𝑡∈[0,1]
‖𝝓1(𝜆(𝑡)) − 𝝓2(𝑡)‖

}
. (1.1)

An important closed subset of D[0,1],ℝ𝑑 is

C[0,1],ℝ𝑑 ∶= {𝝓 ∶ continuous 𝝓(𝑟) ∈ ℝ𝑑 , 𝑟 ∈ [0, 1]},

which collects all 𝑑-dimensional continuous functions defined on [0, 1]. The uniform topology
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equips C[0,1],ℝ𝑑 with the uniform metric |||𝝓||| ∶= sup𝑟∈[0,1] ‖𝝓(𝑟)‖ such that (C[0,1],ℝ𝑑 , |||⋅|||)
is a Polish space. Furthermore, we have 𝑑S(𝝓1,𝝓2) ≤ |||𝝓1 − 𝝓2||| for any 𝝓1,𝝓2 ∈ D[0,1],ℝ𝑑 ,

implying the 𝐽1 Skorokhod topology is weaker than the uniform topology. Unfortunately,

(D[0,1],ℝ𝑑 , |||⋅|||) is not separable and we have 𝒟[0,1],ℝ𝑑 ⊊ 𝒞[0,1],ℝ𝑑 with 𝒞[0,1],ℝ𝑑 the Borel

𝜎-field in the uniform metric.

Any random element 𝝓𝑡 ∈ D[0,1],ℝ𝑑 introduces a probability measure on D[0,1],ℝ𝑑 denoted

by ℒ(𝝓𝑡) such that (D[0,1],ℝ𝑑 , 𝒟[0,1],ℝ𝑑 , ℒ(𝝓𝑡)) becomes a probability space. We say a se-

quence of random elements {𝝓𝑡}𝑡≥0 ⊆ D[0,1],ℝ𝑑 weakly converges to 𝝓, if for any bounded,

continuous, 𝒟[0,1],ℝ𝑑 -measurable functional 𝑓 ∶ D[0,1],ℝ𝑑 → ℝ, we have 𝔼𝑓(𝝓𝑇 ) → 𝔼𝑓(𝝓) as
𝑇 → ∞. The condition is equivalent to that any finite-dimensional projections of𝝓𝑇 converge

in distribution in the sense that for any given integer 𝑛 ≥ 1 and any 0 ≤ 𝑡1 < ⋯ < 𝑡𝑛 ≤ 1,
when 𝑇 goes to infinity,

(𝝓𝑇 (𝑡1),𝝓𝑇 (𝑡2), ⋯ ,𝝓𝑇 (𝑡𝑛)) 𝑑→ (𝝓(𝑡1),𝝓(𝑡2), ⋯ ,𝝓(𝑡𝑛)). (1.2)

We denote weak convergence by 𝝓𝑇
𝑤→ 𝝓. If further 𝝓 ∈ C[0,1],ℝ𝑑 , we have 𝝓𝑇

𝑤→ 𝝓 if

and only if 𝔼𝑓(𝝓𝑇 ) → 𝔼𝑓(𝝓) for any bounded, continuous, 𝒞[0,1],ℝ𝑑 -measurable functional

𝑓 ∶ D[0,1],ℝ𝑑 → ℝ. Therefore, if 𝝓𝑇
𝑤→ 𝝓 ∈ C[0,1],ℝ𝑑 , we then have 𝑓(𝝓𝑇 ) 𝑑→ 𝑓(𝝓) for any

|||⋅|||-continuous functional 𝑓 . The Slutsky theorem also holds here; for 𝝓(1)
𝑇 ,𝝓(2)

𝑇 ∈ D[0,1],ℝ𝑑

satisfying 𝝓(1)
𝑇

𝑤→ 𝝓 and 𝑑S(𝝓(2)
𝑇 ,𝝓(1)

𝑇 ) 𝑑→ 0, we have 𝝓(2)
𝑇

𝑤→ 𝝓.
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Chapter 2 Statistical Estimation and Online Inference via

Local SGD

2.1 Introduction

Federated Learning (FL) is a distributed computing paradigm that allows for collaborative

training of a global model using data held by remote clients, as described byMcMahan, Moore,

Ramage, Hampson, y Arcas [5]. FL ensures the protection of sensitive information contained

in local datasets by only allowing cooperation with a central server, without sharing the data.

However, limited data access, memory constraints, communication budget, and computation

restrictions make traditional statistical estimation and inference methods inapplicable in the

FL scenario[3, 6-7]. This chapter aims to address this challenge by studying how to perform

statistical estimation and inference in the FL setting.

In a typical FL system, a pool of 𝐾 clients each has a local dataset consisting of indepen-

dently and identically distributed (i.i.d.) data from some unknown distribution𝒟𝑘. The central

server faces a distributed optimization problem, where the goal is to minimize a user-specified

loss function over all clients, that is

min
𝒙

⎧⎪
⎨
⎪⎩

𝑓(𝒙) =
𝐾∑

𝑘=1
𝑝𝑘𝑓𝑘(𝒙) ∶=

𝐾∑
𝑘=1

𝑝𝑘𝔼𝜉𝑘∼𝒟𝑘𝑓𝑘(𝒙; 𝜉𝑘)
⎫⎪
⎬
⎪⎭

, (2.1)

where 𝑝𝑘 is the weight of the 𝑘-th client and 𝑓𝑘(⋅; 𝜉𝑘) is the user-specified loss with 𝜉𝑘 being

the generated data point from 𝒟𝑘. The FL scenario poses a challenge due to the decentral-

ized nature of data generation, resulting in statistical heterogeneity among local data distribu-

tions, 1 as well as the restrictive communication cost due to immense data volumes scattered

across remote clients. To cope with these challenges, efficient algorithms have been pro-

posed, with Local SGD being one of the simplest and most effective algorithms. Local SGD

runs SGD independently in parallel on different clients and averages the sequences only once

in a while to learn a shared global model via infrequent communication McMahan, Moore,

Ramage, Hampson, y Arcas [5]. It has been shown to have superior performance in training

efficiency and scalability[11], and converge fast in terms of communication[12-16]. The idea of

lowering communication frequency for improving communication efficiency also motivates

1 That is {𝒟𝑘}𝐾
𝑘=1 are no longer necessarily identical.
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Algorithm 1 Local SGD

Input: functions {𝑓𝑘}𝐾
𝑘=1, initial point 𝒙0, step size 𝜂𝑚, communication set ℐ = {𝑡0, 𝑡1, ⋯}.

Initialization: let 𝒙𝑘
0 = 𝒙0 for all 𝑘.

for round 𝑚 = 0 to 𝑇 − 1 do
for iteration 𝑡 = 𝑡𝑚 + 1 to 𝑡𝑚+1 do
for each device 𝑘 = 1 to 𝐾 do
𝒙𝑘

𝑡 = 𝒙𝑘
𝑡−1 − 𝜂𝑚∇𝑓𝑘(𝒙𝑘

𝑡−1; 𝜉𝑘
𝑡−1). # perform 𝐸𝑚 = 𝑡𝑚+1 − 𝑡𝑚 steps of local updates.

end for
end for
The central server aggregates: 𝒙̄𝑡𝑚+1 =

∑𝐾
𝑘=1 𝑝𝑘𝒙𝑘

𝑡𝑚+1
.

Synchronization: 𝒙𝑘
𝑡𝑚+1

← 𝒙̄𝑡𝑚+1 for all 𝑘.
end for
Return: 𝒙̂ = 1

𝑇
∑𝑇

𝑚=1 𝒙̄𝑡𝑚 .

algorithms for other federated learning problems, including minimax problems[47-49] and dis-

tributed PCA[45-46].

From a statistical viewpoint, it is crucial to perform statistical inference in FL in order

to infer properties of the underlying data distribution, quantify the uncertainty of the estima-

tor, and monitor the algorithm’s performance. However, it is still an open question of how to

perform statistical inference in FL and adapt to its peculiarities. This paper aims to address

statistical estimation and inference in FL via Local SGD, given its superior performance in

training efficiency and scalability and representativeness in FL. Our goal is to obtain an ef-

ficient estimate of the optimal parameter value 𝒙⋆ = argmin𝒙 𝑓(𝒙) and provide asymptotic

confidence intervals for further inference, using only the Local SGD iterates {𝒙𝑘
𝑡𝑚

}𝑚∈[𝑇 ],𝑘∈[𝐾],

obtained through communication at specific iterations. Here [𝑁] = {1, 2, … , 𝑁} and 𝒙𝑘
𝑡 de-

notes the parameter hosted by the 𝑘-th client at iteration 𝑡. Note that we do not have direct

access to {𝒙𝑘
𝑡 }𝑘∈[𝐾] if 𝑡 ∉ ℐ due to intermittent communication. It makes the analysis of

asymptotic behaviors of Local SGD totally different from that of so-called parallel SGD[37],

which alternates between one independent step of SGD in parallel and one synchronization.

Clearly, the parallel SGD is equivalent to the single-machine SGD, whose asymptotic conver-

gence has been studied extensively[29-32].

2.1.1 Contribution

The following questions emerge which we study in the following:

1. how one constructs the estimator from Local SGD iterates {𝒙𝑘
𝑡𝑚

}𝑚∈[𝑇 ],𝑘∈[𝐾];
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2. how local updates (or intermittent communication) affect its asymptotic behavior;

3. how one quantifies the variability and randomness of the estimator.

For the first question, Polyak, Juditsky [30], Ruppert [58] introduced averaged SGD, a sim-

ple modification of SGD where iterates are averaged as the final estimator, and established

asymptotic normality via martingale central limit theorem (CLT). It is known that the averaged

SGD estimator obtains the optimal asymptotic variance under certain regularity conditions[59].

𝒙̂ = 1
𝑇

𝑇∑
𝑚=1

𝒙̄𝑡𝑚 where 𝒙̄𝑡𝑚 =
𝐾∑

𝑘=1
𝑝𝑘𝒙𝑘

𝑡𝑚
.

For the second question, under common assumptions, we show the proposed estimator 𝒙̂
exactly has the optimal asymptotic variance up to a known scale 𝜈(≥ 1)which is determined by
the sequence {𝐸𝑚}𝑚, where 𝐸𝑚 ∶= 𝑡𝑚+1 − 𝑡𝑚 is the length of the 𝑚-th communication round.
And 𝜈 barely affects the variance optimality because there exist many diverging sequences

{𝐸𝑚}𝑚 satisfying 𝐸𝑚 = 𝑜(𝑚) and 𝜈 = 1. It implies the Local SGD estimator has the optimal

asymptotic variance even though it has enlarging communication intermittency. This result

somewhat corresponds to the optimization study on Local SGD[13, 15-16, 60]; local updates (i.e.,

𝐸𝑚 > 1) only slow down the 𝐿2 non-asymptotic convergence rate of Local SGD slightly,

because the additionally incurred residual error is still dominated by the statistical error. In this

case, the averaged communication frequency (ACF, i.e., 𝑇 /𝑡𝑇 ) converges to zero, implying we

trade almost all computation for asymptotically zero communication. Therefore, our estimator

simultaneously has statistical efficiency and communication efficiency.

For the third question of uncertainty quantification, we investigate two online inference

methods for statistical inference. One is the plug-in method[61], which is available when we

have an explicit formula for the covariance matrix of the estimator. The other, a.k.a., random

scaling[62], borrows insights from time series regression in econometrics[63-64]. It does not

attempt to estimate the asymptotic variance but to construct an asymptotically pivotal statistic

by normalizing the estimator with its random transformation. To underpins this approach,

we establish a functional central limit theorem (FCLT) for the average of Local SGD iterates

under much milder conditions than Lee, Liao, Seo, Shin [62]. 1 In particular, we pose a (2+𝛿)
moment condition on gradient noises (see Assumption 2.3.2), while Lee, Liao, Seo, Shin [62]

requires a stronger condition: gradient noises should not only be 𝛼-mixing but also have at least
forth-order moment (see their Assumption 2). 2 Our improvement comes from a specific error

1 Note that the standard single-device SGD is a special case of Local SGD by setting 𝐸𝑚 ≡ 1 and 𝐾 = 1. Thus, our result
naturally covers the standard SGD case.

2 The 𝛼-mixing assumption forces gradient noises to be asymptotic stationary in a fast rate.

11



Peking University PhD Thesis

decomposition and a careful analysis on a non-asymptotic term with time-varying coefficients

(see Lemma 2.5.7). We believe that the advanced proof technique we developed beyond the

current work would be of independent interest. We conduct some numerical experiments to

illustrate the two inference methods.

2.1.2 Chapter Organization

The remainder of this chapter is organized as follows. In Section 2.2 we formulate our

problem and introduce Local SGD. In Section 2.3 we explore the asymptotic properties for the

averaged sequence of Local SGD. In Section 2.4 we introduce two online methods, namely

the plug-in method and random scaling, to provide asymptotic confidence intervals and per-

form hypothesis tests. We provide the proof idea in Section 2.5 and review related work in

Section 2.6. We illustrate the numerical performance of our methods in synthetic data in Sec-

tion 2.7. We conclude our article in Section 2.8 with a discussion of our results and future

research directions.

2.2 Problem Formulation

In this section, we detail some preliminaries to prepare the readers for our results. We are

concerned with multi-round distributed learning methods. At iteration 𝑡, we use 𝒙𝑘
𝑡 to denote

the parameter held by the 𝑘-th client and 𝜉𝑘
𝑡 the sample or data point it generates according

to 𝒟𝑘. A typical example of multi-round methods is the parallel stochastic gradient descent

(P-SGD)[37] that runs 𝒙𝑘
𝑡+1 = ∑𝐾

𝑘=1 𝑝𝑘 [𝒙𝑘
𝑡 − 𝜂𝑡∇𝑓𝑘(𝒙𝑘

𝑡 ; 𝜉𝑘
𝑡 )] for 𝑘 ∈ [𝐾] and 𝑡 ≥ 0. Other

variants have been successively proposed[36, 65-66]. It is easy to analyze the statistical property

of P-SGDdue to its equivalence to the single-machine counterpart. The classical work provides

an analysis paradigm for P-SGD, showing it obtains an asymptotically unbiased and efficient

estimate[30]. In particular, with 𝒙̄𝑡 =
∑𝐾

𝑘=1 𝑝𝑘𝒙𝑘
𝑡 , P-SGD achieves the following asymptotic

normality with the asymptotic variance satisfying the Cramér-Rao lower bound[59]

√𝑇
⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=1

𝒙̄𝑡 − 𝒙⋆
⎞
⎟
⎟
⎠

𝑑⟶ 𝒩 (0, 𝑮−1𝑺𝑮−⊤) ,

where𝑮 ∶= ∇2𝑓(𝒙⋆) =
∑𝐾

𝑘=1 𝑝𝑘∇2𝑓𝑘(𝒙⋆) is theHessian at the optima𝒙⋆ and𝑺 = 𝔼(𝜀(𝒙⋆)𝜀(𝒙⋆)⊤)
is the covariance matrix at it. Here 𝜀(𝒙⋆) =

∑𝐾
𝑘=1 𝑝𝑘 (∇𝑓𝑘(𝒙⋆; 𝜉𝑘) − ∇𝑓𝑘(𝒙⋆)) is the noise

of corresponding aggregated gradients.
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Chapter 2 Statistical Estimation and Online Inference via Local SGD

2.2.1 Local SGD

An obvious drawback of P-SGD is its huge communication because it requires synchro-

nization at each iteration. By contrast, Local SGD hopes improve the communication effi-

ciency by lowering the communication frequency[10-11, 13, 15-16]. We now turn to Local SGD

and summarize its details. We provide the formal version in Algorithm 1. Put simple, it obtains

the solution estimate using the following recursive algorithm

𝒙𝑘
𝑡+1 =

{
𝒙𝑘

𝑡 − 𝜂𝑡∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 ) if 𝑡 + 1 ∉ ℐ ,∑𝐾
𝑘=1 𝑝𝑘 [𝒙𝑘

𝑡 − 𝜂𝑡∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 )] if 𝑡 + 1 ∈ ℐ ,
(2.2)

where 𝜂𝑡 is the learning rate, 𝜉𝑘
𝑡 is an independent realization of 𝒟𝑘, and ℐ denotes the set

of communication iterations. At iteration 𝑡, each client runs always SGD independently in

parallel 𝒙𝑘
𝑡+1 = 𝒙𝑘

𝑡 − 𝜂𝑡∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 ). However, when 𝑡+1 ∈ ℐ , the central server aggregates

local parameters
∑𝐾

𝑘=1 𝑝𝑘𝒙𝑘
𝑡+1 and broadcasts it to all clients, which amounts to the following

update rule 𝒙𝑘
𝑡+1 =

∑𝐾
𝑘=1 𝑝𝑘 [𝒙𝑘

𝑡 − 𝜂𝑡∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 )].
Different choices of ℐ lead to different communication efficiency for Local SGD. If ℐ =

{0, 1, 2, ⋯}, then Local SGD is reduced to P-SGD. A famous example in practice is constant

communication interval[5], i.e., ℐ = {0, 𝐸, 2𝐸, ⋯} for a predefined integer 𝐸(≥ 1), which
reduces communication frequency from 1 to 1/𝐸. Local SGD differs from P-SGD if ℐ has a

general form of {𝑡0, 𝑡1, 𝑡2, ⋯} with some 𝑡𝑚 − 𝑡𝑚−1 > 1 where 𝑡𝑚 is the 𝑚-th communication
iteration. For example, when 𝑡𝑚 < 𝑡 < 𝑡𝑚+1 for some 𝑚, 𝒙𝑘

𝑡 is not likely to equal to 𝒙𝑘′
𝑡 for

𝑘 ≠ 𝑘′ due to data heterogeneity, while we always have 𝒙𝑘
𝑡 = 𝒙𝑘′

𝑡 for all 𝑘, 𝑘′ for P-SGD. This

difference makes theoretical analysis difficult and different from previous analysis. For seek

of simplicity, we assume 𝜂𝑡 is a constant when 𝑡𝑚 < 𝑡 ≤ 𝑡𝑚+1 and denote it by 𝜂𝑚 with a little

abuse of notation, which has been already adopted in Algorithm 1.

2.3 Statistical Estimation via Local SGD

This section provides asymptotic properties for Local SGD. We start by stating the as-

sumptions needed for the main theoretical results. These assumptions are standard and most

of them have been used previously[30, 61, 67-68].

Assumption 2.3.1 (Regularity of the objective). For each 𝑘 ∈ [𝐾], we assume the objective
function 𝑓𝑘(⋅) is differentiable and strongly convex with parameter 𝜇 > 0, i.e., for any 𝒙, 𝒚,

𝑓𝑘(𝒙) ≥ 𝑓𝑘(𝒚) + ⟨∇𝑓𝑘(𝒚),𝒙 − 𝒚⟩ + 𝜇
2 ‖𝒙 − 𝒚‖2.

13
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In addition, each 𝑓𝑘(⋅) is 𝐿-average smooth, i.e.,

√𝔼𝜉𝑘‖∇𝑓𝑘(𝒙; 𝜉𝑘) − ∇𝑓𝑘(𝒚; 𝜉𝑘)‖2 ≤ 𝐿‖𝒙 − 𝒚‖ (2.3)

for some𝐿 > 0. Finally, theHessianmatrix of the global 𝑓(⋅) exists and is Lipschitz continuous
in a neighborhood of the global optimal 𝒙⋆, i.e., there exist some 𝛿1 > 0 and 𝐿′ > 0 such that

‖∇2𝑓(𝒙) − ∇2𝑓(𝒙⋆)‖ ≤ 𝐿′‖𝒙 − 𝒙⋆‖ whenever ‖𝒙 − 𝒙⋆‖ ≤ 𝛿1.

Assumption 2.3.1 imposes regularity conditions on the objective functions. It requires the

global function 𝑓(⋅) to be 𝜇-strongly convex and 𝐿-average smooth. The 𝐿-average smooth-
ness is stronger than 𝐿-smoothness because the Jensen’s inequality implies that

‖∇𝑓𝑘(𝒙) − ∇𝑓𝑘(𝒚)‖ ≤ √𝔼𝜉𝑘‖∇𝑓𝑘(𝒙; 𝜉𝑘) − ∇𝑓𝑘(𝒚; 𝜉𝑘)‖2 ≤ 𝐿‖𝒙 − 𝒚‖.

The 𝐿-average smoothness follows if max𝒙 𝔼𝜉𝑘‖∇2𝑓𝑘(𝒙; 𝜉𝑘)‖2 < ∞ which holds for many

statistical learning models such as linear and logistic regression. 1

Define 𝜀𝑘(𝒙) = ∇𝑓𝑘(𝒙; 𝜉𝑘)−∇𝑓𝑘(𝒙) as the gradient noise at∇𝑓𝑘(𝒙),𝑺𝑘 = 𝔼𝜉𝑘(𝜀𝑘(𝒙⋆)𝜀𝑘(𝒙⋆)⊤),
and 𝜀(𝒙) = ∑𝐾

𝑘=1 𝑝𝑘𝜀𝑘(𝒙). Then 𝜀𝑘(𝒙) (as well as 𝜀(𝒙)) has zero mean and its distribution typ-
ically depends on 𝒙. The following assumption regularizes the behavior of each noise 𝜉𝑘.

Assumption 2.3.2 (Regularized gradient noise). We assume the 𝜉𝑘 on different devices are

independent, though they likely have different distributions. There exists some 𝐶 > 0 such

that for each 𝑘 ∈ [𝐾],

‖𝔼𝜉𝑘(𝜀𝑘(𝒙)𝜀𝑘(𝒙)⊤) − 𝑺𝑘‖ ≤ 𝐶 [‖𝒙 − 𝒙⋆‖ + ‖𝒙 − 𝒙⋆‖2] . (2.4)

Moreover, we assume there exists a constant 𝛿2 > 0 such that sup𝒙 𝔼‖𝜀(𝒙)‖2+𝛿2 < ∞.

Assumption 2.3.2 first requites the 𝜉𝑘 aremutually independent. Note that𝑺 = ∑𝐾
𝑘=1 𝑝2

𝑘𝑺𝑘

is theHessian at the optimum𝒙⋆ because𝑺 = ∑𝐾
𝑘=1 𝑝2

𝑘𝔼𝜉𝑘(𝜀𝑘(𝒙⋆)𝜀𝑘(𝒙⋆)⊤) = 𝔼𝜉(𝜀(𝒙⋆)𝜀(𝒙⋆)⊤)
from the independence assumption. It then forces the difference between covariance matri-

ces 𝔼𝜉𝑘(𝜀𝑘(𝒙)𝜀𝑘(𝒙)⊤) and 𝑺𝑘 controlled by ‖𝒙 − 𝒙⋆‖. It implies ‖𝔼𝜉(𝜀(𝒙)𝜀(𝒙)⊤) − 𝑺‖ ≤
𝐶′[‖𝒙−𝒙⋆‖ + ‖𝒙−𝒙⋆‖2]. Finally, the imposed uniformly finite (2 + 𝛿2) moment of 𝜀(⋅) over-
all 𝒙 establishes the Lindeberg-Feller condition for martingales, which is much weaker than

that used in Lee, Liao, Seo, Shin [62].

Assumption 2.3.3 (Slowly decaying effective step sizes). Define 𝛾𝑚 = 𝐸𝑚𝜂𝑚 as the effective

step size, and assume it is non-increasing in 𝑚 and satisfies (i)
∑∞

𝑚=1 𝛾2
𝑚 < ∞, (ii)

∑∞
𝑚=1 𝛾𝑚 =

1 This condition is also made by[67] to validate (2.4). See Lemma C.1 therein.
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∞, and (iii) 𝛾𝑚−𝛾𝑚+1
𝛾𝑚

= 𝑜(𝛾𝑚).

In our analysis, 𝛾𝑚 = 𝐸𝑚𝜂𝑚 serves as the effective step size. Indeed, the previous analysis

of Li, Huang, Yang, Wang, Zhang [51] shows that the effect of 𝐸𝑚 steps of local updates with

step-size 𝜂𝑡 is similar to one-step update with a larger step-size 𝐸𝑚𝜂𝑚. It implies that it is

the multiplication of 𝐸𝑚 and 𝜂𝑚, rather than either of them alone effecting the convergence.

A typical example satisfying the assumption is 𝛾𝑚 = 𝛾𝑚−𝛼 with 𝛼 ∈ (0.5, 1), which is also

frequently used in previous works[30, 61, 67]. Because we impose restriction to {𝐸𝑚} latter, in

practice, we can first determine the sequence of {𝐸𝑚} and then set 𝜂𝑚 = 𝛾𝑚/𝐸𝑚 to meet the

requirement of {𝛾𝑚}.

Assumption 2.3.4 (Slowly increasing communication intervals). The sequence {𝐸𝑚} satisfies

(i) {𝐸𝑚} is either uniformly bounded or non-decreasing;

(ii) There exists some 𝛿3 > 0 such that lim sup
𝑇 →∞

1
𝑇 2 (∑𝑇 −1

𝑚=0 𝐸1+𝛿3
𝑚 )(∑𝑇 −1

𝑚=0 𝐸−(1+𝛿3)
𝑚 ) < ∞;

(iii) lim
𝑇 →∞

1
𝑇 2 (

∑𝑇 −1
𝑚=0 𝐸𝑚)(

∑𝑇 −1
𝑚=0 𝐸−1

𝑚 ) = 𝜈(𝜈 ≥ 1);

(iv) lim
𝑇 →∞

√𝑡𝑇
𝑇 ⋅

(
𝑇∑

𝑚=0
𝛾𝑚)

= 0 and lim
𝑇 →∞

√𝑡𝑇
𝑇

1
√𝛾𝑇

= 0 where 𝑡𝑇 = ∑𝑇 −1
𝑚=0 𝐸𝑚.

Assumption 2.3.4 restricts the growth of {𝐸𝑚}. Intuitively, if 𝐸𝑚 increases too fast, each

𝒙𝑘
𝑡 might converge to their local minimizer 𝒙⋆

𝑘 rapidly before the next communication. There-

fore, their average 𝒙̄𝑡 is asymptotically biased for 𝒙⋆ with the bias
∑𝐾

𝑘=1 𝑝𝑘𝒙⋆
𝑘 − 𝒙⋆, which is

unlikely zero in FL. Because
𝑇 −1∑
𝑚=0

𝛾𝑚 ≥ 𝛾0, we have √𝑡𝑇 /𝑇 = √
∑𝑇 −1

𝑚=0 𝐸𝑚/𝑇 → 0 from (iv).

This, combined with (iii), implies
∑𝑇

𝑚=0 𝐸−1
𝑚 → ∞. It forbids {𝐸𝑚} from growing too fast.

In practice, we can choose 𝐸𝑚 ∼ ln𝑚, 𝐸𝑚 ∼ ln ln𝑚 or 𝐸𝑚 ∼ 𝑚𝛽 with 𝛽 ∈ (0, 1), all of them
satisfying (ii) and (iii). If 𝛾𝑚 ∼ 𝑚−𝛼 with 𝛼 ∈ (0.5, 1), all the choices of 𝐸𝑚 above satisfy (iv).

The following proposition provides another way to check (ii) and (iii) in Assumption 2.3.4

via investigating the relative difference of 𝐸𝑚 and 𝐸𝑚−1.

Proposition 2.3.1. Assume {𝐸𝑚} is non-decreasing. If lim sup
𝑚→∞

𝑚(1 − 𝐸𝑚−1
𝐸𝑚

) < 1, then (𝑖𝑖) in

Assumption 2.3.4 holds for some 𝛿3 > 0. Furthermore, if lim
𝑚→∞

𝑚(1 − 𝐸𝑚−1
𝐸𝑚

) exists (denoted 𝜌),
once 𝜌 < 1, then (𝑖𝑖𝑖) in Assumption 2.3.4 holds with 𝜈 = 1

1−𝜌2 .

Proofs of Proposition 2.3.1. To prove the proposition, we make two additional lemmas.
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Lemma 2.3.1. For any positive sequences {𝑎𝑛} and {𝑏𝑛} with
𝑇∑

𝑛=1
𝑏𝑛 → ∞, we have

lim sup
𝑇 →∞

∑𝑇
𝑛=1 𝑎𝑛∑𝑇
𝑛=1 𝑏𝑛

≤ lim sup
𝑇 →∞

𝑎𝑇
𝑏𝑇

. (2.5)

Proof of Lemma 2.3.1. Without loss of generality, we assume the right hand side is finite,

otherwise (2.5) follows obviously. We denote that lim sup
𝑇 →∞

𝑎𝑇
𝑏𝑇

= 𝜆 for simplicity. Based on

the definition of limit superior, for any 𝜀 > 0, there exists 𝑁𝜀 subject to 𝑎𝑛 < (𝜆 + 𝜀)𝑏𝑛 for

∀𝑛 ≥ 𝑁𝜀. As a result,

𝑇∑
𝑛=1

𝑎𝑛 =
𝑁𝜀∑
𝑛=1

𝑎𝑛 +
𝑇∑

𝑛=𝑁𝜀+1
𝑎𝑛 ≤

𝑁𝜀∑
𝑛=1

𝑎𝑛 + (𝜆 + 𝜀)
𝑇∑

𝑛=𝑁𝜀+1
𝑏𝑛,

which implies ∑𝑇
𝑛=1 𝑎𝑛∑𝑇
𝑛=1 𝑏𝑛

≤
∑𝑁𝜀

𝑛=1 𝑎𝑛 + (𝜆 + 𝜀)
∑𝑇

𝑛=𝑁𝜀+1 𝑏𝑛∑𝑇
𝑛=1 𝑏𝑛

.

Taking limit superior on both sides and noting that
𝑇∑

𝑛=1
𝑏𝑛 → ∞, we have

∑𝑇
𝑛=1 𝑎𝑛∑𝑇
𝑛=1 𝑏𝑛

≤ 𝜆 + 2𝜀.

By the arbitrariness of 𝜀, (2.5) follows.

Lemma 2.3.2. For any non-decreasing sequence {𝐸𝑚} satisfying lim sup
𝑇 →∞

𝑇 (1 − 𝐸𝑇 −1
𝐸𝑇

) < 1,
we can find 𝛿 > 0 such that

𝑇 (
1

𝐸𝑇 )
1+𝛿

− (𝑇 − 1) (
1

𝐸𝑇 −1 )
1+𝛿

> 0.

Proof Lemma 2.3.2. In fact, we can choose any 𝛿 < 1− lim sup
𝑇 →∞

𝑇 (1−𝐸𝑇 −1
𝐸𝑇

). In this way, for

sufficiently large 𝑇 , we have

𝑇 (
1

𝐸𝑇 )
1+𝛿

− (𝑇 − 1) (
1

𝐸𝑇 −1 )
1+𝛿

= (
1

𝐸𝑇 −1 )
1+𝛿

(
𝑇 (

𝐸𝑇 −1
𝐸𝑇 )

1+𝛿
− 𝑇 + 1

)

≥ 𝑇 (
1

𝐸𝑇 −1 )
1+𝛿

[(1 − 1 − 𝛿
𝑇 )

1+𝛿
− 1 + 1

𝑇 ] .

To lower bound the right hand side, we consider the auxiliary function ℎ(𝑥) = (1 − (1 −
𝛿)𝑥)1+𝛿 + 𝑥 where 𝑥 ∈ (0, 1). We claim that ℎ(𝑥) > 1 for any 𝑥 ∈ (0, 1). We check it by
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investigating the derivative of ℎ(⋅),

ℎ̇(𝑥) = −(1 + 𝛿)(1 − (1 − 𝛿)𝑥)1+𝛿(1 − 𝛿) + 1 > −(1 + 𝛿)(1 − 𝛿) + 1 = 𝛿2 > 0.

Therefore, by mean value theorem, ℎ(𝑥) > ℎ(0) = 1 which proves the claim.

Now we are well prepared to prove the proposition. It follows that

lim sup
𝑇 →∞

𝑇
[

1 − (
𝐸𝑇 −1
𝐸𝑇 )

1+𝛿

]

= lim sup
𝑇 →∞

𝑇 (1 + 𝛿)(𝜃𝑇 𝐸𝑇 + (1 − 𝜃𝑇 )𝐸𝑇 −1)𝛿(𝐸𝑇 − 𝐸𝑇 −1)
𝐸1+𝛿

𝑇

≤ (1 + 𝛿) lim sup
𝑇 →∞ (

𝜃𝑇 𝐸𝑇 + (1 − 𝜃𝑇 )𝐸𝑇 −1
𝐸𝑇 )

𝛿
lim sup

𝑇 →∞
𝑇 𝐸𝑇 − 𝐸𝑇 −1

𝐸𝑇

≤ (1 + 𝛿)(1 − 𝛿) lim sup
𝑇 →∞ (

𝜃𝑇 𝐸𝑇 + (1 − 𝜃𝑇 )𝐸𝑇 −1
𝐸𝑇 )

𝛿

≤ 1 − 𝛿2,

where the first equality uses mean value theorem with some 𝜃𝑇 ∈ [0, 1].
Therefore,

lim sup
𝑇 →∞

(
∑𝑇

𝑚=1 𝐸1+𝛿
𝑚 )(

∑𝑇
𝑚=1(1/𝐸𝑚)1+𝛿)

𝑇 2

(𝑎)
≤ lim sup

𝑇 →∞

𝐸1+𝛿
𝑇

∑𝑇
𝑚=1(1/𝐸𝑚)1+𝛿 + (∑𝑇

𝑚=1 𝐸1+𝛿
𝑚 )/(𝐸𝑇 )1+𝛿

2𝑇 − 1

≤ lim sup
𝑇 →∞

∑𝑇
𝑚=1(1/𝐸𝑚)1+𝛿

(2𝑇 − 1)/𝐸1+𝛿
𝑇

+ 1
2

< lim sup
𝑇 →∞

∑𝑇
𝑚=1(1/𝐸𝑚)1+𝛿

𝑇 (1/𝐸𝑇 )1+𝛿

(𝑏)
≤ lim sup

𝑇 →∞

(1/𝐸𝑇 )1+𝛿

𝑇 (1/𝐸𝑇 )1+𝛿 − (𝑇 − 1)(1/𝐸𝑇 −1)1+𝛿

≤ lim sup
𝑇 →∞

1

1 − 𝑇 [1 − (
𝐸𝑇 −1
𝐸𝑇 )

1+𝛿

]

≤
{

1 − lim sup
𝑇 →∞

𝑇
[

1 − (
𝐸𝑇 −1
𝐸𝑇 )

1+𝛿

]}

−1

≤ 𝛿−2 < ∞,

where (a) uses Lemma 2.3.1 and (b) uses Lemma 2.3.1 and 2.3.2 together.

Furthermore, if the sequence {𝐸𝑚} satisfies lim
𝑇 →∞

𝑇 (1 − 𝐸𝑇 −1
𝐸𝑇 ) = 𝜌 < 1, then by the

17
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Stolz–Cesàro theorem (Lemma A.2.3), we have

lim
𝑇 →∞

(∑𝑇
𝑚=1 𝐸𝑚)(∑𝑇

𝑚=1 1/𝐸𝑚)
𝑇 2

= lim
𝑇 →∞

𝐸𝑇 (∑𝑇
𝑛=1 1/𝐸𝑛) + (∑𝑇 −1

𝑛=1 𝐸𝑛)/𝐸𝑇
2𝑇 − 1

= 1
2 {

lim
𝑇 →∞

∑𝑇
𝑛=1 1/𝐸𝑛
𝑇 /𝐸𝑇

+ lim
𝑇 →∞

∑𝑇
𝑛=1 𝐸𝑛
𝑇 𝐸𝑇 }

= 1
2 { lim

𝑇 →∞
1/𝐸𝑇

𝑇 /𝐸𝑇 − (𝑇 − 1)/𝐸𝑇 −1
+ lim

𝑇 →∞
𝐸𝑇

𝑇 𝐸𝑇 − (𝑇 − 1)𝐸𝑇 −1 }

= 1
2 { lim

𝑇 →∞
𝐸𝑇 −1
𝐸𝑇

× 1
1 − 𝑇 (1 − 𝐸𝑇 −1/𝐸𝑇 ) + lim

𝑇 →∞
1

1 + (𝑇 − 1)(1 − 𝐸𝑇 −1/𝐸𝑇 )}

= 1
2 {

1
1 − 𝜌 + 1

1 + 𝜌} = 1
1 − 𝜌2 ,

which completes the proof.

2.3.1 Asymptotic Results

According to the aforementioned regularity assumptions, the following asymptotic nor-

mality property of the averaged iterates generated by Local SGD is investigated in Theo-

rem 2.3.1.

Theorem 2.3.1 (Asymptotic Normality). Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. Then

𝒙̄𝑡𝑚 converges to 𝒙⋆ not only almost surely but also in 𝐿2 convergence sense with rate 𝔼‖𝒙̄𝑡𝑚 −
𝒙⋆‖2 ≲ 𝛾𝑚. Moreover, if Assumption 2.3.4 holds additionally, the following asymptotic nor-

mality follows

√𝑡𝑇
⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑚=1

𝒙̄𝑡𝑚 − 𝒙⋆
⎞
⎟
⎟
⎠

𝑑⟶ 𝒩 (0, 𝜈𝑮−1𝑺𝑮−⊤) ,

where 𝑡𝑇 = ∑𝑇 −1
𝑚=0 𝐸𝑚, 𝒙̄𝑡𝑚 = ∑𝐾

𝑘=1 𝑝𝑘𝒙𝑘
𝑡𝑚
, 𝑮 = ∑𝐾

𝑘=1 𝑝𝑘∇2𝑓𝑘(𝒙⋆) is the Hessian matrix at

the optima 𝒙⋆, and 𝑺 is the covariance matrix of aggregated gradient noise.

Theorem 2.3.1 shows that the averaged sequence generated by Local SGD has an asymp-

totic normal distribution with the asymptotic variance depending on how communication hap-

pens (i.e., the sequence {𝐸𝑚}) and the problem parameters (i.e., 𝑺 and 𝑮). For one thing,

the effect of data heterogeneity doesn’t show up in the asymptotic normality. The asymptotic

variance as well as 𝐿2 convergence rate is the same with that of P-SGD. Technically speak-

ing, this is because the residual error caused by data heterogeneity typically has relatively low

18
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Case 𝐸𝑚(≥ 1) 𝛾𝑚 𝜂𝑚 𝜈(≥ 1) ACF
Base 1

𝛾𝑚−𝛼

𝛼 ∈
(0.5, 1)

𝛾𝑚−𝛼 1 1
1 𝐸 𝛾𝑚−𝛼/𝐸 1 𝐸−1

2 any 𝐸𝑚 ≤ 𝐸 𝛾𝑚−𝛼/𝐸𝑚 1 [𝐸−1, 1]
3 𝐸 ln𝛽 𝑚 (𝛽 > 0) 𝛾𝑚−𝛼/(𝐸 ln𝛽 𝑚) 1 𝐸−1 ln−𝛽 𝑇
4 𝐸 ln𝛽 ln𝑚 (𝛽 > 0) 𝛾𝑚−𝛼/(𝐸 ln𝛽 ln𝑚) 1 𝐸−1 ln−𝛽 ln 𝑇
5 𝐸𝑚𝛽 (𝛽 ∈ (0, 1)) 𝛾𝑚−(𝛼+𝛽)/𝐸 1

1−𝛽2 (1 + 𝛽)𝐸−1𝑇 −𝛽

Table 2.1 Statistical efficiency and communication efficiency under different choices of 𝐸𝑚, 𝛾𝑚 and 𝜂𝑚.
The statistical efficiency is measured by 𝜈, while the communication efficiency is measured by averaged
communication frequency (ACF), i.e., 𝑇 /∑𝑇 −1

𝑚=0 𝐸𝑚.

order than the statistical error incurred by stochastic gradients[15-16]. With the choice of 𝛾𝑚,

the residual error vanishes much faster and then seems to disappear. More intuitively, since

we set 𝛾𝑚 = 𝐸𝑚𝜂𝑚 sufficiently small, the effect of 𝐸𝑚 steps of local updates using step-size 𝜂𝑚

is similar to one-step update with step-szie 𝛾𝑚. Hence, Local SGD with step-size 𝜂𝑚 actually

approximates P-SGD with step-size 𝛾𝑚. The latter case, as equivalent to single-machine SGD,

is unaffected by the statistical heterogeneity and so is Local SGD.

For another thing, it is quite interesting that the whole optimization process affects the

asymptotic variance. At the worst case, the way how communication frequency is determined

only enlarges the asymptotic variance by a known scale 𝜈(≥ 1). If 𝐸𝑚 ≡ 1 for all 𝑚 (which im-

plies no local update is called), 𝜈 = 1 and the result is identical to the typical single-machine

central limit theorem (CLT) for SGD[30]. When 𝐸𝑚 varies, it is still possible to get com-

munication saved and the asymptotic variance unchanged (i.e., 𝜈 = 1) simultaneously (see

Table 2.1). If 𝐸𝑚 is uniformly bounded or grows in a rate slower than 𝐸 ln𝛽 𝑚(𝛽 > 0), we
maintain 𝜈 = 1 and obtain a smaller average communication frequency (ACF). In the lat-

ter case, the ACF is asymptotic zero, which implies that we trade almost all computation for

nearly zero communication without any sacrifice for statistical efficiency. However, if 𝐸𝑚

grows like 𝐸𝑚𝛽 (𝛽 ∈ (0, 1)), though its ACF decays much more rapidly than that of 𝐸 ln𝛽 𝑚,
the asymptotic variance is increased by a factor of 𝜈 = (1 − 𝛽2)−1. It depicts a trade-off be-

tween communication efficiency and statistical efficiency when 𝐸𝑚 grows too fast. Finally,

𝐸𝑚 could not grows like 𝐸𝑚𝛽 (𝛽 > 1) or even exponentially fast, because this will violate the
requirement

∑𝑇 −1
𝑚=0 𝐸−1

𝑚 → ∞ that is inherent from Assumption 2.3.4.
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2.4 Statistical Inference via Local SGD

We now conduct statistical inference via Local SGD in the FL setting. As argued in the

introduction, the central server only has access to {𝒙𝑘
𝑡 }𝑘∈[𝐾] when 𝑡 ∈ ℐ . In terms of the

established CLT (Theorem 2.3.1), the average of {𝒙̄𝑡𝑚}𝑚∈[𝑇 ] achieves an asymptotic normal-

ity. Thus it is natural to use {𝒙̄𝑡𝑚}𝑚∈[𝑇 ] as the main iterate to construct asymptotically valid

confidence intervals. We will refer to {𝒙̄𝑡𝑚}𝑚∈[𝑇 ] as the path of Local SGD.

In this section, we assume the data are generated locally in a fully online fashion be-

cause it not only can be reduced to the finite-sample setting via bootstrapping, but also covers

many realistic FL settings where data are generated sequentially, typical examples including

the records of web search, online shopping, and bank credits. In particular, we propose two

inference methods depending on whether the second order information of the loss function is

available. One is the plug-in method that uses the Hessian information directly and the other

is the random scaling method that uses only the information among the path of Local SGD.

2.4.1 The plug-in Method

The plug-in method first estimates 𝑮 and 𝑺 by 𝑮̂ and 𝑺̂, respectively, and obtains the

estimator of the covariance matrix with 𝑮̂−1𝑺̂𝑮̂−⊤. The key is to obtain consistent estimators

𝑮̂ and 𝑺̂. An intuitive way to construct 𝑮̂ and 𝑺̂ is to use the sample estimate as follows

𝑮̂𝑇 = 1
𝑇

𝑇∑
𝑚=1

𝐾∑
𝑘=1

𝑝𝑘∇2𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡𝑚

),

𝑺̂𝑇 = 1
𝑇

𝑇∑
𝑚=1

⎛
⎜
⎜
⎝

𝐾∑
𝑘=1

𝑝𝑘∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡𝑚

)
⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝐾∑
𝑘=1

𝑝𝑘∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡𝑚

)
⎞
⎟
⎟
⎠

⊤

,

as long as each ∇2𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡𝑚

) is available. Though 𝑮̂𝑇 and 𝑺̂𝑇 are not unbiased for 𝑮 and 𝑺,
their bias will converge to zero in probability due to 𝒙̄𝑡𝑚 → 𝒙⋆ almost surely. It is worth noting

that with 𝒙̄𝑡𝑚 , as well as each local Hessian and gradient evaluated at it, communicated to the

central server, we can update 𝑮̂𝑚−1 to 𝑮̂𝑚 and 𝑺̂𝑚−1 to 𝑺̂𝑚. Therefore, they can be computed

in an online manner without the need of storing all the data.

Assumption 2.4.1. There are some constants 𝐿″ > 0 such that for any 𝑘 ∈ [𝐾],

𝔼𝜉𝑘‖∇2𝑓𝑘(𝒙; 𝜉𝑘) − ∇2𝑓𝑘(𝒙⋆; 𝜉𝑘)‖ ≤ 𝐿″‖𝒙 − 𝒙⋆‖.

Following[61], wemakeAssumption 2.4.1, which slightly strengthens theHessian smooth-

ness assumption in Assumption 2.3.1. Accordingly, we establish the consistency of the sample
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estimate 𝑮̂𝑇 and 𝑺̂𝑇 in the following theorem.

Theorem 2.4.1. Under Assumptions 2.3.1, 2.3.2, 2.3.3 and 2.4.1, 𝑮̂𝑇 and 𝑺̂𝑇 converge to 𝑮
and 𝑺 in probability as 𝑇 → ∞. As a result of Slutsky’s theorem, 𝑮̂−1

𝑇 𝑺̂𝑇 𝑮̂
−⊤
𝑇 is consistent to

𝑮−1𝑺𝑮−⊤.

Proof of Theorem 2.4.1. For simplicity, we denote

∇𝑓(𝒙; 𝜉𝑡) =
𝐾∑

𝑘=1
𝑝𝑘∇𝑓𝑘(𝒙; 𝜉𝑘

𝑡 ) and ∇2𝑓(𝒙; 𝜉𝑡) =
𝐾∑

𝑘=1
𝑝𝑘∇2𝑓𝑘(𝒙; 𝜉𝑘

𝑡 ),

where 𝜉𝑡 = {𝜉𝑘
𝑡 }𝑘∈[𝐾]. We decompose 𝑮̂𝑇 − 𝑮 into the following terms:

𝑮̂𝑇 − 𝑮 = 1
𝑇

𝑇∑
𝑚=1

∇2𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − 𝑮

=
⎡⎢⎢⎣

1
𝑇

𝑇∑
𝑚=1

∇2𝑓(𝒙⋆; 𝜉𝑡𝑚) − 𝑮
⎤⎥⎥⎦

+ 1
𝑇

𝑇∑
𝑚=1

[∇2𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇2𝑓(𝒙⋆; 𝜉𝑡𝑚)] . (2.6)

The first term in (2.6) is asymptotically zero due to the strong law of large number. With

Theorem 2.3.1, we have known that under the condition, 𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖ ≤ √𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 ≲
√𝛾𝑚. Then the second term in (2.6) can be bounded via Assumption 3.2.3:

𝔼
‖
‖
‖‖

1
𝑇

𝑇∑
𝑚=1

[∇2𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇2𝑓(𝒙⋆; 𝜉𝑡𝑚)]
‖
‖
‖‖

≤ 1
𝑇

𝑇∑
𝑚=1

𝔼 ‖∇2𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇2𝑓(𝒙⋆; 𝜉𝑡𝑚)‖

≤ 𝐿″

𝑇

𝑇∑
𝑚=1

𝔼 ‖𝒙̄𝑡𝑚 − 𝒙⋆
‖

≲ 1
𝑇

𝑇∑
𝑚=1

√𝛾𝑚 → 0,

as 𝑇 → ∞. Hence, 𝑮̂𝑇 converges to 𝑮 in probability.

For 𝑺̂𝑇 , note that

∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) = ∇𝑓(𝒙⋆; 𝜉𝑡𝑚) + [∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙⋆; 𝜉𝑡𝑚)] ∶= 𝑪𝑚 + 𝑫𝑚.

We decompose 𝑺̂𝑇 − 𝑺 into the following terms:

𝑺̂𝑇 − 𝑺 =
⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑚=1

𝑪𝑚𝑪⊤
𝑚 − 𝑺

⎞
⎟
⎟
⎠

+ 1
𝑇

𝑇∑
𝑚=1

𝑪𝑚𝑫⊤
𝑚 + 1

𝑇

𝑇∑
𝑚=1

𝑫𝑚𝑪⊤
𝑚 + 1

𝑇

𝑇∑
𝑚=1

𝑫𝑚𝑫⊤
𝑚.

Because {𝑪𝑚}𝑚 are i.i.d. and 𝔼𝑪𝑚𝑪⊤
𝑚 = 𝑺, the first term is asymptotically zero due to the
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strong law of large number. Note that 𝔼‖𝑪𝑚‖2 = 𝔼‖𝑪𝑚𝑪⊤
𝑚‖ ≤ tr(𝔼𝑪𝑚𝑪⊤

𝑚) = tr(𝑺) and

𝔼‖𝑫𝑚‖2 = 𝔼
‖
‖
‖‖

𝐾∑
𝑘=1

𝑝𝑘 (∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡𝑚

) − ∇𝑓(𝒙⋆; 𝜉𝑘
𝑡𝑚

))
‖
‖
‖‖

2

≤
𝑘∑

𝑘=1
𝑝𝑘𝔼 ‖∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘

𝑡𝑚
) − ∇𝑓(𝒙⋆; 𝜉𝑘

𝑡𝑚
)‖

2

≤ 𝐿2𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 ≲ 𝛾𝑚.

Then, the second and third terms can be bounded via

𝔼
‖
‖
‖‖

1
𝑇

𝑇∑
𝑚=1

𝑪𝑚𝑫⊤
𝑚

‖
‖
‖‖

≤ 1
𝑇

𝑇∑
𝑚=1

𝔼‖𝑪𝑚‖‖𝑫𝑚‖

≤ 1
𝑇

𝑇∑
𝑚=1

√𝔼‖𝑪𝑚‖2𝔼‖𝑫𝑚‖2

≲ 1
𝑇

𝑇∑
𝑚=1

√𝛾𝑚 → 0.

Finally, for the last term, we have that

𝔼
‖
‖
‖‖

1
𝑇

𝑇∑
𝑚=1

𝑫𝑚𝑫⊤
𝑚

‖
‖
‖‖

≤ 1
𝑇

𝑇∑
𝑚=1

𝔼 ‖𝑫𝑚‖
2 ≲ 1

𝑇

𝑇∑
𝑚=1

𝛾𝑚 → 0.

Hence, 𝑺̂𝑇 converges to 𝑺 in probability.

Theorem 2.4.1 implies that (𝑮−1𝑺𝑮−⊤)𝑗𝑗 can be estimated by 𝜎̂2
𝑇 ,𝑗 = (𝑮̂−1

𝑇 𝑺̂𝑇 𝑮̂
−⊤
𝑇 )𝑗𝑗

for the construction of confidence intervals. Denoting 𝒚̄𝑇 = 1
𝑇
∑𝑇

𝑚=1 𝒙̄𝑡𝑚 and 𝒚̄𝑇 ,𝑗 its 𝑗-th
coordinate, we have the following corollary which shows that 𝒚̄𝑇 ,𝑗 ±𝑧 𝛼

2 √
̂𝜈𝑇

𝑡𝑇
𝜎̂𝑇 ,𝑗 constructs an

asymptotic exact confidence interval for the 𝑗-th coordinate of 𝒙⋆. Here ̂𝜈𝑇 is any sequence

converging to 𝜈.

Corollary 2.4.1. Under the assumption of Theorem 2.4.1,

ℙ
(
𝒚̄𝑇 ,𝑗 − 𝑧 𝛼

2 √
̂𝜈𝑇

𝑡𝑇
𝜎̂𝑇 ,𝑗 ≤ 𝒙⋆

𝑗 ≤ 𝒚̄𝑇 ,𝑗 + 𝑧 𝛼
2 √

̂𝜈𝑇
𝑡𝑇

𝜎̂𝑇 ,𝑗)
→ 1 − 𝛼,

where ̂𝜈𝑇 → 𝜈 and 𝑧 𝛼
2
is (1 − 𝛼/2)-quantile of the standard normal distribution.

We remark that using an estimate ̂𝜈𝑇 instead of the true value 𝜈 for inference is for the

purpose of practice. We find in experiments that directly using the true value 𝜈 often results
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in an unstable confidence interval due to slow convergence of (iii) in Assumption 2.3.4. As a

remedy, we use an estimate ̂𝜈𝑇 = 1
𝑇 2 (

∑𝑇
𝑚=1 𝐸𝑚)(

∑𝑇
𝑚=1 𝐸−1

𝑚 ) which performs better and more
stable.

The plug-inmethod typicallyworkswell in practice due to its simplicity andwell-established

theoretical guarantees. However, it has some drawbacks. The most obvious one is the require-

ment of the Hessian information, which is not always accessible. Besides, the formulation

and sharing of each ∇2𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡𝑚

) requires at least 𝑂(𝑑2) memory and communication cost.
Furthermore, it may be computationally expensive when 𝑑 is large because it involves ma-

trix inversion with computation complexity 𝑂(𝑑3). Finally, the inverse operation is unstable
empirically. In practice, we need to set the round 𝑇 sufficiently large to avoid singularity

and ensure stable estimation. The estimator introduced in the next subsection provides a fully

online approach, which is cheap in memory, computation, and communication.

2.4.2 Random Scaling

Random scaling does not attempt to estimate the asymptotic variance, but studentize 𝒚̄𝑇 =
1
𝑇
∑𝑇

𝑚=1 𝒙̄𝑡𝑚 with a matrix constructed using iterates along the Local SGD path. In this way, an

asymptotically pivotal statistic, though not asymptotically normal, can be obtained. To clarify

the method, we should first figure out the asymptotic behavior of the whole Local SGD path

rather than its simple average 𝒚̄𝑇 . In particular, we have the following functional central limit

theorem that shows the standardized partial-sum process converges in distribution to a rescaled

Brownian motion.

Theorem 2.4.2 (Functional CLT). Let Assumptions 2.3.1, 2.3.2, 2.3.3 and 2.3.4 hold, and

define

ℎ(𝑟, 𝑇 ) = max
⎧⎪
⎨
⎪⎩

𝑛 ∈ ℤ, 𝑛 > 0|𝑟
𝑇∑

𝑚=1

1
𝐸𝑚

≥
𝑛∑

𝑚=1

1
𝐸𝑚

⎫⎪
⎬
⎪⎭

for any fraction 𝑟 ∈ (0, 1]. (2.7)

As 𝑇 → ∞, the following random function weakly converges to a scaled Brownian motion,

i.e.,

𝜙𝑇 (𝑟) ∶= √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=1

(𝒙̄𝑡𝑚 − 𝒙⋆
) ⇒ √𝜈𝑮−1𝑺1/2𝑾 (𝑟),

where 𝑡𝑇 = ∑𝑇 −1
𝑚=0 𝐸𝑚, 𝒙̄𝑡𝑚 = ∑𝐾

𝑘=1 𝑝𝑘𝒙𝑘
𝑡𝑚
, and 𝑾 (⋅) is the 𝑑-dim standard Brownian motion.

Theorem 2.4.2 has many implications. First, the result is stronger than Theorem 2.3.1

though under the same assumptions. By applying the continuous mapping theorem to Theo-
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rem 2.4.2 with 𝜓 ∶ D[0,1],ℝ𝑑 ↦ 𝜓(1), we directly prove Theorem 2.3.1. Second, the sequence

{𝐸𝑚} makes a difference via the time scale ℎ(𝑟, 𝑇 ), which extends previous FCLT results on

SGD. For example, if 𝐸𝑚 ≡ 𝐸, then 𝜈 = 1, 𝑡𝑇 = 𝐸𝑇 and ℎ(𝑟, 𝑇 ) = ⌊𝑟𝑇 ⌋, the result turning to
be

1
√𝑇

⌊𝑟𝑇 ⌋∑
𝑚=1

(𝒙̄𝑡𝑚 − 𝒙⋆
) ⇒ √

1
𝐸𝑮−1𝑺1/2𝑾 (𝑟).

When𝐸 = 1, it reduces to the single-machine result that is recently obtained by Lee, Liao, Seo,
Shin [62]. It is worth mentioning that our result requires a much weaker moment condition on

gradient noises (i.e., bounded 2 + 𝛿(𝛿 > 0) moments in Assumption 2.3.2) than previous Lee,
Liao, Seo, Shin [62]. The latter requires that the gradient noises should not only be 𝛼-mixing
but also have at least forth-order moment (see their Assumption 2). The improvement comes

from a specific error decomposition and a careful analysis on a non-asymptotic term with

time-varying coefficients (see Lemma 2.5.7). See Section 2.5 for a sketch of proof ideas.

Once 𝐸 > 1, an interesting observation is that local updates reduce the scale of the Brown

motion. As an extreme case, the scale vanishes and the Brown motion degenerates when

𝐸 = ∞. It makes sense because when 𝐸 = ∞, 𝒙𝑘
𝑡𝑚

≡ 𝒙⋆
𝑘 and 𝒙̄𝑡𝑚 ≡ ∑𝐾

𝑘=1 𝑝𝑘𝒙𝑘
𝑡𝑚
, the process

degenerates. Beyond constant 𝐸𝑚 ≡ 𝐸, Theorem 2.4.2 also embraces mildly increasing {𝐸𝑚}
(see Table 2.1). Finally, there are some other FCLTs proved via a SDE argument on general

stochastic process[69] or SGD with constant learning rates[70]. By contrast, we consider the

particular Local SGD with decaying learning rates in the distributed context and the proof

technique in Section 2.5 is from a discrete perspective.

With Theorem 2.4.2, we are ready to describe the inference method. Define 𝑟0 = 0 and

𝑟𝑚 =
∑𝑚

𝑛=1
1

𝐸𝑛∑𝑇
𝑛=1

1
𝐸𝑛

for 𝑚 ≥ 1. The choice of 𝑟𝑚 satisfies that 𝜙𝑇 (𝑟𝑚) = √𝑡𝑇
𝑇

∑𝑚
𝑛=1(𝒙̄𝑡𝑛 − 𝒙⋆).

Note that 𝜙𝑇 (1) = √𝑡𝑇
𝑇

∑𝑇
𝑛=1(𝒙̄𝑡𝑛 − 𝒙⋆) = √𝑡𝑇 (𝒚̄𝑇 − 𝒙⋆). Hence, 𝜙𝑇 (𝑟𝑚) − 𝑚

𝑇 𝜙𝑇 (1) =
√𝑡𝑇

𝑇
∑𝑚

𝑛=1(𝒙̄𝑡𝑛 − 𝑚𝒚̄𝑇 ) cancels the dependence on 𝒙⋆. To remove the dependence on the un-

known scale 𝑮−1𝑺1/2, we studentize 𝜙𝑇 (1) via

Π𝑇 =
𝑇∑

𝑚=1
(𝜙𝑇 (𝑟𝑚) − 𝑚

𝑇 𝜙𝑇 (1)) (𝜙𝑇 (𝑟𝑚) − 𝑚
𝑇 𝜙𝑇 (1))

⊤
(𝑟𝑚 − 𝑟𝑚−1).

Corollary 2.4.2. Under the same assumptions of Theorem 2.4.2 and assuming 𝑔(𝑟𝑚) ≍ 𝑚
𝑇 for

some continuous function 𝑔 on [0, 1] , we have that

𝜙𝑇 (1)⊤ Π−1
𝑇 𝜙𝑇 (1) 𝑑→ 𝑾 (1)⊤

[∫
1

0
(𝑾 (𝑟)−𝑔(𝑟)𝑾 (1)) (𝑾 (𝑟)−𝑔(𝑟)𝑾 (1))⊤ 𝑑𝑟]

−1
𝑾 (1).
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This corollary follows immediately from Theorem 2.4.2 and the continuous mapping the-

orem. It implies 𝜙𝑇 (1)⊤ Π−1
𝑇 𝜙𝑇 (1) is asymptotically pivotal and thus can be used to construct

valid asymptotic confidence intervals. Up to a constant factor, studentizing 𝜙𝑇 (1) via Π𝑇 is

equivalent to studentizing 𝒚̄𝑇 = 1
𝑇
∑𝑇

𝑚=1 𝒙̄𝑡𝑚 via ̂𝑽 𝑇 where

̂𝑽 𝑇 = 1
𝑇 2 ∑𝑇

𝑚=1
1

𝐸𝑚

𝑇∑
𝑚=1

1
𝐸𝑚 (

𝑚∑
𝑛=1

𝒙̄𝑡𝑛 − 𝑚𝒚̄𝑇 ) (

𝑚∑
𝑛=1

𝒙̄𝑡𝑛 − 𝑚𝒚̄𝑇 )

⊤

.

̂𝑽 𝑇 can be updated in an online manner. To state its online updating rule, recall that 𝒚̄𝑚 =
1
𝑚
∑𝑚

𝑛=1 𝒙̄𝑡𝑛 and note that

̂𝑽 𝑇 = 1
𝑇 2 ∑𝑇

𝑚=1
1

𝐸𝑚

𝑇∑
𝑚=1

𝑚2

𝐸𝑚
(𝒚̄𝑚 − 𝒚̄𝑇 ) (𝒚̄𝑚 − 𝒚̄𝑇 )

⊤

= 1
𝑇 2 ∑𝑇

𝑚=1
1

𝐸𝑚

⎡⎢⎢⎣

𝑇∑
𝑚=1

𝑚2

𝐸𝑚
𝒚̄𝑚𝒚̄⊤

𝑚 −
𝑇∑

𝑚=1

𝑚2

𝐸𝑚
𝒚̄𝑇 𝒚̄⊤

𝑚 −
𝑇∑

𝑚=1

𝑚2

𝐸𝑚
𝒚̄𝑚𝒚̄⊤

𝑇 +
𝑇∑

𝑚=1

𝑚2

𝐸𝑚
𝒚̄𝑇 𝒚̄⊤

𝑇
⎤⎥⎥⎦

.

Hence, to update ̂𝑽 𝑚−1 to ̂𝑽 𝑚 when a new observation 𝒙̄𝑡𝑚 is available, we only need to keep

the following quantities, namely 𝑠𝑚−1 =
∑𝑚−1

𝑛=1
1

𝐸𝑛
, 𝑞𝑚−1 =

∑𝑚−1
𝑛=1

𝑛2

𝐸𝑛
, 𝒚̄𝑚−1 = 1

𝑚−1
∑𝑚−1

𝑛=1 𝒙̄𝑡𝑛 ,

𝑨𝑚−1 =
𝑚−1∑
𝑛=1

𝑛2

𝐸𝑛
𝒚̄𝑛𝒚̄⊤

𝑛 and 𝒃𝑚−1 =
𝑚−1∑
𝑛=1

𝑛2

𝐸𝑛
𝒚̄𝑛,

all of which can be updated in online. In this way, ̂𝑽 𝑚 = 1
𝑚2𝑠𝑚

(𝑨𝑚 − 𝒚̄𝑚𝒃⊤
𝑚 − 𝒃𝑚𝒚̄⊤

𝑚 + 𝑞𝑚𝒚̄𝑚𝒚̄⊤
𝑚).

The formal formulation is presented in Algorithm 2.

Once 𝒚̄𝑇 and ̂𝑽 𝑇 are obtained, it is straightforward to carry out inference. For example,

we construct the (1−𝛼) asymptotic confidence interval for the 𝑗-th element 𝒙⋆
𝑗 of 𝒙⋆ as follows

Corollary 2.4.3. Under the same conditions of Corollary 2.4.2, we have that

ℙ ([𝒚̄𝑇 ,𝑗 − 𝑞 𝛼
2 ,𝑔√ ̂𝑽 𝑇 ,𝑗𝑗 ≤ 𝒙⋆

𝑗 ≤ 𝒚̄𝑇 ,𝑗 + 𝑞 𝛼
2 ,𝑔√ ̂𝑽 𝑇 ,𝑗𝑗]) → 1 − 𝛼,

where 𝑞 𝛼
2 ,𝑔 is (1 − 𝛼/2)-quantile of the following random variable

𝑊 (1)/(∫
1

0
(𝑊 (𝑟) − 𝑔(𝑟)𝑊 (1))2𝑑𝑟)

1/2
(2.8)

with 𝑊 (⋅) a one-dimensional standard Brownian motion.

If we only care about uncertainty of each coordinate 𝒙⋆
𝑗 , for random scaling, we only need

to store the diagonal entries of ̂𝑽 𝑇 from Corollary 2.4.3. Both the storage and computation
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Algorithm 2 Online Inference with Local SGD via Random Scaling
Input: functions {𝑓𝑘}𝑛

𝑘=1, initial point 𝒙0, step size 𝜂𝑡, communication set ℐ = {𝑡0, 𝑡1, ⋯}.

Initialization: set 𝒙(𝑘)
0 = 𝒙0 for all 𝑘, let 𝑨0 = 0 and 𝒃0 = 0 and 𝑠0 = 𝑞0 = 0.

for 𝑚 = 1 to 𝑇 do
Obtain the synchronized variable from Local SGD: 𝒙̄𝑡𝑚 = ∑𝐾

𝑘=1 𝑝𝑘𝒙𝑘
𝑡𝑚
.

𝒚̄𝑚 = 𝑚−1
𝑚 𝒚̄𝑚−1 + 1

𝑚 𝒙̄𝑡𝑚 .

𝑨𝑚 = 𝑨𝑚−1 + 𝑚2

𝐸𝑚
𝒚̄𝑚𝒚̄⊤

𝑚.

𝒃𝑚 = 𝒃𝑚−1 + 𝑚2

𝐸𝑚
𝒚̄𝑚.

𝑠𝑚 = 𝑠𝑚−1 + 1
𝐸𝑚

.

𝑞𝑚 = 𝑞𝑚−1 + 𝑚2

𝐸𝑚
.

Obtain ̂𝑽 𝑚 by
̂𝑽 𝑚 = 1

𝑚2𝑠𝑚
(𝑨𝑚 − 𝒚̄𝑚𝒃⊤

𝑚 − 𝒃𝑚𝒚̄⊤
𝑚 + 𝑞𝑚𝒚̄𝑚𝒚̄⊤

𝑚) .

Return: 𝒚̄𝑚 and ̂𝑽 𝑚.
end for

cost are merely 𝒪(𝑑). However, for the plug-in method, the storage cost is 𝒪(𝑑2) and the

computation cost is 𝒪(𝑑3), since we need to compute and store 𝑮̂𝑇 and 𝑺̂𝑇 and calculate the

diagonal entries of 𝑮̂−1
𝑇 𝑺̂𝑇 𝑮̂

−⊤
𝑇 .

The remaining issue is about the specific form of 𝑔 and the computation of 𝑞𝛼,𝑔. 𝑔 actually

depends on the growth of {𝐸𝑚}. Direct computation reveals that 𝑟𝑚 ≍ (
𝑚
𝑇 )

1−𝛽
if 𝐸𝑚 ≍ 𝑚𝛽

and 𝑟𝑚 ≍ 𝑚
𝑇 if 𝐸𝑚 ≍ ln𝛽(𝑚). Hence, we are motivated to consider the following family of

𝑔: 𝑔𝛽(𝑟) = 𝑟
1

1−𝛽 indexed by 𝛽 ∈ [0, 1). With this 𝑔𝛽(⋅), we denote the random variable given

in (2.8) by 𝑡⋆(𝛽) and the corresponding critical value by 𝑞𝛼,𝛽 ∶= min{𝑡 ∶ ℙ(𝑡⋆(𝛽) ≤ 𝑡) ≥ 1−𝛼}.
The limiting distribution 𝑡⋆(𝛽) is mixed normal and symmetric around zero. For easy reference,
critical values of 𝑡⋆(𝛽) are computed via simulations and listed in Table 2.2. In particular, the
Brownian motion 𝑊 (⋅) is approximated by normalized sums of i.i.d. 𝒩 (0, 1) pseudo random
deviates using 1,000 steps and 50,000 replications. We then smooth the 50,000 realizations by

standardGaussian-kernels techniques with the bandwidth selected according to Scott’s rule[71].

Kernel density estimation is a way to estimate the probability density function of a random

variable in a non-parametric way. Because we smooth the data, our critical values of the case

𝛽 = 0 are slightly different from previous computations by Kiefer, Vogelsang, Bunzel [63]. In

particular, when 1 − 𝛼 = 97.5% and 𝛽 = 0, our critical value 6.753 is smaller than previous

6.811, which shrinks the length of our confidence intervals. Our critical value 6.753 is also
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𝛽
1 − 𝛼 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

0 -8.634 -6.753 -5.324 -3.877 0.000 3.877 5.324 6.753 8.634
1/3 -8.0945 -6.339 -5.048 -3.712 0.000 3.712 5.048 6.339 8.0945
1/2 -7.386 -5.851 -4.621 -3.446 0.000 3.446 4.621 5.851 7.386
2/3 -6.292 -4.993 -4.012 -3.027 0.000 3.027 4.012 4.993 6.292

Table 2.2 Asymptotic critic values 𝑞𝛼,𝛽 of 𝑡⋆(𝛽) defined by 𝑞𝛼,𝛽 = min{𝑡 ∶ ℙ(𝑡⋆(𝛽) ≤ 𝑡) ≥ 1 − 𝛼}.

close to 6.747 computed in Abadir, Paruolo [72].

2.5 Proof Sketch of Theorem 2.4.2

We provide a short proof sketch for Theorem 2.4.2 to illustrate our proof technique in

this section. As argued, Theorem 2.3.1 can be easily derived from Theorem 2.4.2 by the

continuous mapping theorem. We follows the perturbed iterate framework that is derived

by Mania, Pan, Papailiopoulos, Recht, Ramchandran, Jordan [73] and is widely used in recent

works[10, 13-16, 51, 74]. Then we define a virtual sequence 𝒙̄𝑡 in the following way:

𝒙̄𝑡 =
𝐾∑

𝑘=1
𝑝𝑘𝒙𝑘

𝑡 .

Fix a 𝑚 ≥ 0 and consider 𝑡𝑚 ≤ 𝑡 < 𝑡𝑚+1. Local SGD yields that for any device 𝑘 ∈ [𝐾],

𝒙𝑘
𝑡+1 = 𝒙𝑘

𝑡 − 𝜂𝑚∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 ),

𝒙𝑘
𝑡𝑚+1

=
𝐾∑

𝑘=1
𝑝𝑘 (𝒙

𝑘
𝑡𝑚+1−1 − 𝜂𝑚∇𝑓𝑘(𝒙𝑘

𝑡𝑚+1−1; 𝜉𝑘
𝑡𝑚+1−1)) ,

which implies that we always have

𝒙̄𝑡+1 = 𝒙̄𝑡 − 𝜂𝑚𝒈̄𝑡, where 𝒈̄𝑡 =
𝐾∑

𝑘=1
𝑝𝑘∇𝑓𝑘(𝒙𝑘

𝑡 ; 𝜉𝑘
𝑡 ). (2.9)

Define 𝒔𝑚 = 𝒙̄𝑡𝑚 − 𝒙⋆ and recall that 𝐸𝑚 = 𝑡𝑚+1 − 𝑡𝑚 and 𝛾𝑚 = 𝜂𝑚𝐸𝑚. Iterating (2.9) from

𝑡 = 𝑡𝑚 to 𝑡𝑚+1 − 1 gives

𝒔𝑚+1 = 𝒔𝑚 − 𝜂𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝒈̄𝑡 = 𝒔𝑚 − 𝛾𝑚𝒗𝑚 where 𝒗𝑚 = 1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝒈̄𝑡. (2.10)
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We further decompose 𝒗𝑚 into four terms.

𝒗𝑚 = 𝑮𝒔𝑚 + (∇𝑓(𝒙̄𝑡𝑚) − 𝑮𝒔𝑚) + (𝒉𝑚 − ∇𝑓(𝒙̄𝑡𝑚)) + (𝒗𝑚 − 𝒉𝑚)

∶= 𝑮𝒔𝑚 + 𝒓𝑚 + 𝜺𝑚 + 𝜹𝑚 (2.11)

where 𝑮 = ∇2𝑓(𝒙⋆) is the Hessian at the optimum 𝒙⋆ which is non-singular from our as-

sumption, and

𝒉𝑚 = 1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝐾∑
𝑘=1

𝑝𝑘∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡 ). (2.12)

Note that 𝒉𝑚 is almost identical to 𝒗𝑚 except that all the stochastic gradients in 𝒉𝑚 are evaluated

at 𝒙̄𝑡𝑚 while those in 𝒗𝑚 are evaluated at local variables 𝒙𝑘
𝑡 ’s.

Making use of (2.10) and (2.11), we have

𝒔𝑚+1 = (𝑰 − 𝛾𝑚𝑮)𝒔𝑚 − 𝛾𝑚(𝒓𝑚 + 𝜺𝑚 + 𝜹𝑚) ∶= 𝑩𝑚𝒔𝑚 − 𝛾𝑚𝑼𝑚, (2.13)

where 𝑩𝑚 ∶= 𝑰 − 𝛾𝑚𝑮 and 𝑼𝑚 ∶= 𝒓𝑚 + 𝜺𝑚 + 𝜹𝑚 for short. Recurring (2.13) gives

𝒔𝑚+1 =
⎛
⎜
⎜
⎝

𝑚∏
𝑗=0

𝑩𝑗
⎞
⎟
⎟
⎠
𝒔0 −

𝑚∑
𝑗=0

⎛
⎜
⎜
⎝

𝑚∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑗U𝑗 . (2.14)

Here we use the convention that
𝑚∏

𝑖=𝑚+1
𝑩𝑖 = 𝑰 for any 𝑚 ≥ 0.

For any 𝑟 ∈ [0, 1] and 𝑇 ≥ 1, define

ℎ(𝑟, 𝑇 ) = max
⎧⎪
⎨
⎪⎩

𝑛 ∈ ℤ+|𝑟
𝑇∑

𝑚=1

1
𝐸𝑚

≥
𝑛∑

𝑚=1

1
𝐸𝑚

⎫⎪
⎬
⎪⎭

. (2.15)

FromAssumption 2.3.4, we know that
∑𝑇

𝑚=1
1

𝐸𝑚
→ ∞ as 𝑇 → ∞, which implies ℎ(𝑟, 𝑇 ) → ∞

meanwhile. Summing (2.14) from 𝑚 = 0 to ℎ(𝑟, 𝑇 ) gives

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝒔𝑚+1 = √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

⎡⎢⎢⎣

⎛
⎜
⎜
⎝

𝑚∏
𝑗=0

𝑩𝑗
⎞
⎟
⎟
⎠
𝒔0 −

𝑚∑
𝑗=0

⎛
⎜
⎜
⎝

𝑚∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑗U𝑗
⎤⎥⎥⎦

= √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

⎛
⎜
⎜
⎝

𝑚∏
𝑗=0

𝑩𝑗
⎞
⎟
⎟
⎠
𝒔0 − √𝑡𝑇

𝑇

ℎ(𝑟,𝑇 )∑
𝑗=0

ℎ(𝑟,𝑇 )∑
𝑚=𝑗

⎛
⎜
⎜
⎝

𝑚∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑗U𝑗 . (2.16)

Lemma 2.5.1 (Lemma 1 in[30]). Recall that 𝑩𝑖 ∶= 𝑰 − 𝛾𝑖𝑮 and 𝑮 is non-singular. For any

𝑛 ≥ 𝑗, define 𝑨𝑛
𝑗 as

𝑨𝑛
𝑗 =

𝑛∑
𝑙=𝑗

⎛
⎜
⎜
⎝

𝑙∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑗 . (2.17)
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Under Assumption 2.3.3, there exists some universal constant 𝐶0 > 0 such that for any 𝑛 ≥
𝑗 ≥ 0, ‖𝑨𝑛

𝑗 ‖ ≤ 𝐶0. Furthermore, it follows that lim𝑛→∞
1
𝑛
∑𝑛

𝑗=0 ‖𝑨𝑛
𝑗 − 𝑮−1‖ = 0.

Using the notation of 𝑨𝑛
𝑗 , we can further simplify (2.16) as

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝒔𝑚+1 = √𝑡𝑇
𝑇 𝛾0

𝑨ℎ(𝑟,𝑇 )
0 𝑩0𝒔0 − √𝑡𝑇

𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑨ℎ(𝑟,𝑇 )
𝑚 𝑼𝑚.

Since 𝑼𝑚 = 𝒓𝑚 + 𝜺𝑚 + 𝜹𝑚, then

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝒔𝑚+1 + √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑮−1𝜺𝑚 = √𝑡𝑇
𝑇 𝛾0

𝑨ℎ(𝑟,𝑇 )
0 𝑩0𝒔0 − √𝑡𝑇

𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑨ℎ(𝑟,𝑇 )
𝑚 (𝒓𝑚 + 𝜹𝑚)

− √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

(𝑨𝑇
𝑚 − 𝑮−1)𝜺𝑚

− √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

(𝑨ℎ(𝑟,𝑇 )
𝑚 − 𝑨𝑇

𝑚)𝜺𝑚

∶= 𝒯0 − 𝒯1 − 𝒯2 − 𝒯3,

where for simplicity we denote

𝒯0 = √𝑡𝑇
𝑇 𝛾0

𝑨ℎ(𝑟,𝑇 )
0 𝑩0𝒔0, 𝒯1 = √𝑡𝑇

𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑨ℎ(𝑟,𝑇 )
𝑚 (𝒓𝑚 + 𝜹𝑚),

𝒯2 = √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

(𝑨𝑇
𝑚 − 𝑮−1)𝜺𝑚, 𝒯3 = √𝑡𝑇

𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

(𝑨ℎ(𝑟,𝑇 )
𝑚 − 𝑨𝑇

𝑚)𝜺𝑚.

With the last equation, we are ready to prove the main theorem which illustrates the partial-

sum asymptotic behavior of √𝑡𝑇
𝑇

∑ℎ(𝑟,𝑇 )
𝑚=0 𝒔𝑚+1. The main idea is that we first figure out the

partial-sum asymptotic behavior of √𝑡𝑇
𝑇

∑ℎ(𝑟,𝑇 )
𝑚=0 𝑮−1𝜺𝑚 and then show that their difference is

uniformly small, i.e.,

sup
𝑟∈[0,1]

‖
‖
‖‖

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝒔𝑚+1 + √𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑮−1𝜺𝑚

‖
‖
‖‖

= 𝑜ℙ(1).

For the second step, it suffices to show that the four separate terms: sup𝑟∈[0,1] ‖𝒯0‖, sup𝑟∈[0,1] ‖𝒯1‖,
sup𝑟∈[0,1] ‖𝒯2‖, and sup𝑟∈[0,1] ‖𝒯4‖ are 𝑜ℙ(1), respectively. With this idea, our following proof

is naturally divided into fives parts.

The establishment of almost sure and𝐿2 convergence in Lemma 2.5.2 will ease our proof.

The following lemma proves the first statement of Theorem 2.3.1. The second statement of
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Theorem 2.3.1 follows directly from Theorem 3.3.1 which we are going to prove via an argu-

ment of the continuous mapping theorem.

Lemma 2.5.2 (Almost surely and𝐿2 convergence). Under Assumptions 2.3.1, 3.2.2, and 2.3.3,

𝒙̄𝑡𝑚 → 𝒙⋆ almost surely when 𝑚 goes to infinity. In addition, there exists some ̃𝐶0 > 0 such

that

𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 ≤ ̃𝐶0𝛾𝑚.

Proof of Lemma 2.5.2. The proof can be found in Appendix A.1.

Step one: Partial-sum asymptotic behavior of √𝑡𝑇
𝑇

∑ℎ(𝑟,𝑇 )
𝑚=0 𝑮−1𝜺𝑚

Lemma 2.5.3. Under Assumptions 2.3.1, 3.2.2, 2.3.3 and 2.3.4, the functional martingale CLT

holds, namely, for any 𝑟 ∈ [0, 1],

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑮−1𝜺𝑚 ⇒ √𝜈𝑮−1𝑺1/2𝑾 (𝑟),

where ℎ(𝑟, 𝑇 ) is defined in (2.15) and 𝑾 (𝑟) is the 𝑑-dimensional standard Brownian motion.

Proof of Lemma 2.5.3. The proof can be found in Appendix A.2.

Step two: Uniform negligibility of 𝒯0 Lemma 2.5.1 characterizes the asymptotic behavior

of 𝑨𝑛
𝑗 . It is uniformly bounded. It implies

sup
𝑟∈[0,1]

‖𝒯0‖ = √𝑡𝑇
𝑇 𝛾0

sup
𝑟∈[0,1]

‖𝑨ℎ(𝑟,𝑇 )
0 𝑩0𝒔0‖ ≤ √𝑡𝑇

𝑇 𝛾0
𝐶0‖𝑩0𝒔0‖ → 0,

as a result of √𝑡𝑇
𝑇 → 0 when 𝑇 → ∞.

Step three: Uniform negligibility of 𝒯1 The uniform boundedness of 𝑨𝑛
𝑗 implies

sup
𝑟∈[0,1]

‖𝒯1‖ = sup
𝑟∈[0,1]

√𝑡𝑇
𝑇

‖
‖
‖‖

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑨ℎ(𝑟,𝑇 )
𝑚 (𝒓𝑚 + 𝜹𝑚)

‖
‖
‖‖

≤ sup
𝑟∈[0,1]

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=0

𝐶0(‖𝒓𝑚‖ + ‖𝜹𝑚‖)

= √𝑡𝑇
𝑇

𝑇∑
𝑚=0

𝐶0(‖𝒓𝑚‖ + ‖𝜹𝑚‖),
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where the last inequality uses the fact thatℎ(𝑟, 𝑇 ) increases in 𝑟 and ℎ(1, 𝑇 ) = 𝑇 . The following
two lemmas together imply that sup𝑟∈[0,1] ‖𝒯1‖ = 𝑜ℙ(1).

Lemma 2.5.4. Under Assumptions 2.3.1, 3.2.2 and 2.3.3, we have that

√𝑡𝑇
𝑇

𝑇∑
𝑚=0

‖𝒓𝑚‖ = 𝑜ℙ(1).

Proof of Lemma 2.5.4. The proof can be found in Appendix A.4.

Lemma 2.5.5. Under Assumptions 2.3.1, 3.2.2 and 2.3.3, we have that

√𝑡𝑇
𝑇

𝑇∑
𝑚=0

‖𝜹𝑚‖ = 𝑜ℙ(1).

Proof of Lemma 2.5.5. The proof can be found in Appendix A.5.

Step four: Uniform negligibility of 𝒯2 By Doob’s maximum inequality, it follows that

𝔼 sup
𝑟∈[0,1]

‖𝒯2‖2 = 𝔼 sup
𝑟∈[0,1]

𝑡𝑇
𝑇 2

‖
‖
‖‖

ℎ(𝑟,𝑇 )∑
𝑚=0

(𝑨𝑇
𝑚 − 𝑮−1)𝜺𝑚

‖
‖
‖‖

2

≤ 𝑡𝑇
𝑇 2 𝔼

‖
‖
‖‖

𝑇∑
𝑚=0

(𝑨𝑇
𝑚 − 𝑮−1)𝜺𝑚

‖
‖
‖‖

2

= 𝑡𝑇
𝑇 2

𝑇∑
𝑚=0

𝔼 ‖(𝑨𝑇
𝑚 − 𝑮−1)𝜺𝑚‖

2

≤ 𝑡𝑇
𝑇 2

𝑇∑
𝑚=0

‖𝑨𝑇
𝑚 − 𝑮−1‖

2 𝔼 ‖𝜺𝑚‖
2 .

Because 𝜺𝑚 = 𝒉𝑚 − ∇𝑓(𝒙̄𝑡𝑚) = 1
𝐸𝑚

∑𝑡𝑚+1−1
𝑡=𝑡𝑚 (∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡) − ∇𝑓(𝒙̄𝑡𝑚)) is the mean of 𝐸𝑚 i.i.d.

copies of 𝜀(𝒙̄𝑡𝑚) ∶= ∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙̄𝑡𝑚) at a fixed 𝒙̄𝑡𝑚 , it implies that

𝔼 ‖𝜺𝑚‖
2 = 1

𝐸𝑚
𝔼‖𝜀(𝒙̄𝑡𝑚)‖2 ≤ 1

𝐸𝑚 (𝐶1 + 𝐶2𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖2
) ≾ 1

𝐸𝑚
, (2.18)

where the first inequality is from Lemma A.1.1 with 𝐶1, 𝐶2 two universal constants defined

therein and the second inequality uses Lemma 2.5.2. Using the last result, we have that

𝔼𝒯2 ≾ 𝑡𝑇
𝑇 2

𝑇∑
𝑚=0

1
𝐸𝑚

‖𝑨𝑇
𝑚 − 𝑮−1‖

2 .
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By Lemma 2.5.1, it follows that as 𝑇 → ∞,

1
𝑇

𝑇∑
𝑚=0

‖𝑨𝑇
𝑚 − 𝑮−1‖

2 ≤ (𝐶0 + ‖𝑮−1‖) ⋅ 1
𝑇

𝑇∑
𝑚=0

‖𝑨𝑇
𝑚 − 𝑮−1‖ → 0.

Lemma 2.5.6 implies that 𝔼 sup𝑟∈[0,1] ‖𝒯2‖2 = 𝑜(1).

Lemma 2.5.6. Let {𝐸𝑚} be a positive-integer-valued sequence satisfying Assumption 2.3.4

and {𝑎𝑚,𝑇 }𝑚∈[𝑇 ],𝑇 ≥1 be a non-negative uniformly bounded sequence satisfying lim
𝑇 →∞

1
𝑇
∑𝑇 −1

𝑚=0 𝑎𝑚,𝑇 =
0. Then

lim
𝑇 →∞

(∑𝑇 −1
𝑚=0 𝐸𝑚)(∑𝑇 −1

𝑚=0 𝐸−1
𝑚 𝑎𝑚,𝑇 )

𝑇 2 = 0.

Proof of Lemma 2.5.6. The proof can be found in Appendix A.6.

Step five: Uniform negligibility of 𝒯3 It is subtle to handle 𝒯3 because its coefficient de-

pends on 𝑟.

‖𝒯3‖ = √𝑡𝑇
𝑇

‖
‖
‖‖

ℎ(𝑟,𝑇 )∑
𝑚=0

(𝑨𝑇
𝑚 − 𝑨ℎ(𝑟,𝑇 )

𝑚 )𝜺𝑚

‖
‖
‖‖

= √𝑡𝑇
𝑇

‖
‖
‖‖

ℎ(𝑟,𝑇 )∑
𝑚=0

𝑇∑
𝑙=ℎ(𝑟,𝑇 )+1

⎛
⎜
⎜
⎝

𝑙∏
𝑖=𝑚+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜺𝑚

‖
‖
‖‖

= √𝑡𝑇
𝑇

‖
‖
‖‖

𝑇∑
𝑙=ℎ(𝑟,𝑇 )+1

ℎ(𝑟,𝑇 )∑
𝑚=0

⎛
⎜
⎜
⎝

𝑙∏
𝑖=𝑚+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜺𝑚

‖
‖
‖‖

= √𝑡𝑇
𝑇

‖
‖
‖‖

𝑇∑
𝑙=ℎ(𝑟,𝑇 )+1

⎛
⎜
⎜
⎝

𝑙∏
𝑖=ℎ(𝑟,𝑇 )+1

𝑩𝑖
⎞
⎟
⎟
⎠

ℎ(𝑟,𝑇 )∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ(𝑟,𝑇 )∏
𝑖=𝑚+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜺𝑚

‖
‖
‖‖

≾ √𝑡𝑇
𝑇

‖
‖
‖‖

1
𝛾ℎ(𝑟,𝑇 )+1

ℎ(𝑟,𝑇 )∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ(𝑟,𝑇 )∏
𝑖=𝑚+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜺𝑚

‖
‖
‖‖

,

where the last inequality uses

‖
‖
‖‖

𝑇∑
𝑙=ℎ(𝑟,𝑇 )+1

⎛
⎜
⎜
⎝

𝑙∏
𝑖=ℎ(𝑟,𝑇 )+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾ℎ(𝑟,𝑇 )+1

‖
‖
‖‖

= ‖𝑨
𝑇
ℎ(𝑟,𝑇 )+1𝑩ℎ(𝑟,𝑇 )+1‖ ≾ 1.

Lemma 2.5.7 shows that sup𝑟∈[0,1] ‖𝒯3‖ = 𝑜ℙ(1).

Lemma 2.5.7. Under Assumptions 3.2.2 and 2.3.4, it follows that

sup
𝑟∈[0,1]

√𝑡𝑇
𝑇

‖
‖
‖‖

1
𝛾ℎ(𝑟,𝑇 )+1

ℎ(𝑟,𝑇 )∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ(𝑟,𝑇 )∏
𝑖=𝑚+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜺𝑚

‖
‖
‖‖

= 𝑜ℙ(1).
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Proof of Lemma 2.5.7. The proof can be found in Appendix A.7.

Remark 2.5.1. There is a more user-friendly version of Lemma 2.5.7 for a plug-and-play use.

Define an auxiliary sequence {Y𝑚}𝑚≥0 as following: Y0 = 0 and for 𝑚 ≥ 0,

Y𝑚+1 = 𝑩𝑚Y𝑚 + 𝛾𝑚𝜺𝑚 = (𝑰 − 𝛾𝑚𝑮)Y𝑚 + 𝛾𝑚𝜺𝑚. (2.19)

It is easy to verify that

Y𝑡+1 =
𝑡∑

𝑡=0

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑚+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜺𝑚.

Under this notation, Lemma 2.5.7 is equivalent to

sup
0≤𝑡≤𝑇

√𝑡𝑇
𝑇

‖Y𝑡+1‖
𝛾𝑡+1

= 𝑜ℙ(1).

More formally, we have the following lemma which one can prove from Lemma 2.5.7.

Lemma 2.5.8. If the martingale difference sequence {𝜺𝑚}𝑚≥0 satisfies sup𝑚≥0 𝔼‖𝜺𝑚‖2+𝛿 < ∞
for some 𝛿 > 0 and Assumption 2.3.4 holds with 𝐸𝑚 ≡ 1, for the sequence {Y𝑚}𝑚≥0 defined

in (2.19) with 𝑮 positive definite, we have

sup
0≤𝑡≤𝑇

1
√𝑇

‖Y𝑡+1‖
𝛾𝑡+1

= 𝑜ℙ(1).

2.6 Related Work

Local SGD in Federated Learning Federated learning enables a large amount of edge com-

puting devices to jointly learn a global model without data sharing[7]. The seminal paper[5] pro-

posed Federated Average (FedAvg) for FL, which is slightly different from Local SGD that we

focus on in this work. The main difference is that FedAvg randomly samples a small portion

of clients at the beginning of each communication round to alleviate the straggler effect caused

by massively distributed clients. When all clients are forced to participate, FedAvg is reduced

to Local SGD. Their theoretical convergence does not vary too much with an additional statis-

tical error incurred when clients participate partially[51]. There has been a rapidly growing line

of work concerning various aspects of FedAvg and its variants recently, including the effect of

non-i.i.d. data[75], client sampling[76], decentralized optimization[12, 14], acceleration[77], com-

posite optimization[78], and privacy[79]. Local SGD or Fedavg is an iterative and multi-round

distributed algorithm that communicates only gradient information at each communication

round. Other algorithms of this type have been proposed and analyzed previously[33, 36, 80-81].
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The biggest difference is that Local SGD lowers the communication frequency, while others

do not. This simple change improves communication efficiency greatly[11].

Analysis on Local SGD In the context of distributed inference, as we know that no works

consider the asymptotic properties of Local SGD or FedAvg, letting alone conduct inference.

Most works focus on the optimization properties of Local SGD (or their proposed variants).

Woodworth, Patel, Stich, Dai, Bullins, Mcmahan, Shamir, Srebro [15], Woodworth, Patel, Sre-

bro [16] gave the state-of-the-art convergence analysis for Local SGD in convex settings, show-

ing its convergence rate is dominated by the statistical error incurred by stochastic approxi-

mation of gradients. However, it additionally suffers a relatively minor residual error caused

by local updates. As a complementary, our work shows that when the effective step size is set

to 𝛾𝑚 = 𝐸𝑚𝜂𝑚 ∝ 𝑚−𝛼(𝛼 ∈ (0.5, 1), 𝑚 ≥ 1), Local SGD enjoys the optimal asymptotic vari-

ance, even though the communication length increases at a sub-linear rate (i.e., 𝐸𝑚 = 𝑜(𝑡1/2
𝑚 )).

It corresponds to the previous non-asymptotic result[82] that shows 𝐸𝑚 can be set as large

as 𝑂(𝑡1/2
𝑚 ) for convergence. Later, Haddadpour, Kamani, Mahdavi, Cadambe [83] provided a

tighter analysis showing 𝐸𝑚 can be set as large as 𝑂(𝑡2/3
𝑚 ). However, they used a smaller learn-

ing rate 𝛾𝑚 ∝ 𝑚−1 that cannot guarantee asymptotic normality in our theory. Indeed, the choice

of learning rate plays an important role in chasing the non-asymptotic goal of a fast finite-time

convergence rate and the asymptotic goal of achieving limiting optimal normality, as noted

by Li, Mou, Wainwright, Jordan [68] who instead proposed a new SGD variant to achieve both

together. In addition, Karimireddy, Kale, Mohri, Reddi, Stich, Suresh [84], Liang, Shen, Liu,

Pan, Chen, Cheng [85], Pathak, Wainwright [86], Zhang, Hong, Dhople, Yin, Liu [87] removed

the effect of statistical heterogeneity via control variates or primal-dual techniques. From our

theory, statistical heterogeneity will not affect the asymptotic variance. Similarly, it has been

found that heterogeneity will not alter the minimax optimal bound for the estimation of the

commonality parameter[88-89].

Recently, there are some works studying the efficiency of Local SGD via a continuous

perspective. Viewing FL as a linearly constrained optimization problem, Liang, Han, Li,

Zhang [90] modeled intermittent communication as a probabilistic projection and proposed a

loop-less algorithm 1 to solve it. Using a novel jump diffusion approximation, they showed

that the trajectories connecting those properly scaled last iterates weakly converge to the solu-

tion of specific stochastic differential equations (SDEs) that are driven by either a Brownian

1 In the context of FL, this algorithm can be viewed as Local SGD where the periodic communication is replaced by a
probabilistic communication.
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motion or a Poisson process. Gu, Lyu, Huang, Arora [91] derived a SDE that captures the long-

term behavior of Local SGD and provide a theoretical explanation why Local SGD generalizes

better than SGD. Deng, Ma, Song, Zhang, Lin [92] proposed a federated averaging Langevin al-

gorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients.

They then study several factors including communication, accuracy, and privacy for this algo-

rithm.

Statistical inference via SGD and its variants Statistical estimation and inference via SGD

attracts great attention. Polyak, Juditsky [30], Ruppert [58] showed averaging iterates along the

SGD trajectory has favorable statistical properties in the asymptotic setting, while Anastasiou,

Balasubramanian, Erdogdu [31], Mou, Li, Wainwright, Bartlett, Jordan [32] supplemented it

with a non-asymptotic analysis. Many papers recently developed iterative algorithms for con-

structing asymptotically valid confidence intervals[93]. Chen, Lee, Tong, Zhang, et al. [61]

proposed a consistent plug-in estimator. However, the computation of the Hessian matrix of

loss function is not always tractable. Then, Chen, Lee, Tong, Zhang, et al. [61] adapted the non-

overlapping batch-means method[94] and obtained an offline consistent covariance estimator

by using time-increasing batch sizes. Later on, Zhu, Chen, Wu [39] extended it to a fully online

setting via a recursive counterpart using overlapping batches. In one latest work, Lee, Liao,

Seo, Shin [62] proposed random scaling, which uses nested batches instead. But the analysis in

their corrected version requires a stronger condition on the gradient noises that should not only

be 𝛼-mixing but also have at least forth-order moment (see their Assumption 2). The 𝛼-mixing
assumption forces gradient noises to be asymptotic stationary in a fast rate. By contrast, we

provide a valid analysis for random scaling under only 2 + 𝛿 moment assumptions (see As-

sumption 2.3.2), which is much weaker and can be of independent interest. We speculate the

(2 + 𝛿) moment condition might not be relaxed any further. In addition, Fang, Xu, Yang [95],

Fang [96] proposed online bootstrap procedures for the estimation of confidence intervals via

randomly perturbed SGD. Meanwhile, Su, Zhu [67], Li, Liu, Kyrillidis, Caramanis [97], Liang,

Su [98] proposed variants of the SGD algorithm to facilitate inference in a non-asymptotic fash-

ion.

2.7 Numerical Simulations

This section investigates the empirical performance of the plug-in and random scaling

methods via Monte Carlo experiments. We consider both the linear and logistic regression
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Figure 2.1 𝐿2 convergence ‖𝒚̄𝑇 − 𝒙⋆‖ in terms of communication 𝑇 . Left: Results of linear regression.
Right: Results of logistic regression. Black dashed line denotes the nominal coverage rate of 95%.

models. At iteration 𝑡, the 𝑘-th client observes the pair (𝒂𝑘
𝑡 , 𝑏𝑘

𝑡 ) with 𝒂𝑘
𝑡 the 𝑑-dimensional

covariates generated from the multivariate normal distribution 𝒩 (0, I𝑑) and 𝑏𝑘
𝑡 the response

generated according to the model. We detail the data generation process as follows:

• In linear regression, 𝑏𝑘
𝑡 = (𝒂𝑘

𝑡 )⊤𝒙⋆
𝑘 + 𝜀𝑘

𝑡 where the 𝜀𝑘
𝑡 are i.i.d. according to 𝒩 (0, I𝑑) and 𝒙⋆

𝑘
is the true local parameter which we also generate from 𝒩 (0, I𝑑). In this case, the global

parameter 𝒙⋆ is the average of 𝒙⋆
𝑘 ’s.

• In logistic regression, 𝑏𝑘
𝑡 ∈ {0, 1} is generated to be 1 with probability 𝜎((𝒂𝑘

𝑡 )⊤𝒙⋆) and 0
with probability 1 − 𝜎((𝒂𝑘

𝑡 )⊤𝒙⋆). Here 𝜎(𝜃) = 1/(1 + exp(−𝜃)) is the sigmoid function. We

do not impose data heterogeneity for logistic regression in order to avoid numerical error

in the calculation of 𝒙⋆. Here 𝒙⋆ is equi-spaced on the interval [0, 1] following previous

works[61-62].

We set 𝛾𝑚 = 𝛾0/𝑚0.505 with 𝛾0 = 0.5 for linear regression and 𝛾0 = 2 for logistic regression.

The initial value 𝒙̄0 is set as zero. We fix 𝐾 = 10 in all our experiments and vary the number

of rounds 𝑇 . In all cases, we set 𝐸𝑚 = 1 for the first 5% observations as a warm-up and

then increase 𝐸𝑚 from scratch, i.e., 𝐸𝑚 = 𝐸′
𝑚−5%∗𝑇 for another sequence {𝐸′

𝑚}. We consider

six choices of {𝐸′
𝑚}𝑚, namely (𝑖) C1: constant 𝐸′

𝑚 ≡ 1, (𝑖𝑖) C5: constant 𝐸′
𝑚 ≡ 5, (𝑖𝑖𝑖) Log:

logarithmic 𝐸′
𝑚 = ⌈log2(𝑚 + 1)⌉, (𝑖𝑣) P(1/3): power 𝐸′

𝑚 = ⌈𝑚1/3⌉, (𝑣) P(1/2): power

𝐸′
𝑚 = ⌈𝑚1/2⌉, and (𝑣𝑖) P(2/3): power 𝐸′

𝑚 = ⌈𝑚2/3⌉. The nominal coverage probability is set
at 95%. The performance is measured by three statistics: the coverage rate, the average length

of the 95% confidence interval, and the average communication frequency. For brevity, we

focus on the first coefficient 𝒙⋆
1 hereafter. All the reported results are obtained by taking the

average of 1000 independent runs.

We first turn to study the communication efficiency for Local SGD. From Figure 2.1, we

find the faster 𝐸𝑚 grows, the faster the 𝐿2 convergence in terms of communication, which

36



Chapter 2 Statistical Estimation and Online Inference via Local SGD

100 1000 2000 3000 4000 5000

T

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
a
g
e

4000 4250 4500 4750 5000

0.90

0.95

0 1000 2000 3000 4000 5000

T

10−2

10−1

100

101

C
I

L
en

gt
h

C1

C5

Log

P(1/3)

P(1/2)

P(2/3)

20 1000 2000 3000 4000 5000

T

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

4000 4250 4500 4750 5000

0.925

0.950

0 1000 2000 3000 4000 5000

T

10−1

100

C
I

L
en

gt
h

C1

C5

Log

P(1/3)

P(1/2)

P(2/3)

Figure 2.2 Comparison of the plug-in (the top row) and random scaling (the bottom row) in linear regres-
sion. Left: Empirical coverage rate against the number of communication. Black dashed line denotes the
nominal coverage rate of 95%. Right: Length of confidence intervals.
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Figure 2.3 Comparison of the plug-in (the top row) and random scaling (the bottom row) estimators in
logistic regression. Left: Empirical coverage rate against the number of communication. Black dashed line
denotes the nominal coverage rate of 95%. Right: Length of confidence intervals.
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Methods Items 𝑡𝑇 = 5000 𝑡𝑇 = 10000 𝑡𝑇 = 20000 𝑡𝑇 = 40000

Plug-in

Cov Rate
(%)

C1 95.70(0.641) 94.20(0.739) 94.20(0.739) 93.80(0.763)
C5 93.70(0.768) 94.00(0.751) 94.30(0.733) 93.10(0.801)
Log 91.70(0.872) 93.20(0.796) 93.80(0.763) 93.80(0.763)
P(1/3) 91.90(0.863) 92.70(0.823) 93.90(0.757) 93.60(0.774)
P(1/2) 91.10(0.900) 92.60(0.828) 93.90(0.757) 93.80(0.763)
P(2/3) 91.00(0.905) 92.60(0.828) 93.40(0.785) 93.60(0.774)

Avg Len
(10−2)

C1 7.857(0.099) 5.547(0.050) 3.917(0.025) 2.768(0.013)
C5 9.737(0.242) 6.868(0.121) 4.847(0.061) 3.423(0.031)
Log 12.168(0.371) 8.953(0.204) 6.602(0.106) 4.864(0.058)
P(1/3) 11.372(0.336) 8.656(0.195) 6.613(0.110) 5.059(0.063)
P(1/2) 15.431(0.559) 12.100(0.327) 9.433(0.188) 7.300(0.112)
P(2/3) 19.593(0.791) 15.375(0.491) 11.896(0.274) 9.083(0.156)

Random
Scaling

Cov Rate
(%)

C1 95.00(0.689) 93.90(0.757) 93.70(0.768) 94.80(0.702)
C5 97.70(0.474) 96.90(0.548) 97.20(0.522) 96.90(0.548)
Log 98.20(0.420) 98.70(0.358) 98.90(0.330) 98.80(0.344)
P(1/3) 97.60(0.484) 98.20(0.420) 98.50(0.384) 98.00(0.443)
P(1/2) 96.00(0.620) 97.20(0.522) 96.40(0.589) 96.60(0.573)
P(2/3) 88.70(1.001) 89.90(0.953) 90.70(0.918) 90.00(0.949)

Avg Len
(10−2)

C1 10.011(4.343) 7.081(3.106) 5.010(2.092) 3.605(1.511)
C5 14.434(6.950) 10.043(4.923) 7.078(3.389) 4.946(2.448)
Log 19.187(9.763) 14.120(7.154) 10.430(5.219) 7.611(3.895)
P(1/3) 16.781(8.397) 12.810(6.460) 9.821(4.906) 7.440(3.777)
P(1/2) 20.888(10.842) 16.127(8.004) 12.379(6.027) 9.314(4.460)
P(2/3) 21.495(11.324) 16.463(7.991) 12.509(5.924) 9.276(4.325)

Table 2.3 Simulation results of linear regression with 𝑑 = 5. The standard errors of coverage rates ̂𝑝 are
computed via √ ̂𝑝(1 − ̂𝑝)/1000 × 100% and reported inside the parentheses.

is consistent with previous studies from optimization perspective[5, 11]. Figure 2.2 shows the

empirical coverage rates and confidence interval lengths in linear regression, both obtained

by averaging over 1000 Local SGD paths. The result of logistic regression is depicted in

Figure 2.3. For plug-in, though wandering above 90%, the faster 𝐸𝑚 family (namely, Log,

P(1/3) and P(1/2)) has relatively inferior coverage rate than the slower 𝐸𝑚 family (namely,

C1 and C5). The coverage rate of P(2/3) can’t even cross 90%. For random scaling, it is

clear that the coverage rate of all the methods fluctuates around 95%. Though with a much

smaller deviation from 95%, the slow𝐸𝑚 family has the slower shrinkage rate for its confidence

interval. By contrast, the faster 𝐸𝑚 family achieves comparable coverage with faster shrinkage

of confidence intervals. It implies that Local SGD has high efficiency of communication and

maintains a good statistic efficiency via random scaling.

We then turn to the empirical performance of Local SGD with limited computation or

finite samples. Table 2.3 shows the empirical performance of the six methods under linear
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Methods Items 𝑡𝑇 = 5000 𝑡𝑇 = 10000 𝑡𝑇 = 20000 𝑡𝑇 = 40000

Plug-in

Cov Rate
(%)

C1 94.70(0.708) 93.50(0.780) 94.60(0.715) 95.40(0.662)
C5 93.00(0.807) 92.30(0.843) 93.50(0.780) 94.10(0.745)
Log 92.30(0.843) 92.10(0.853) 92.60(0.828) 92.90(0.812)
P(1/3) 92.70(0.823) 92.00(0.858) 92.50(0.833) 92.90(0.812)
P(1/2) 90.80(0.914) 92.20(0.848) 91.70(0.872) 92.10(0.853)
P(2/3) 90.90(0.909) 92.80(0.817) 91.30(0.891) 92.20(0.848)

Avg Len
(10−2)

C1 4.113(0.046) 2.903(0.022) 2.049(0.011) 1.448(0.005)
C5 5.081(0.118) 3.587(0.057) 2.534(0.029) 1.790(0.014)
Log 6.347(0.175) 4.681(0.093) 3.453(0.049) 2.544(0.027)
P(1/3) 5.949(0.146) 4.526(0.091) 3.456(0.049) 2.647(0.027)
P(1/2) 8.062(0.256) 6.320(0.149) 4.927(0.088) 3.821(0.052)
P(2/3) 10.254(0.380) 8.036(0.218) 6.223(0.127) 4.752(0.070)

Random
Scaling

Cov Rate
(%)

C1 95.50(0.656) 92.40(0.838) 94.10(0.745) 94.70(0.708)
C5 96.00(0.620) 95.90(0.627) 96.80(0.557) 95.80(0.634)
Log 97.60(0.484) 97.40(0.503) 97.80(0.464) 98.20(0.420)
P(1/3) 96.10(0.612) 96.60(0.573) 97.50(0.494) 97.90(0.453)
P(1/2) 94.40(0.727) 94.30(0.733) 94.50(0.721) 95.10(0.683)
P(2/3) 88.30(1.016) 88.00(1.028) 86.80(1.070) 88.80(0.997)

Avg Len
(10−2)

C1 5.112(2.302) 3.612(1.502) 2.646(1.162) 1.877(0.816)
C5 7.296(3.714) 5.166(2.535) 3.687(1.836) 2.637(1.316)
Log 9.703(5.176) 7.241(3.713) 5.383(2.787) 4.023(2.063)
P(1/3) 8.499(4.465) 6.569(3.345) 5.071(2.621) 3.924(1.999)
P(1/2) 10.574(5.688) 8.278(4.193) 6.340(3.194) 4.880(2.366)
P(2/3) 10.915(5.876) 8.497(4.244) 6.373(3.147) 4.850(2.293)

Table 2.4 Simulation results of logistic regression with 𝑑 = 5. The standard errors of coverage rates ̂𝑝 are
computed via √ ̂𝑝(1 − ̂𝑝)/1000 × 100% and reported inside the parentheses.

models with four different 𝑡𝑇 ’s. 𝑡𝑇 is actually the total iteration each client runs through 𝑇
rounds or equivalently the number of observations they receive. From the table, almost all

the methods achieve good performance. Except P(2/3), random scaling gives better average

coverage rates than the plug-in method, because its average coverage rates of all different com-

munication intervals are near (or even exceed) 95%. However, its average length is usually

larger than that of plug-in. Furthermore, its average length usually has a much larger devi-

ation than that of plug-in. For example, when 𝑡𝑇 = 5000, for C5, the standard deviation of

average lengths for plug-in is 0.807 × 10−2, while it increases to 3.714 × 10−2 for random scal-

ing. Such a wider average length might account for the unexpected advantage on the average

coverage rates. We speculate the reason for the poor performance of P(2/3) is because less

frequent communication enlarges asymptotic variance and decrease the sample efficiency. It

might require more samples to reach a counterpart level of coverage rates. However, as the
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communication round increases and more observations are available, the average length de-

creases and the coverage rate increases, with both deviations reduced. The poor performance

of P(2/3) implies that when 𝐸𝑚 grows too faster (e.g., 𝐸𝑚 = ⌈𝑚2⌉), its performance might
deteriorate, accordant to our Theorem 3.3.1.

In addition, comparing the results of Log, P(1/3), and P(1/2), we can find that the faster

𝐸𝑚 increases, the larger average length as well as its standard deviations. However, they all

have satisfactory performance when observations are sufficient. Indeed, Local SGD trades

more computation for less communication, resulting in a residual error gradually accumulated

when communication is off, slowing down the convergence rate and enlarging asymptotic

variance (e.g., the existence of 𝜈). However, the benefit is also attractive: the averaged com-
munication frequency is substantially reduced and the convergence in terms of communication

largely increases. It implies that Local SGD obtains both statistical efficiency and communi-

cation efficiency as expected. We further consider the logistic regression, which is a standard

non-linear model. The result is given in Table 2.4. A similar pattern is observed: random

scaling has higher average coverage rates at the price of wider average lengths which typically

shrink as more observations are generated.

2.8 Conclusion

This chapter studies how to perform statistical inference via Local SGD in FL. We have

established a functional central limit theorem for the averaged iterates of Local SGD and pre-

sented two fully online inference methods. We have shown that the Local SGD has statistical

efficiency with its asymptotic variance achieving the Cramér–Rao lower bound and commu-

nication efficiency with the averaged communication efficiency vanishing asymptotically. It

is worth noting that although we considered Local SGD (a distributed variant of SGD), our

results also hold for the standard SGD because the latter as a single-device SGD is a special

case of Local SGD.

In literature, stochastic gradient descent (SGD) is considered an instance of the stochas-

tic approximation (SA) method. SA is a more general framework that can be applied to a

wider range of optimization problems. The aim of SA is to iteratively update an estimate of

the root based on noisy or incomplete data, in order to find the root of a specific stationary

equation. Q-Learning, introduced by Watkins [17], is another important example of SA and

has recently gained popularity in reinforcement learning[9]. The stationary equation in SGD

is simply ∇𝑓(𝒙) = 0, while in Q-Learning it is 𝒯 𝑸 = 𝑸, where 𝒯 is the Bellman operator
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and𝑸 is the vectorized Q-value function (which is the counterpart of 𝒙 in this chapter). There

are two main differences that distinguish Q-Learning from SGD. Firstly, 𝒯 is typically not

smooth, unlike the gradient ∇𝑓 , which has a continuous derivative. Secondly, the data used to
evaluate 𝒯 is typically generated along a Markov chain, whereas in SGD, the data is assumed

to be independent. These differences imply that inference methods for SGD cannot be applied

directly to Q-Learning. As a result, we are motivated to explore how to perform statistical

inference for stochastic approximation using a single trajectory of Markov data.
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Chapter 3 Online Statistical Inference for Nonlinear

Stochastic Approximation with Markovian Data

3.1 Introduction

Stochastic approximation (SA) is a class of iterative methods for solving root-finding

problems in which only noisy observations of objectives are available[99]. The aim is to find

the root 𝒈(𝒙⋆) = 0, where 𝒈 ∶ ℝ𝑑 → ℝ𝑑 is expressed as an integral over the data points 𝜉
drawn from a distribution 𝜋 on a Polish space Ξ:

𝒈(𝒙) ∶= ∫Ξ
𝑯(𝒙, 𝜉)𝜋(𝑑𝜉) = 0. (3.1)

When 𝒈 is a linear function of 𝒙, the method is referred to as linear SA, otherwise, it is referred
to as nonlinear SA. A typical SA algorithm is given by the 𝑑-dimensional recursion:

𝒙𝑡+1 = 𝒙𝑡 − 𝜂𝑡𝑯(𝒙𝑡, 𝜉𝑡), (3.2)

in which {𝜂𝑡}𝑡≥0 is the non-negative step-size sequence and {𝜉𝑡}𝑡≥0 denotes the sequential data

point. Over the past two decades, SA has gained significant attention, driven by applications

in reinforcement learning and stochastic optimization[52, 100-102]. Despite the numerous SA

methods developed and even the establishment of minimax optimal instance-dependent esti-

mation bounds[21, 32, 100, 103-104], there is still a need for methods and theories that quantify

estimation uncertainty and provide precise procedures for constructing confidence intervals.

Uncertainty quantification provides many benefits for practical sequential decision prob-

lems. By providing valid confidence intervals around predicted point estimates, it enables

decisionmakers tomakemore informed and confident decisions with improved stability of rec-

ommendation quality[105]. In addition, confidence intervals provide a solid basis for risk man-

agement, allowing decision-makers to consider the potential consequences of various courses

of action in the presence of uncertainty. This is particularly important in domains such as

autonomous driving and personalized medicine where decisions have significant impacts.

In these applications, the sample-generatingmechanism behind {𝜉𝑡}𝑡≥0 is commonlymod-

eled using a Markov chain. However, the introduction of Markovian data brings several chal-

lenges. Firstly, modeling arbitrary relationships between variables in Markovian data is diffi-

cult. Secondly, the distribution of each 𝜉𝑡 changes over time and is unlikely to equal the desired
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distribution 𝜋, causing 𝑯(𝒙𝑡, 𝜉𝑡) to become a biased estimate of 𝒈(𝒙𝑡) given the history. Fi-

nally, given a point estimate, there is currently no known method to estimate the asymptotic

variance in the presence of Markovian data, though either a plug-in estimator or a batch-mean

estimator could help under i.i.d. data[38-39].

To address these challenges, Ramprasad, Li, Yang, Wang, Sun, Cheng [43] proposed an

online bootstrap method in linear SA with Markovian data. This method maintains multiple

perturbed iterates {𝒙𝑏
𝑡 }𝑏∈[𝐵] from which confidence intervals can be constructed by estimating

the asymptotic variance or quantiles from its empirical distribution over 𝑏 ∈ 𝐵. However, the

per iteration update of each {𝒙𝑏
𝑡 }𝑏∈[𝐵] relies on the multiple oracles that evaluate the values of

all {𝑯(𝒙𝑏
𝑡 , 𝜉𝑡)}𝑏∈[𝐵] at different parameters 𝒙𝑏

𝑡 ’s but with the same data point 𝜉𝑡. Due to limited

control over real environments, multiple oracles typically are not feasible in scenarios where

one-trajectory sampling is prevalent. Another limitation of the method is that it is heavily

dependent on the linear nature of linear SA problems. As for the more general nonlinear SA

(see Section 3.2.2 for examples), its effectiveness remains uncertain.

3.1.1 Contribution

In this study, we are motivated to inquire whether we can propose an efficient online

inference method that does not require multiple oracles and can handle Markovian data in

nonlinear SA. We provide an affirmative answer to this question.

Theoretical contribution In the absence of multiple oracles, we focus on utilizing the longi-

tudinal dependence between consecutive iterates, rather than the crosswise dependence among

perturbed iterates used in the online bootstrap method. To that end, we establish a func-

tional central limit theorem (FCLT) in Theorem 3.3.1 that describes the asymptotic behav-

ior of the partial-sum process 𝝓𝑇 (𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 (𝒙𝑡 − 𝒙∗). Recall that D[0,1],ℝ𝑑 = {𝝓 ∶

càdlàg function 𝝓(𝑟) ∈ ℝ𝑑 , 𝑟 ∈ [0, 1]} collects all 𝑑-dimensional functions that are right-

continuous with left limits. As a random element in D[0,1],ℝ𝑑 , this partial-sum process 𝝓𝑇

weakly converges to a scaled Brownian motion 𝝍 ∶= 𝑮−1𝑺1/2𝑾 in the Skorohod topology,

where𝑾 is the standard 𝑑-dimensional Brownian motion and 𝑮−1𝑺1/2 is the unknown scale

matrix. By the continuous mapping theorem, 𝑓(𝝓𝑇 ) weakly converges to 𝑓(𝝍) = 𝑓(𝑾 ) for
any continuous scale-invariant functional 𝑓 ∶ D[0,1],ℝ𝑑 → ℝ that satisfies 𝑓(𝑨𝝓) = 𝑓(𝝓) for
any non-singular 𝑨 and càdlàg process 𝝓. 𝑓(𝝓𝑇 ) is a measurable function of the observed

data points {𝜉𝑡}𝑡∈[𝑇 ] and the target parameter 𝒙⋆, while 𝑓(𝑾 ) has a known distribution whose
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quantiles can be computed via stochastic simulation. It implies 𝑓(𝝓𝑇 ) is an asymptotic pivotal
statistic, from which an asymptotically valid confidence interval can be constructed.

To offer a comprehensive understanding of the FCLT, we further establish two additional

results. The first result, outlined in Theorem 3.3.3, presents a semiparametric efficient lower

bound that demonstrates the asymptotic variance of any regular asymptotic linear (RAL, see

Definition 3.3.1) estimator 𝑻 𝑛, computed using the first 𝑛 observed data points, is asymp-

totically lower bounded by 1
𝑛𝑮

−1𝑺𝑮−⊤ in the sense that lim
𝑛→∞

𝑛 ⋅ 𝔼(𝑻 𝑛 − 𝒙⋆)(𝑻 𝑛 − 𝒙⋆)⊤ ⪰
𝑮−1𝑺𝑮−⊤. In Theorem 3.3.4, we find that for each fraction 𝑟 ∈ (0, 1], 𝝓𝑇 (𝑟) is the most effi-
cient RAL estimator with its asymptotic variance matching the efficiency lower bound. This

result answers an open question of efficiency in linear stochastic approximation raised by Ram-

prasad, Li, Yang, Wang, Sun, Cheng [43] and provides evidence of the statistical optimality of

the partial-sum process 𝝓𝑇 in terms of asymptotic variance.

The second result establishes a non-asymptotic upper bound on the functional weak con-

vergence rate measured in the Lévy-Prokhorov distance, denoted by 𝑑P(⋅, ⋅). More specifically,

Theorem 3.3.5 relates 𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍), the dissimilarity of the probability measures generated
by the two càdlàg processes 𝜽⊤𝝓𝑇 and 𝜽⊤𝝍 , to the iteration number 𝑇 and the mixing time

𝑡mix of the underlying Markov chain. Here, 𝜽 ∈ ℝ𝑑 is a vector with a unit dual norm satisfying

‖𝜽‖∗ = 1. To the best of our knowledge, it is the first non-asymptotic bound of functional

weak convergence for the nonlinear iterative algorithm (3.2). It highlights the impact of several

factors, including the underlyingMarkovian data, the degree of non-linearity, and the trade-off

in step size parameter selection.

Methodological contribution The idea of applying a continuous scale-invariant functional

to a partial-sum process, and constructing asymptotic pivotal statistic from it, has been adopted

in the econometrics literature. This inference method is considered robust, as it not only elim-

inates the need to estimate the unknown scale matrix (e.g., 𝑮−1𝑺1/2), but also works well

for a wide range of linear series models with heteroskedasticity[63, 72]. Recently, Lee, Liao,

Seo, Shin [62] extended this technique by proposing an online statistical inference method

named “random scaling” for nonlinear SGD iterates. Following this line of research, sub-

sequent works have further developed this approach for specific iterates {𝒙𝑡}𝑡≥0 under i.i.d.

data[21, 50, 106]. In our work, we extend this concept to the more general setting of nonlinear

SA with Markovian data. Additionally, we consider a family of adequate functionals 𝑓𝑚 in-

dexed by 𝑚 ∈ ℕ. We study various aspects of confidence intervals generated by 𝑓𝑚, including
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their online computation efficiency, rejection probability, and confidence length. Finally, we

evaluate the efficacy of different 𝑓𝑚’s through numerical experiments.

Technical contribution The main difficulty in analysis is the establishment of the corre-

sponding FCLT. If the sequence {𝒙𝑡}𝑡≥0 is defined in a simpler manner, substantial research

has been conducted to establish weak convergence for its partial-sum process in probability lit-

erature. The celebrated Donsker’s invariance principle concerns an i.i.d. sequence of {𝒙𝑡}𝑡≥0,

while subsequent works have extended it to weakly dependent random variable[107], includ-

ing stationary sequences[108] and martingale-like nonstationary structures[109]. However, the

sequence {𝒙𝑡}𝑡≥0 we consider here is defined recursively through (3.2). There are several rea-

sons why the weakly dependent scenario from previous works is not applicable to our situation.

Firstly, even if we assume {𝜉𝑡}𝑡≥0 is sampled from a uniformly ergodic Markov chain with an

arbitrary initialization distribution (in Assumption 3.2.4), the decaying step size {𝜂𝑡}𝑡≥0 im-

plies {𝒙𝑡}𝑡≥0 is not stationary.
1 Secondly,𝑯(𝒙𝑡, 𝜉𝑡) usually does not behave like a martingale

difference and neither does each 𝒙𝑡. Lastly, the conditions to control the degree of sequence

dependence (e.g., various mixing conditions) in previous probability-oriented works are often

difficult to verify in real-world applications. Therefore, we establish weak convergence from

scratch by constructing a martingale-remainder decomposition. The idea behind this approach

is to decompose the partial-sum of {𝒙𝑡}𝑡≥0 into the sum of partial-sums of martingale differ-

ence arrays and remainders, the latter vanishing asymptotically and uniformly under appropri-

ate regularity conditions on 𝑯(⋅, ⋅) (see Section 3.2.1). By doing so, we can further establish
weak convergence rates by leveraging existing rates for martingale difference arrays[110] once

those rates for the decomposed remainders are available.

We make several technical contributions along the martingale-remainder approach. The

decomposition idea originates from the seminal work[30] for pointwise weak convergence and

recently is extended to functional weak convergence by Li, Liang, Chang, Zhang [50], Lee,

Liao, Seo, Shin [62] in the context of i.i.d. online convex stochastic optimization. However,

for nonlinear SA with Markovian data, several difficulties arise. The Markovian noise pre-

cludes the direct use of martingale central limit theory and necessitates a Martingale approx-

imation to decompose 𝑯(𝒙𝑡, 𝜉𝑡) − 𝒈(𝑥𝑡). 2 Furthermore, the recursive update scheme (3.2),

as well as the generality of nonlinear SA, bring difficulty to validate the uniform asymptotic

1 Decaying the step size is necessary to obtain an asymptotically unbiased estimator for 𝒙⋆.
2 In the i.i.d. case, we have 𝔼[𝑯(𝒙𝑡, 𝜉𝑡)|ℱ𝑡−1] = 𝒈(𝒙𝑡) as a result of the assumption 𝜉𝑡

𝑖.𝑖.𝑑.∼ 𝜋. Therefore, 𝑯(𝒙𝑡, 𝜉𝑡) − 𝒈(𝑥𝑡)
is a martingale difference adapted to ℱ𝑡 and thus the martingale central limit theory could apply. However, it is often not
true for Markov cases.
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vanishing of one particular remainder sequence. 3 To address the first issue, we utilize an ex-

isting martingale-residual-coboundary decomposition introduced by Liang [111]. In (3.15), it

decomposes𝑯(𝒙𝑡, 𝜉𝑡)−𝒈(𝒙𝑡) into the sum of a martingale term, a residual term, and a so-called

coboundary term, with the last two terms having ignorable impacts on our target partial-sum

process (see Lemma 3.4.1). For the second difficulty, we devise a novel technical Lemma 3.4.3

that drills down the particular recursion structure, from which functional weak convergence

rates for the remainder sequence can be further derived. See Section 3.4.1 for more details.

3.1.2 Related Work

This study investigates the use of stochastic approximation algorithms for conducting

statistical inference on Markovian data. Our findings have important implications for both

reinforcement learning and stochastic optimization. So as to put our results into context, we

provide more background on previous research in these areas.

Stochastic approximation on Markovian data The use of recursive stochastic procedures

for root-finding problems dates back to the pioneering works of Robbins, Monro [99], as well

as Kiefer, Wolfowitz [112], who established asymptotic convergence for derivative-free one-

dimensional problems. Since then, stochastic approximation (SA) has been studied exten-

sively, with a focus on its convergence and rate, parametric dependence, and qualitative prop-

erties. Except for the iterative analysis used to derive pointwise convergence, an ordinary

differential equation (ODE) approach has been proposed and developed to track the trajectory

behavior of SA procedures[52, 113-114]. The reader is referred to the monographs[52-54].

In many applications, the sample-generating mechanism behind {𝜉𝑡}𝑡≥0 is modeled using

an underlying Markov chain. Asymptotic convergence of SA algorithms with Markovian data

can be established using either the ODE method[52] or the Poisson equation method[53]. Our

paper falls into the second category with a specific interest in functional weak convergence.

While other works assume that {𝜉𝑡}𝑡≥0 comes from a state-dependentMarkov chain[111, 115-116],

it is beyond the scope of our paper. However, we believe that our analysis and methodology

could be applied in this area with a stronger assumption on the existence of a solution to a Pois-

son equation. Our focus is on asymptotic analysis, but non-asymptotic estimation rates for SA

algorithms with Markov data can be established if the Markov chain has a bounded mixing

time. These rates have been studied in a general manner[103-104, 117], or in special cases, in-

cluding two-timescale algorithms[118-120], gradient-based optimization[121-123], and estimation
3 This troublesome process refers to the 𝝍3 in (3.20).
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in autoregressive models[124]. Our contribution is orthogonal to these results, providing rates

of functional weak convergence for the entire partial-sum process, in terms of the number of

samples and mixing time, instead of moment convergence rates for point estimation.

Statistical inference via averaging stochastic approximation By averaging the iterates of

SA procedures, it is known that one can obtain both an improved convergence rate and a Gaus-

sian limiting behavior[30, 58, 125]. The form of this limiting distribution is optimal in the sense

of local asymptotic minimax optimality[2, 59, 126]. Therefore, iterate averaging provides auto-

matic optimal uncertainty quantification, laying the foundations of online statistical inference.

In the field of online stochastic optimization, several methods for statistical inference have

been proposed. Zhu, Chen,Wu [39], Chen, Lee, Tong, Zhang, et al. [61] developed batch-means

estimators for the limiting covariance matrix of asymptotic normality. Several variants of

SGD-type algorithms have been proposed to either simplify inference procedures, such as im-

plicit SGD[96, 127], resampling-based SGD[95, 97], and moment-adjusted variants[98], or address

structured problems, such as online decision making[38] and sparse generalized linear mod-

els[128]. Other works establish Donsker-style generalization to the asymptotic normality to use

trajectory information. Su, Zhu [67] took advantage of the asymptotic independence between

the averaged iterates of different threads in a tree-structured scheme, while Lee, Liao, Seo,

Shin [62] embraced the dependence between consecutive iterates and showed it was asymp-

totically negligible for a partial-sum process via a functional central limit theorem (FCLT).

This partial-sum FCLT leads to a computationally efficient and memory-friendly online in-

ference procedure that has proven effective in practice[62]. Subsequent work has extended

this approach to areas such as federated learning[50], synchronous reinforcement learning[21],

gradient-free optimization[129], and non-smooth regression[106].

A limitation in the above statistical inference methods and theories is that they assume

i.i.d. data points {𝜉𝑡}𝑡≥0. However, in asynchronous reinforcement learning (RL)[130-131], data

is generated along a single Markov chain, precluding the use of stochastic optimization meth-

ods. Inspired by resampling-based inference methods in stochastic optimization, Bootstrap-

basedmethods have been developed for linear policy evaluation tasks[40-43]. However, they are

not suitable for nonlinear tasks, such as quantifying randomness in the optimal value function.

The only available approach for this nonlinear task is considered by Shi, Zhang, Lu, Song [132]

which uses sieve methods to approximate the Q-function and constructs two-scale confidence

intervals, but it relies on batch updates from an offline dataset, making it computationally in-

efficient for sequential data scenarios. By contrast, we take the advantage of the partial-sum
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FCLT and provide a fully online inference method for nonlinear stochastic approximation with

Markovian data.

Trajectory behaviors in stochastic approximation To understand the asymptotic behav-

iors of SA trajectories, functional central limit theorems (FCLTs) are established to showweak

convergence of a properly constructed process to a limit process. For discrete iterative algo-

rithms, such as (3.2), the so-called ODEmethod introduced by Ljung [113] implies that, asymp-

totically, the noise effects average out or normally distributed once properly scaled, allowing

the asymptotic behavior to be effectively determined by a mean ODE or an SDE (e.g., the

Ornstein-Uhlenbeck equation). Following the spirit, works like[54, 102, 133] construct piecewise

linear or piecewise constant interpolated processes by connecting properly centered and shifted

iterates 𝒙𝑡 − 𝒙⋆. These processes have a left-shifted initial point and a time-scale adjustment

to approximate the mean ODE or SDE with increasing accuracy. Other SGD-type algorithms

have used similar last-iterate interpolated processes. Chao, Cheng [134] studied weak conver-

gence of the trajectories from generalized regularized dual averaging algorithms (gRDA) for

online ℓ1 penalized problems, while Negrea, Yang, Feng, Roy, Huggins [135] established a

joint step-size–sample-size scaling asymptotic limit for stochastic gradient Langevin dynam-

ics (SGLD). Our focus is the partial-sum process associated with {𝒙𝑡 −𝒙⋆}𝑡≥0 in nonlinear SA

with Markovian data, whereas most results focus on i.i.d. data[21, 50, 62, 106, 129, 136]. We chose

not to utilize the ODE/SDE approach to demonstrate the FCLT, as it appears unsuitable for

partial-sum processes on account of the imposed shifting initial point or the time scale.

Chapter organization The remainder of this chapter is organized as follows. We introduce

the main assumptions and provide three examples of nonlinear SA in Section 3.2. We present

the main asymptotic theoretical results in Section 3.3 and the online inference method in Sec-

tion 3.5. We revisit the three examples and conduct numerical experiments in Section 3.6. We

summarize our results and discuss future research directions in Section 3.7.

Notation Given a vector 𝒗 = (𝑣1, … , 𝑣𝑑)𝑇 ∈ ℝ𝑑 , we associate with it a norm ‖ ⋅ ‖ and

denote its dual norm as ‖ ⋅ ‖∗, i.e., ‖𝒗‖∗ = sup‖𝒖‖≤1 |⟨𝒗, 𝒖⟩|. We will denote ‖𝒗‖1 ∶=∑
𝑖∈[𝑑] |𝑣𝑖|, ‖𝒗‖2 = √

∑
𝑖∈[𝑑] 𝑣2

𝑖 , and ‖𝒗‖∞ = max𝑖∈[𝑑] |𝑣𝑖|. By
𝑑→ we denote the point-

wise weak convergence and by
𝑝→ we denote the convergence in probability. We use the

standard Loewner order notation 𝑨 ⪰ 0 if a matrix 𝑨 is positive semi-definite. We denote

[𝑛] ∶= {1, 2, ⋯ , 𝑛}, the floor function ⌊⋅⌋ that is the greatest integer less than or equal to
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the input number, and ceiling function ⌈⋅⌉ that is the smallest integer greater than or equal

to the input number. For two non-negative numbers 𝑎, 𝑏, we denote t 𝑎 ≾ 𝑏 if there exists

a positive number 𝐶 such that 𝑎 ≤ 𝐶𝑏 with 𝐶 depending on parameters of no interest. Let

ℱ𝑡 = 𝜎({𝜉𝜏}0≤𝜏≤𝑡) be the 𝜎-fields generated by all randomness before iteration 𝑡 and then 𝒙𝑡

is ℱ𝑡−1-measurable.

3.2 Problem Setup and Motivating Examples

Recall from our earlier set-up that we are interested in providing confidence intervals

for the root 𝒙⋆ of (3.1) by using only the iterates {𝒙𝑡}𝑡∈[𝑇 ] produced through the iterative

algorithm (3.2) with the data {𝜉𝑡}𝑡≥0 sampled from a singleMarkov chain. We do not assume

multiple evaluation oracles or access to derivatives of𝑯(𝒙, 𝜉) with respect to 𝒙. In summary,
our target is a nonparametric inference method that is suitable for single-trajectory data.

3.2.1 Assumptions

We first introduce and discuss the assumptions that underlie our analysis.

Definition 3.2.1 (Hurwitz matrix or stable matrix). We say 𝑨 ∈ ℝ𝑑×𝑑 is a Hurwitz (or stable)

matrix if Re𝜆𝑖(𝑨) < 0 for 𝑖 ∈ [𝑑]. Here 𝜆𝑖(⋅) denotes the 𝑖-th eigenvalue.

Assumption 3.2.1 (Local linearity). There exist constants 𝐿𝐺, 𝜆, 𝛿𝐺 > 0 and a Hurwitz −𝑮 ∈
ℝ𝑑×𝑑 such that

‖𝒈(𝒙) − 𝑮(𝒙 − 𝒙⋆)‖ ≤ 𝐿𝐺‖𝒙 − 𝒙⋆‖2 for any ‖𝒙 − 𝒙⋆‖ ≤ 𝛿𝐺.

We consider a generally non-linear 𝒈 which is locally linear at the neighborhood of the

root 𝒙⋆. We assume the linear coefficient −𝑮 is a Hurwitz matrix, a matrix whose every

eigenvalue has a strictly positive real part. In engineering and stability theory, only using a

Hurwitz matrix could make the linear system 𝒙̇ = −𝑮𝒙 have a converging and stable solution.

Such a kind of matrices have also been viewed as a generalization of positive definite matrices

in the stochastic approximation literature[30, 32].

Assumption 3.2.2 (Regularized noises at the root). There exist 𝑝 > 2 and 𝜎 > 0 such that

sup
𝑡≥0

𝑝√𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝 < ∞ and sup
𝜉∈Ξ

‖𝒫 𝑯(𝒙⋆, 𝜉)‖ ≤ 𝜎,

where we denote 𝒫 𝑯(𝒙, 𝜉) = ∫Ξ 𝑯(𝒙, 𝜉′)𝑃 (𝜉, 𝑑𝜉′).
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Assumption 3.2.2 adds moment conditions on the noise at the root𝑯(𝒙⋆, 𝜉) (noting that
𝔼𝜉∼𝜋𝑯(𝒙⋆, 𝜉) = 𝒈(𝒙⋆) = 0). In particular, we assume that {𝑯(𝒙⋆, 𝜉𝑡)}𝑡≥0 has uniformly

bounded 𝑝 > 2 moments so that we can use the martingale central limit theorem to establish

asymptotic normality.

Assumption 3.2.3 (Lipschitz continuity). Assume𝑯(⋅, 𝜉) is a uniformly averaged-𝐿𝐻 -Lipschitz

continuous function in the sense that

(𝒫 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝)
1
𝑝 ≤ 𝐿𝐻‖𝒙 − 𝒚‖ for any 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ, (3.3)

where 𝒫 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝 ∶= ∫Ξ ‖𝑯(𝒙, 𝜉′) − 𝑯(𝒚, 𝜉′)‖𝑝𝑃 (𝜉, 𝑑𝜉′) with 𝑝 given in As-

sumption 3.2.2.

Assumption 3.2.3 provides a Lipschitz continuous condition that for any two parameters

𝒙, 𝒚 ∈ ℝ𝑑 , the 𝐿𝑝-norm of ‖𝑯(𝒙, 𝜉′) − 𝑯(𝒚, 𝜉′)‖ is uniformly and linearly bounded in terms

of the difference ‖𝒙 − 𝒚‖. Here 𝜉′ denotes the data transited one step from the initial one

𝜉 ∈ Ξ. This condition serves as a bridge to connect the running increment {𝑯(𝒙𝑡, 𝜉𝑡)}𝑡≥0 and

the root-point-around noise {𝑯(𝒙⋆, 𝜉𝑡)}𝑡≥0. In this way, once 𝒙𝑡 converges and stays close to

𝒙⋆, we would expect𝑯(𝒙𝑡, 𝜉𝑡) ≈ 𝑯(𝒙⋆, 𝜉𝑡), which together with Assumption 3.2.1 imply that
the dynamic of the iterative procedure (3.2) is captured by a linear system up to a high-order

approximation error.

Under the idealized i.i.d. setting (i.e., 𝜉𝑡 is i.i.d. according to 𝜋), the condition in (3.3)

simplifies to the 𝐿𝐻 -averaged Lipschitz continuity, with (𝔼𝜉∼𝜋‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝)
1
𝑝 ≤

𝐿𝐻‖𝒙 − 𝒚‖ and the 𝜎 defined in Assumption 3.2.2 is equal to zero. A sufficient condition

for (3.3) is almost surely Lipschitz continuity, meaning that ‖𝑯(𝒙, 𝜉)−𝑯(𝒚, 𝜉)‖ ≤ 𝐿𝐻 |𝒙−𝒚|
holds for any 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ. This type of condition is commonly used in machine

learning, as demonstrated by the A2 condition in[103].

Assumption 3.2.4 (Uniformly ergodic Markov chain sampling). We assume 𝜉𝑡 ∈ Ξ is gen-

erated from a time-homogeneous and uniformly ergodic Markov chain ℳ with 𝜋 the unique

stationary distribution. Furthermore, there exist 𝜅 ≥ e, 𝜌 ∈ [0, 1) such that for any initial

𝜉 ∈ Ξ,
𝑑TV(𝑃 𝑡(𝜉, ⋅), 𝜋) ≤ 𝜅𝜌𝑡

2 , (3.4)

where 𝑑TV(⋅, ⋅) denotes the total variation (TV) distance of probability measures and 𝑃 𝑡(𝜉, ⋅)
denotes the distribution of 𝜉𝑡 with the initial state as 𝜉0 = 𝜉.
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A Markov process that satisfies Assumption 3.2.4 with the parameter (𝜅, 𝜌) is called a

𝜌-geometrical ergodic or uniformly ergodic process. Irreducible finite-state Markov chains

are always uniformly ergodic. In general, if ℳ satisfies a drift condition and a minorization

condition, as stated in Proposition 5.1 in Andrieu, Moulines, Priouret [137] or Theorem 1.2

in Hairer, Mattingly [138], then (3.4) holds. In practical applications, when 𝜉𝑡 is a concatena-

tion of random variables taking values in a finite space, such as the current state in an MDP,

and exogenous independent observation noises, such as independent stochastic rewards, (3.4)

typically holds.

An important consequence from Assumption 3.2.4 is that for any bounded function 𝒉 ∶
Ξ → ℝ𝑑 , 𝒫 𝑡𝒉(𝜉) would converge to 𝔼𝜉∼𝜋𝒉(𝜉) exponentially fast uniformly over 𝜉 ∈ Ξ.

Lemma 3.2.1. Under Assumption 3.2.4, for any measurable uniformly bounded function 𝒉 ∶
Ξ → ℝ𝑑 , we we have for any 𝑡 ≥ 0,

sup
𝜉∈Ξ

‖𝒫 𝑡𝒉(𝜉) − 𝔼𝜉∼𝒟𝒉(𝜉)‖ ≤ 𝜅𝜌𝑡 ⋅ sup
𝜉∈Ξ

‖𝒉(𝜉) − 𝔼𝜉∼𝒟𝒉(𝜉)‖. (3.5)

Proof of Lemma 3.2.1. Define an auxiliary function 𝒉0(𝜉) ∶= 𝒉(𝜉) − 𝔼𝜉∼𝜋𝒉(𝜉). Since 𝒉(⋅) is
uniformly bounded, so is 𝒉0(⋅). Furthermore, 𝔼𝜉∼𝜋𝒉0(𝜉) = 0. By Strassen’s duality theorem,
let 𝜉∞ ∈ Ξ denote the random variable with distribution 𝜋 that satisfies 𝑑TV(𝑃 𝑡(𝜉, ⋅), 𝜋) =
ℙ(𝜉𝑡 ≠ 𝜉∞|𝜉0 = 𝜉). Then

‖𝒫 𝑡𝒉0(𝜉)‖ = ‖𝔼[𝒉0(𝜉𝑡)|𝜉0 = 𝜉]‖ = ‖𝔼[𝒉0(𝜉𝑡) − 𝒉0(𝜉∞)|𝜉0 = 𝜉]‖

= ‖𝔼[(𝒉0(𝜉𝑡) − 𝒉0(𝜉∞)) ⋅ 1𝜉𝑡≠𝜉∞|𝜉0 = 𝜉]‖

≤ sup
𝜉𝑡,𝜉∞

‖𝒉0(𝜉𝑡) − 𝒉0(𝜉∞)‖ ⋅ ℙ(𝜉𝑡 ≠ 𝜉∞|𝜉0 = 𝜉)

≤ 2 sup
𝜉∈Ξ

‖𝒉0(𝜉)‖ ⋅ 𝑑TV(𝒫 𝑡(𝜉, ⋅), 𝜋)

≤ 𝜅𝜌𝑡 ⋅ sup
𝜉∈Ξ

‖𝒉0(𝜉)‖.

We comment that we allow ℳ to be initialized arbitrarily rather than from its stationary

distribution 𝜋. One important quantity is the mixing time, that is, the time to approach sta-

tionarity (in terms of the TV distance) from the worst initial state. For the uniformly ergodic

Markov chain above, the mixing time to accuracy 𝜀 is 𝑡mix(𝜀) = ⌈log𝜌
2𝜀
𝜅 ⌉ so that 𝜅

2 𝜌𝑡mix(𝜀) ≤ 𝜀.
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With a special interest in the halving accuracy time, 1 we also define

𝑡mix =
⎧⎪
⎨
⎪⎩

0 if 𝜌 = 0,
ln 𝜅
1−𝜌 if 𝜌 ∈ (0, 1).

(3.6)

One can show that 𝑡mix is an upper bound for 𝑡mix(0.5) by using the inequality 1 − 1
𝑢 ≤ ln 𝑢 for

all 𝑢 > 0. If 𝜉𝑡’s are i.i.d., then 𝜌 = 0 and the 𝑡mix is also zero. If 𝜉𝑡’s follow from the Markov

sampling, 𝜌 becomes positive and 𝑡mix goes to infinity when it approaches one.

Lemma 3.2.2. Under Assumptions 3.2.2, 3.2.3, and 3.2.4, there exists a unique bivariate func-

tion 𝑼 (𝒙, 𝜉) satisfies
1. It is the solution to the Poisson equation, where 𝒫 𝑼 (𝒙, 𝜉) ∶= ∫Ξ 𝑼 (𝒙, 𝜉′)𝑃 (𝜉, 𝑑𝜉′),

𝑼 (𝒙, 𝜉) − 𝒫 𝑼 (𝒙, 𝜉) = 𝑯(𝒙, 𝜉) − 𝒈(𝒙). (3.7)

2. It is bounded in the sense that for any 𝒙 ∈ ℝ𝑑 and 𝜉 ∈ Ξ,

‖𝒫 𝑼 (𝒙, 𝜉)‖ ≤ 𝜅𝑡mix ⋅ (2𝐿𝐻‖𝒙 − 𝒙⋆‖ + 𝜎) .

3. It is mean-zero in the sense that 𝔼𝜉∼𝜋𝑼 (𝒙, 𝜉) = 0 for any 𝒙 ∈ ℝ𝑑 .

4. It is uniformly averaged Lipschitz continuous in the sense that

(𝒫 ‖𝑼 (𝒙, 𝜉) − 𝑼 (𝒚, 𝜉)‖𝑝)
1
𝑝 ≤ 𝐿𝑈 ‖𝒙 − 𝒚‖ for any 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ,

where 𝐿𝑈 = 𝒪(𝐿𝐻 (1 + 𝜅𝑡mix)) with 𝒪(⋅) hiding universal constants. Here we de-

note 𝒫 ‖𝑼 (𝒙, 𝜉) − 𝑼 (𝒚, 𝜉)‖𝑝 ∶= ∫Ξ ‖𝑼 (𝒙, 𝜉′) − 𝑼 (𝒚, 𝜉′)‖𝑝𝑃 (𝜉, 𝑑𝜉′) with 𝑝 given in

Assumption 3.2.2.

Proof of Lemma 3.2.2. Define

𝑼 (𝒙, 𝜉) ∶=
∞∑

𝑡=0
(𝒫 𝑡𝑯(𝒙, 𝜉) − 𝒈(𝒙)) .

We first claim 𝑼 (𝒙, 𝜉) is finite almost surely and thus well-defined. When setting 𝒉𝒙(𝜉) =
𝑯(𝒙, 𝜉) − 𝒈(𝒙), we know that 𝒫 𝒉𝒙(𝜉) = 𝒫 𝑯(𝒙, 𝜉) − 𝒈(𝒙) is bounded by 𝜎𝒙 ∶= 2𝐿𝐻‖𝒙 −
𝒙⋆‖ + 𝜎 uniformly over 𝜉 ∈ Ξ due to

‖𝒫 𝒉𝒙(𝜉)‖ ≤ 𝒫 ‖𝒉𝒙(𝜉) − 𝒉𝒙⋆(𝜉)‖ + ‖𝒫 𝒉𝒙⋆(𝜉)‖

≤ 𝒫 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒙⋆, 𝜉)‖ + ‖𝒈(𝒙)‖ + ‖𝒫 𝑯(𝒙⋆, 𝜉)‖

≤ 2𝐿𝐻‖𝒙 − 𝒙⋆‖ + 𝜎 = 𝜎𝒙,

1 Note that different accuracy 𝜀’s affect 𝑡mix(𝜀) only mildly. We take a concrete value of 𝜀 for notation simplicity.
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where the last inequality uses Assumption 3.2.3 and Assumption 3.2.4. Therefore, under As-

sumption 3.2.4, we have𝔼𝜉∼𝒟𝒉𝒙(𝜉) = 0 and ‖𝒫 𝑡𝑯(𝒙, 𝜉)−𝒈(𝒙)‖ ≤ 𝜅𝜌𝑡−1𝜎𝒙 fromLemma 3.2.1.

As a result, we have

‖𝑼 (𝒙, 𝜉)‖ ≤ ‖𝑯(𝒙, 𝜉) − 𝒈(𝒙)‖ +
∞∑

𝑡=1
‖𝒫 𝑡𝑯(𝒙, 𝜉) − 𝒈(𝒙)‖

≤ ‖𝑯(𝒙, 𝜉) − 𝒈(𝒙)‖ + 𝜅
∞∑

𝑡=0
𝜌𝑡𝜎𝒙

≤ ‖𝑯(𝒙, 𝜉) − 𝒈(𝒙)‖ + 𝜅𝜎𝒙
1 − 𝜌 < ∞.

Similarly, we can show

‖𝒫 𝑼 (𝒙, 𝜉)‖ ≤
∞∑

𝑡=1
‖𝒫 𝑡𝑯(𝒙, 𝜉) − 𝒈(𝒙)‖ ≤ 𝜅𝜎𝒙

1 − 𝜌 ≤ 𝜅𝜎𝒙𝑡mix,

which completes the proof for the second item. We then show 𝑼 (𝒙, 𝜉) is indeed a solution

to (3.7) because

𝑼 (𝒙, 𝜉) − 𝒫 𝑼 (𝒙, 𝜉) =
∞∑

𝑡=0
(𝒫 𝑡𝑯(𝒙, 𝜉) − 𝒈(𝒙)) − 𝒫

∞∑
𝑡=0

(𝒫 𝑡𝑯(𝒙, 𝜉) − 𝒈(𝒙))

=
∞∑

𝑡=0
(𝒫 𝑡𝑯(𝒙, 𝜉) − 𝒈(𝒙)) −

∞∑
𝑡=1

(𝒫 𝑡𝑯(𝒙, 𝜉) − 𝒈(𝒙))

= 𝑯(𝒙, 𝜉) − 𝒈(𝒙).

It is also clear that 𝔼𝜉∼𝜋𝑼 (𝒙, 𝜉) = 0 since 𝜋 is the stationary distribution of 𝒫 and the equa-

tion (3.1). If there exists another solution 𝑼 ′(𝒙, 𝜉) to the same equation (3.7) and satisfying

𝔼𝜉∼𝜋𝑼 ′(𝒙, 𝜉) = 0 for any 𝒙 ∈ ℝ𝑑 , then there exists a function 𝑐(𝒙) such that 𝑼 ′(𝒙, 𝜉) =
𝑼 (𝒙, 𝜉) + 𝑐(𝒙) from Proposition 1.1 of Glynn, Meyn [139]. As a result, we have 𝑐(𝒙) = 0 for
any 𝒙 ∈ ℝ𝑑 , which implies the uniqueness of 𝑼 (𝒙, 𝜉).

Finally, for any 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ, by Lemma 3.2.1,

‖𝑼 (𝒙, 𝜉) − 𝑼 (𝒚, 𝜉)‖ =
‖

∞∑
𝑡=0

[𝒫 𝑡 (𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)) − (𝒈(𝒙) − 𝒈(𝒚))]‖

≤ ‖(𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)) − (𝒈(𝒙) − 𝒈(𝒚))‖

+
∞∑

𝑡=1
‖𝒫 𝑡 (𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)) − (𝒈(𝒙) − 𝒈(𝒚))‖

≤ ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖ + ‖𝒈(𝒙) − 𝒈(𝒚)‖
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+ 𝜅
1 − 𝜌 sup

𝜉∈Ξ
‖𝒫 (𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)) − (𝒈(𝒙) − 𝒈(𝒚))‖ .

By Jensen’s inequality, it follows that for the 𝑝 defined in Assumption 3.2.2,

‖𝑼 (𝒙, 𝜉) − 𝑼 (𝒚, 𝜉)‖𝑝 ≤ 3𝑝−1 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝 + 3𝑝−1 ‖𝒈(𝒙) − 𝒈(𝒚)‖𝑝

+ 3𝑝−1𝜅𝑝

(1 − 𝜌)𝑝 sup
𝜉∈Ξ

‖𝒫 (𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)) − (𝒈(𝒙) − 𝒈(𝒚))‖𝑝

≤ 3𝑝−1 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝 + (3𝑝−1 + 6𝑝−1𝜅𝑝

(1 − 𝜌)𝑝 ) ⋅ ‖𝒈(𝒙) − 𝒈(𝒚)‖𝑝

+ 6𝑝−1𝜅𝑝

(1 − 𝜌)𝑝 sup
𝜉∈Ξ

‖𝒫 𝑯(𝒙, 𝜉) − 𝒫 𝑯(𝒚, 𝜉)‖𝑝 .

ByAssumption 3.2.3, it follows that𝒫 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝 ≤ 𝐿𝑝
𝐻‖𝒙−𝒚‖𝑝 uniformly for 𝜉 ∈

Ξ. Notice that have that 𝔼𝜉∼𝜋𝒫 (⋅) = 𝔼𝜉∼𝜋(⋅) because 𝜋 is the (unique) stationary distribution

of 𝒫 . Therefore, by conditional Jensen’s inequality,

‖𝒈(𝒙) − 𝒈(𝒚)‖𝑝 = ‖𝔼𝜉∼𝜋𝒫 (𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉))‖
𝑝

≤ 𝔼𝜉∼𝜋𝒫 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝 ≤ 𝐿𝑝
𝐻‖𝒙 − 𝒚‖𝑝.

Similarly, we also have that

sup
𝜉∈Ξ

‖𝒫 𝑯(𝒙, 𝜉) − 𝒫 𝑯(𝒚, 𝜉)‖𝑝 ≤ sup
𝜉∈Ξ

𝒫 ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖𝑝 ≤ 𝐿𝑝
𝐻‖𝒙 − 𝒚‖𝑝.

Putting the pieces together, we conclude that there exists a constant 𝐿𝑈 = 𝒪(𝐿𝐻 (1 + 𝜅𝑡mix))
such that

𝒫 ‖𝑼 (𝒙, 𝜉) − 𝑼 (𝒚, 𝜉)‖𝑝 ≤ 𝐿𝑝
𝑈 ‖𝒙 − 𝒚‖𝑝.

The existence of a unique solution to the Poisson equation (3.7) (denoted 𝑼 (𝒙, 𝜉)) is a
crucial result from Assumptions 3.2.2, 3.2.3, and 3.2.4. It can also be expressed as (ℐ −
𝒫 )−1(𝑯(𝒙, 𝜉) − 𝒈(𝒙)), where ℐ is the identity mapping. Lemma 3.2.2 demonstrates that the

operator ℐ − 𝒫 is invertible on the mean-zero function class {𝒉 ∈ (ℝ𝑑)Ξ ∶ 𝔼𝜉∼𝜋𝒉(𝜉) = 0}.
Additionally, the function 𝑼 (𝒙, 𝜉) inherits all the properties of the bivariate function 𝑯(𝒙, 𝜉)
outlined in Assumptions 3.2.2 and 3.2.3. This function is important in determining the asymp-

totic variance and the semi-efficiency lower bound, which will be stated later.

Assumption 3.2.5 (Slowly decaying step size). Assume (i) 0 < 𝜂𝑡 ≤ 1, 𝜂𝑡 ↓ 0, 𝜂𝑡 log2 𝑡 → 0
and 𝑡𝜂𝑡 ↑ ∞ as 𝑡 → ∞, (ii) 𝜂𝑡−1−𝜂𝑡

𝜂𝑡−1
= 𝑜(𝜂𝑡−1) for 𝑡 ≥ 1, (iii)

∑∞
𝑡=1

log 𝑡
√𝑡

𝜂𝑡 < ∞, and (iv)
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∑𝑇
𝑡=0 𝜂𝑡

𝑇 𝜂𝑇
≤ 𝐶 for 𝑇 ≥ 1.

Weconsider the step size that decays at a sufficiently slow rate satisfyingAssumption 3.2.5.

A classic example is the polynomial step size 𝜂𝑡 = 𝜂𝑡−𝛼 with the scale 𝜂 > 0 and 𝛼 ∈ (0.5, 1).

Definition 3.2.2 ((𝐿𝑝, 𝑏𝑡)-consistency[140]). For a sequence {𝒙𝑡}𝑡≥0 ⊂ ℝ𝑑 and a non-negative

sequence {𝑏𝑡}𝑡≥0 ⊂ ℝ, we say {𝒙𝑡}𝑡≥0 to be (𝐿𝑝, 𝑏𝑡)-consistency if there exists a positive con-

stant 𝐶𝑝 ≥ 1 such that for any 𝑡 ≥ 0,
𝑝√𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝 ≤ 𝐶𝑝𝑏𝑡.

Assumption 3.2.6. Assume {𝒙𝑡}𝑡≥0 satisfies the (𝐿2, (1+log 𝑡)√𝜂𝑡)-consistency and sup𝑡≥0 𝔼‖𝒙𝑡−
𝒙⋆‖𝑝 < ∞ with 𝑝 given in Assumption 3.2.2.

The final assumption, Assumption 3.2.6, concerns the (𝐿𝑝, 𝑏𝑡)-consistency introduced

by Gadat, Panloup [140]. This refers to the behavior of the SA update procedure in (3.2).

It is important to note that (𝐿𝑝, 𝑏𝑡)-consistency implies (𝐿𝑞, 𝑏𝑡)-consistency for 0 < 𝑞 ≤ 𝑝
with 1 ≤ 𝐶𝑞 ≤ 𝐶𝑝, as per the Jensen inequality. In our case, we only require (𝐿2, (1 +
log 𝑡)√𝜂𝑡)-consistency, a weaker condition than the original work that assumes (𝐿4, √𝜂𝑡)-
consistency[140].

3.2.2 Examples of Nonlinear Stochastic Approximation

We now present some examples of nonlinear SA which we would revisit in the numerical

experiments.

3.2.2.1 Stochastic Gradient Descent

The most celebrated example is stochastic gradient descent (SGD) that is originally intro-

duced by Robbins, Monro [99]. Due to its simplicity and efficiency, SGD probably becomes

the most powerful method for solving optimization problems in machine learning. The stan-

dard task is to minimize an (unknown) objective function 𝐹 ∶ ℝ𝑑 → ℝ in the form 𝐹 (𝒙) =
𝔼𝜉∼𝜋𝐹 (𝒙, 𝜉). We have access to the noisy samples of the gradient ∇𝐹 (𝒙) = 𝔼𝜉∼𝜋∇𝐹 (𝒙, 𝜉)
where 𝜉 is the observed data. When having complete control over data collection (e.g. the

case of offline training), we can assume each data 𝜉𝑡
𝑖.𝑖.𝑑.∼ 𝜋 for granted. In the streaming data

setting, it is more practical to assume the data {𝜉𝑡}𝑡≥0 sampled from a Markov chain with 𝜋
the unique stationary distribution (see Assumption 3.2.2). In this case, during the 𝑡-th gradi-
ent oracle, we input a parameter 𝒙𝑡 and observe a stochastic gradient vector ∇𝐹 (𝒙𝑡, 𝜉𝑡) as the
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sample of ∇𝐹 (𝒙𝑡). We then perform SGD to update 𝒙𝑡 via

𝒙𝑡+1 = 𝒙𝑡 − 𝜂𝑡𝑯(𝒙𝑡, 𝜉𝑡) with𝑯(𝒙𝑡, 𝜉𝑡) = ∇𝐹 (𝒙𝑡, 𝜉𝑡).

For convex 𝐹 ’s, one can find that its minimizer 𝒙⋆ is exactly the root of its gradient func-

tion, i.e., 𝒙⋆ = argmin𝒙∈ℝ𝑑 𝐹 (𝒙) = {𝒙 ∈ ℝ𝑑 ∶ ∇𝐹 (𝒙) = 0}. When ∇2𝐹 (𝒙) further satisfies a
local continuity condition around the root 𝒙⋆ where ‖∇2𝐹 (𝒙)−∇2𝐹 (𝒙⋆)‖ ≤ 2𝐿𝐺‖𝒙−𝒙⋆‖ for
any ‖𝒙−𝒙⋆‖ ≤ 𝛿𝐺, Assumption 3.2.1 is satisfied. This local continuity condition is used by Li,

Liang, Chang, Zhang [50], Su, Zhu [67], Chen, Lai, Li, Zhang [129] to ensure local linearity in

their applications. To ensure (3.3), a sufficient condition is almost surely Lipschitz continuity

that ‖∇𝐹 (𝒙, 𝜉) − ∇𝐹 (𝒚, 𝜉)‖ ≤ 𝐿𝐻‖𝒙−𝒚‖ for any 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ. Assumption 3.2.2 re-
lies on how the data 𝜉𝑡 interacts with the gradients ∇𝐹 (𝒙⋆, 𝜉𝑡), while Assumption 3.2.4 purely
depends on the data generation mechanism, both of which require a case-by-case discussion.

In the following, we provide two more concrete examples of ∇𝐹 (𝒙, 𝜉𝑡) and see how they

satisfy the assumptions we imposed.

• The first example is linear regression with autoregressive noises. We receive data 𝜉𝑡 =
(𝒂𝑡, 𝑦𝑡) where 𝑦𝑡 = ⟨𝒂𝑡,𝒙⋆⟩ + 𝜁𝑡. Here 𝑚 ∶ ℝ → ℝ is a transformation function, the

covariate 𝒂𝑡
𝑖.𝑖.𝑑.∼ 𝜋𝒂, and each infused noise 𝜁𝑡 is sampled from an autoregressive model

with 𝜋𝜁 the stationary distribution. The stationary distribution 𝜋 corresponds to the joint

distribution of (𝒂, 𝑦) where 𝒂 ∼ 𝜋𝒂 and 𝑦 = ⟨𝒂,𝒙⋆⟩ + 𝜁 with 𝜁 ∼ 𝜋𝜁 independent of 𝒂. We

use the squared loss 𝐹 (𝒙, 𝜉𝑡) = 1
2(𝑦𝑡 − ⟨𝒂𝑡,𝒙⟩)2 and thus ∇𝐹 (𝒙, 𝜉𝑡) = (⟨𝒂𝑡,𝒙⟩ − 𝑦𝑡)𝒂𝑡. One

can show that Assumption 3.2.1 holds with 𝑮 = 𝔼𝒂∼𝜋𝒂𝒂𝒂
⊤ and (𝛿𝐺, 𝐿𝐺) = (∞, 0). Once

𝔼𝒂∼𝜋𝒂‖𝒂‖𝑝 < ∞, Assumptions 3.2.2 and 3.2.3 follow.

• The second example is generalized linear model with Markovian data. In the observed data

𝜉𝑡 = (𝒂𝑡, 𝑦𝑡), the covariate {𝒂𝑡}𝑡≥0 is generated according to an autoregressive model with

𝜋𝒂 its stationary distribution and {𝑦𝑡}𝑡≥0 is generated from the canonical generalized linear

model 𝑝𝑦(𝑦|𝒂𝑡) ∝ exp (𝜃𝑡𝑦 − 𝑏(𝜃𝑡)) with 𝜃𝑡 = ⟨𝒂𝑡,𝒙⋆⟩. The stationary distribution 𝜋 is

𝜋𝒂(𝑑𝒂)×𝑝𝑦(𝑑𝑦|𝒂). We use the negative log-likelihood loss 𝐹 (𝒙𝑡, 𝜉𝑡) = 𝑏(⟨𝒂𝑡,𝒙⟩)−⟨𝒂𝑡,𝒙⟩𝑦𝑡

and thus∇𝐹 (𝒙, 𝜉𝑡) = (𝑏′(⟨𝒂𝑡,𝒙⟩)−𝑦𝑡)𝒂𝑡 where 𝑏′ is the derivative of 𝑏. Standard choices of 𝑏
include the identity map for linear regression and the logistic function for logistic regression.

Assumption 3.2.1 is satisfied with𝑮 = ∇2𝐹 (𝒙⋆) and some finite (𝛿𝐺, 𝐿𝐺) if we assume 𝑏″ is

non-negative and uniformly bounded with sup𝑡≥0 𝔼‖𝒂𝑡‖2 < ∞. Assumptions 3.2.2 and 3.2.3

are satisfied if we further assume 𝑏′ is Lipschitz continuous and uniformly bounded together

with sup𝑡≥0 𝔼‖𝒂𝑡‖𝑝 < ∞ for 𝑝 > 2.
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In these cases, the uniform ergodicity of 𝜉𝑡 in Assumption 3.2.4 is reduced to that of either

𝜁𝑡 or 𝒂𝑡, both autoregressive processes. Uniform ergodicity has already been established for a

wide range of first-order linear autoregressive (a.k.a. AR(1)) models[141].

3.2.2.2 Asynchronous Q-Learning

Reinforcement learning algorithms are often studied in terms of the Markov decision pro-

cess (MDP) with a finite state space 𝒮 and action space 𝒜 [9]. An MDP contains a collection

of probability transition kernels {𝑷 (⋅|𝑠, 𝑎)}(𝑠,𝑎)∈𝒮 ×𝒜 ⊆ ℝ|𝒮 ×𝒜|×|𝒮 | where the transition ker-

nel 𝑷 (𝑠′|𝑠, 𝑎) denotes the probability of transiting to 𝑠′ when action 𝑎 ∈ 𝒜 is taken at the

state 𝑠 ∈ 𝒮 . The MDP is also equipped with a random reward function 𝑹 ∈ ℝ|𝒮 ×𝒜| and

𝑹(𝑠, 𝑎) corresponds to the immediate reward collected in state 𝑠 ∈ 𝒮 upon performing the

action 𝑎 ∈ 𝒜 . We denote 𝒓 = 𝔼𝑹 by the expected reward function. A policy 𝜋 ∶ 𝒮 → Δ(𝒜)
is a mapping from the state space 𝒮 to the simplex of action space 𝒜 (denoted Δ(𝒜)). In

discounted MDPs, a common objective is to maximize the expected long-term reward. For a

given policy 𝜋, the expected long-term reward is measured by its Q-function 𝑄𝜋 defined as

𝑄𝜋(𝑠, 𝑎) = 𝔼
[

∞∑
𝑡=0

𝛾 𝑡𝑅𝑡(𝑠𝑡, 𝑎𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎, 𝜋
]

,

where the trajectory is generated according to 𝑎𝑡 ∼ 𝜋(𝑠𝑡), 𝑠𝑡+1 ∼ 𝑷 (⋅|𝑠𝑡, 𝑎𝑡), and 𝑅𝑡(𝑠𝑡, 𝑎𝑡) ∼
𝑹(𝑠𝑡, 𝑎𝑡). Classic results show that the optimal Q-function 𝑄⋆(𝑠, 𝑎) ∶= max𝜋 𝑄𝜋(𝑠, 𝑎) is
uniquely determined by the fixed point of the Bellman equation 𝑸⋆ = 𝒓 + 𝛾𝑷𝒯 𝑸⋆ where

𝒯 ∶ ℝ|𝒮 ×𝒜| → ℝ|𝒮 | is a blockwise max operator defined by (𝒯 𝑸)(𝑠) ∶= sup𝑎∈𝒜 𝑸(𝑠, 𝑎) for
any 𝑠 ∈ 𝒮 .

Q-Learning is perhaps the most popular model-free approach to seek the optimal value

function[17]. In the so-called asynchronous RL, a generative data simulator is not available

and data access is limited to the Markov chain introduced by a given behavior policy 𝜋b
[130].

At iteration 𝑡, the agent performs action 𝑎𝑡 ∼ 𝜋b(𝑠𝑡) from the current state 𝑠𝑡, then receives

a random reward 𝑹𝑡(𝑠𝑡, 𝑎𝑡), and transits to the next state 𝑠𝑡+1 ∼ 𝑷 (⋅|𝑠𝑡, 𝑎𝑡). With the data

𝜉𝑡 = (𝑠𝑡, 𝑎𝑡,𝑹𝑡(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1), Q-Learning updates an estimate 𝑄𝑡 for 𝑄⋆ via

𝑄𝑡+1(𝑠, 𝑎) =
{

𝑄𝑡(𝑠, 𝑎) if (𝑠, 𝑎) ≠ (𝑠𝑡, 𝑎𝑡),
(1 − 𝜂𝑡) ⋅ 𝑄𝑡(𝑠, 𝑎) + 𝜂𝑡 (𝑅𝑡(𝑠𝑡, 𝑎𝑡) + 𝛾 sup𝑎∈𝒜 𝑄𝑡(𝑠𝑡+1, 𝑎)) if (𝑠, 𝑎) = (𝑠𝑡, 𝑎𝑡).

Denote by 𝑹𝑡 ∈ ℝ|𝒮 ×𝒜| the one-hot vector with only the (𝑠𝑡, 𝑎𝑡)-th entry non-zero with value
𝑅𝑡(𝑠𝑡, 𝑎𝑡) and by 𝑷 𝑡 ∈ ℝ|𝒮 ×𝒜|×|𝒮 | the sparse matrix with only the (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)-th entry nonzero
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with value one. Then one can rewrite (3.8) in a matrix form

𝑸𝑡+1 = 𝑸𝑡 − 𝜂𝑡𝑯(𝑸𝑡, 𝜉𝑡) with 𝑯(𝑸𝑡, 𝜉𝑡) = 𝑰 𝑡(𝑸𝑡 − 𝛾𝑷 𝑡𝒯 𝑸𝑡 − 𝑹𝑡), (3.8)

where 𝑰 𝑡 ∈ ℝ|𝒮 ×𝒜| is a sparse diagonal matrix with only the (𝑠𝑡, 𝑎𝑡)-th entry equal to one and
𝑸𝑡 ∈ ℝ|𝒮 ×𝒜| is the vectorizedQ-value function. We slightly abuse the notation and always use

𝑹𝑡,𝑷 𝑡 to denote the dense observation whose most coordinates are not accessible but filtered

out by the sparse matrix 𝑰 𝑡. By contrast, a data generator is available in synchronous RL that

produces independent rewards and next states for all state-action pairs so that 𝑰 𝑡 is always an

identity matrix[56].

Proposition 3.2.1. Assume that (i) the MDP introduced by 𝜋b is irreducible, (ii) the optimal

policy is unique and denoted by 𝜋⋆, and (iii) {𝑹𝑡(𝑠, 𝑎)}(𝑠,𝑎)∈𝒮 ×𝒜 is independent on {𝑠𝑡}𝑡≥0, and

sup(𝑠,𝑎)∈𝒮 ×𝒜 𝔼|𝑹(𝑠, 𝑎)|𝑝 < ∞. Then the iterates {𝑸𝑡}𝑡≥0 in (3.8) satisfies Assumptions 3.2.1-

3.2.4.

The consequences of the assumptions in Proposition 3.2.1 are as follows. Firstly, under the

assumptions, the stationary distribution of 𝜉𝑡 is given by 𝑑𝜋b(𝑑𝑠)𝜋b(𝑑𝑎|𝑠)𝑝𝑟(𝑑𝑟|𝑠, 𝑎)𝑷 (𝑑𝑠′|𝑠, 𝑎),
where 𝑑𝜋b(⋅) is the state stationary distribution of the MDP determined by 𝜋b and 𝑝𝑟(⋅|𝑠, 𝑎) is
the probability density function of R(𝑠, 𝑎). As a result, 𝒈(𝑸) = 𝑫(𝑸 − 𝛾𝑷𝒯 𝑸 − 𝒓) with
𝑫 = diag({𝑑𝜋b(𝑠)𝜋b(𝑎|𝑠)}(𝑠,𝑎)) is a square diagonal matrix with order |𝒮 × 𝒜|. Using the ℓ∞

norm, Li, Yang, Jiadong, Zhang, Jordan [21] showed Assumption 3.2.1 holds for Q-Learning

with (𝛿𝐺, 𝐿𝐺) = (∞, 𝐿
Δ) if the optimal policy 𝜋⋆ is unique, where Δ is the optimality gap

defined by Δ ∶= min𝑠 min𝑎≠𝜋⋆(𝑠) |𝑉 ⋆(𝑠) − 𝑄⋆(𝑠, 𝑎)|. In this case, when ‖𝑸 − 𝑸⋆‖ ≾ Δ,

𝒯 𝑸 = 𝚷𝜋⋆𝑸 behaviors like a linear operator where 𝚷𝜋 ∈ ℝ|𝒮 |×|𝒮 ×𝒜| is a projection matrix

associated with a given policy 𝜋 defined by 𝚷𝜋 ∶= diag({𝜋(⋅|𝑠)⊤}𝑠∈𝒮 ). Therefore, the local
linearity matrix is 𝑮 = 𝑫(𝑰 − 𝛾𝑷𝚷𝜋⋆) whose negative is Hurwitz. 1 Secondly, if each ran-

dom reward has bounded 𝑝-th order moments, Assumption 3.2.2 holds with 𝜎 = 0 due to the

boundedness of 𝑸⋆. Thirdly, one can show that Assumption 3.2.3 follows with 𝐿𝐻 = 1 + 𝛾 .
Finally, the Markov chain determined by 𝜋b on the finite space 𝒮 × 𝒜 is irreducible and thus

uniformly ergodic, which along with the i.i.d. nature of𝑹𝑡(𝑠, 𝑎) implies that Assumption 3.2.4
holds.

1 Note that 𝑷𝚷𝜋⋆
is a Markov transition kernel on 𝒮 × 𝒜 and thus has eigenvalues with norm at most 1. As a result of

𝛾 ∈ [0, 1), 𝑰 − 𝛾𝑷𝚷𝜋⋆
has eigenvalues with strictly positive real parts and so its negative is Hurwitz. By Liapunov’s

theorem, 𝑨 is Hurwitz if and only if there exists symmetric matrices 𝑩1,𝑩2 such that 𝑨⊤𝑩1 + 𝑩1𝑨 = 𝑩2. Using this
equivalence, one can show −𝑮 is Hurwitz as well.
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3.3 Main Results

We now turn to the statement of our main results, beginning with a FCLT in Section 3.3.1,

followed by consistency guarantees in Section 3.3.2, a semi-parametric efficient lower bound

in Section 3.3.3, and ended by functional weak convergence rates in Section 3.3.4.

3.3.1 Functional Central Limit Theorem

Theorem 3.3.1 (FCLT). Under Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, and 3.2.6, for the

iterate {𝒙𝑡}𝑡≥0 defined by (3.2) and any 𝑟 ∈ [0, 1], we define the partial-sum process as what

follows

𝝓𝑇 (𝑟) ∶= 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

(𝒙𝑡 − 𝒙⋆).

Then, as a random function on [0, 1], 𝝓𝑇 (⋅) weakly converges to a scaled Brownian motion

𝝍(⋅), i.e.,
𝝓𝑇

𝑤→ 𝝍 ∶= 𝑮−1𝑺1/2𝑾 (3.9)

in the Skorohod topology where

𝑺 ∶= 𝔼𝜉∼𝜋 [𝑼 (𝒙⋆, 𝜉)𝑼 (𝒙⋆, 𝜉)⊤ − 𝒫 𝑼 (𝒙⋆, 𝜉)𝒫 𝑼 (𝒙⋆, 𝜉)⊤] (3.10)

is the covariance matrix and𝑾 = {𝑾 (𝑟)∶ 𝑟 ∈ [0, 1]} is the standard 𝑑-dimensional Brown-
ian motion.

Theorem 3.3.1 shows both the cadlag constant function𝝓𝑡 weakly converges to the rescaled

Brownianmotion𝑮−1𝑺𝑾 . The scale𝑮−1𝑺 involves both the local linearity coefficient𝑮 and

the covariance matrix 𝑺. One can show 𝑺 = 𝔼𝜉∼𝜋Var𝜉′∼𝑃 (𝜉,⋅)(𝑼 (𝒙⋆, 𝜉′)) is the expected con-
ditional covariance matrix of𝑼 (𝒙⋆, 𝜉′)with 𝜉 ∼ 𝜋 and 𝜉′ ∼ 𝑃 (𝜉, ⋅). This functional weak con-
vergence provides stronger characterization for asymptotic behaviors of the SA scheme (3.2)

than pointwise weak convergence. By applying the continuous mapping theorem with a con-

tinuous functional 𝑓 , we can arrive at Corollary 3.3.1.

Corollary 3.3.1. Under the same assumptions in Theorem 3.3.1, for any 𝑘 ≥ 1 and any |||⋅|||-
continuous functional 𝑓 ∶ D[0,1],ℝ𝑑 → ℝ𝑘, it follows that as 𝑇 → ∞,

𝑓(𝝓𝑇 ) 𝑑→ 𝑓(𝝍) = 𝑓(𝑮−1𝑺1/2𝑾 ).

By the corollary we could easily establish weaker pointwise weak convergences by pick-

ing up a |||⋅|||-continuous functional 𝑓 . For example, one can recover the standard i.i.d. CLT
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in[30] by setting 𝑓 ∶ 𝝓 ↦ 𝝓(1). We say 𝑓 ∶ D[0,1],ℝ𝑑 → ℝ𝑑 is scale-invariant if 𝑓(𝑨𝝓) = 𝑓(𝝓)
for any non-singular matrix 𝑨 ∈ ℝ𝑑×𝑑 and 𝝓 ∈ D[0,1],ℝ𝑑 . Moreover, when we choose 𝑓 as a

scale-invariant functional, we immediately have that 𝑓(𝝓𝑇 ) weakly converges to a functional
of the standard Brownianmotion because 𝑓(𝑮−1𝑺1/2𝑾 ) = 𝑓(𝑾 )which eliminates out the de-
pendence of the unknown scale𝑮−1𝑺. A close inspection reveals that 𝑓(𝝓𝑇 ) is a pivotal quan-
tity involving only collected data and the unobservable root 𝒙⋆, while 𝑓(𝑮−1𝑺1/2𝑾 ) = 𝑓(𝑾 )
has a known distribution whose quantiles can be computed via simulation. In this way an

asymptotic confidence regime can be constructed. This is the reason why the FCLT under-

pins the theoretical support of our statistical inference method. By making use of randomness

along the whole trajectory 𝝓𝑇 , a confidence region can be formulated by reverting an asymp-

totic pivotal quantity. We provide a proof sketch in Section 3.4.1 and highlight the technical

novelty in the proof of Theorem 3.3.1. Before introducing our inference method, we supple-

ment Theorem 3.3.1 with several side results that would deepen one’s understanding on our

methods and theories.

3.3.2 Consistency Guarantee

A remaining issue is to ensure the (𝐿2, (1+log 𝑡)√𝜂𝑡)-consistency and uniformly bounded
𝑝-th moment in Assumption 3.2.6. Typically, this can not be done without further assump-

tions. Previous work[142] assumes the existence of a smooth Lyapunov function to derive

non-asymptotic convergence rates, which suffices to address our issue here. However, for

non-smooth applications like Q-Learning, such a well-behaved Lyapunov function is not off-

the-shelf. Recently, Chen, Maguluri, Shakkottai, Shanmugam[20, 143] develop a regularized

Lyapunov approach for SA problems satisfying a general norm contraction by treating the

generalized Moreau envelope as the Lyapunov function. In this way, even for non-smooth

SA, a smooth counterpart of Lyapunov functions can be constructed and convergence rates

can be established. Inspired by their work, we adopt this approach and narrow down our focus

to SA problems satisfying both a similar contraction in Assumption 3.3.1 and a growth condi-

tion in Assumption 3.3.2. We emphasize the possibility of finding other general conditions to

guarantee Assumption 3.2.6. This subsection provides a particular example.

Assumption 3.3.1 (Contraction condition). There exist 𝛾 ∈ [0, 1) and 𝑐 > 0 such that

‖𝒫 (𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)) − 𝑐 ⋅ (𝒙 − 𝒚)‖ ≤ 𝛾𝑐 ⋅ ‖𝒙 − 𝒚‖ for any 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ.

The contraction condition implies the map 𝒙 → 𝒫 𝑯(𝒙, 𝜉) − 𝑐𝒙 is a 𝛾-contraction in the
norm ‖⋅‖. The condition 𝛾 ∈ [0, 1) ensures that (1−𝛾)𝑐‖𝒙−𝒚‖ ≤ ‖𝒫 (𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)) ‖ ≤
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(1 + 𝛾)𝑐‖𝒙 − 𝒚‖ uniformly over 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ. This inequality can be viewed as a

strengthened version of (3.3) when 𝑝 defined therein equals to one. For 𝜇-strongly convex and
𝐿-smooth convex function 1 𝐹 (⋅, 𝜉),𝑯(𝒙, 𝜉) = ∇𝐹 (𝒙, 𝜉) satisfies Assumption 3.3.1 in the ℓ2

norm with 𝑐 = 2
𝐿+𝜇 and 𝛾 = 𝐿−𝜇

𝐿+𝜇 . For Q-Learning in (3.8), Assumption 3.3.1 follows in the

ℓ∞ norm with 𝑐 = 1 and 𝛾 the discount factor.

Assumption 3.3.2 (Growth condition). There exist 𝑀 > 0 and a non-negative function 𝑔 ∶
Ξ → ℝ such that

‖𝑯(𝒙, 𝜉)‖ ≤ 𝑀(‖𝒙‖ + 𝑔(𝜉)) for any 𝒙 ∈ ℝ𝑑 and 𝜉 ∈ Ξ.

Furthermore, we assume sup𝑡≥0 𝔼‖𝑔(𝜉𝑡)‖𝑝 < ∞ with 𝑝 > 2 given in Assumption 3.2.2.

The growth condition requires the incremental update ‖𝑯(𝒙, 𝜉)‖ grows at most linearly

in both ‖𝒙‖ and a non-negative function 𝑔 ∶ Ξ → ℝ that captures the contribution of data

𝜉 to the norm growth of ‖𝑯(𝒙, 𝜉)‖. It would be emphasized that we assume {𝑔(𝜉𝑡)}𝑡≥0 has

uniformly bounded 𝑝-th moments, much milder than previous almost surely uniformly bound-
edness[20, 103, 123].

Remark 3.3.1. We impose a slightly stronger contraction condition than previous work[20, 103].

Their counterpart condition is ‖(𝒈(𝒙) − 𝒈(𝒚)) − 𝑐 ⋅ (𝒙 − 𝒚)‖ ≤ 𝛾𝑐 ⋅ ‖𝒙 − 𝒚‖ uniformly over

𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ under our notation. This is because we assume a much weaker growth

condition than theirs. Under our notation, they all assume (i) sup𝜉∈Ξ ‖𝑯(𝒙, 𝜉) − 𝑯(𝒚, 𝜉)‖ ≤
𝐴‖𝒙 − 𝒚‖ uniformly and (ii) sup𝜉∈Ξ ‖𝑯(𝒙⋆, 𝜉)‖ ≤ 𝐵 for two constants 𝐴, 𝐵 > 0. The con-

ditions imply ‖𝑯(𝒙, 𝜉)‖ ≤ 𝐴(‖𝒙‖ + ‖𝒙⋆‖) + 𝐵 which essentially requires 𝑔(⋅) in Assump-

tion 3.3.2 to be a constant function, excluding the possibility of unbounded observation noises.

TakeQ-Learning as an example. The theories in[20, 103] work only for (almost surely) uniformly

bounded random reward 𝑹(𝑠, 𝑎)’s, while ours allow them to have 𝑝-th order moments.

Our second result is the consistency guarantee under a weaker growth condition.

Theorem 3.3.2. Under Assumptions 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.3.1, and 3.3.2, {𝒙𝑡}𝑡≥0 up-

dated according to (3.2) satisfies the (𝐿𝑝,max{𝑎𝑡, 1} ⋅ √𝜂𝑡)-consistency with 𝑝 > 2 given in

Assumption 3.2.2 and 1

𝑎𝑡 = ⌈𝑡mix (
𝜂𝑡
2𝜎 )⌉ =

{
0 if 𝜌 = 0,
⌈log𝜌

𝜂𝑡
𝜎𝜅 ⌉ if 𝜌 ∈ (0, 1).

(3.11)

1 It means 𝜇 ⋅ ‖𝒙 − 𝒚‖ ≤ ‖∇𝐹 (𝒙, 𝜉) − ∇𝐹 (𝒚, 𝜉)‖ ≤ 𝐿 ⋅ ‖𝒙 − 𝒚‖ for any 𝒙, 𝒚 ∈ ℝ𝑑 and 𝜉 ∈ Ξ.
1 If 𝜎 = 0, we make a convention that 𝑎𝑡 = 0.
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Theorem 3.3.2 implies that the sequence {𝒙𝑡}𝑡≥0 satisfies Assumption 3.2.6. This is be-

causewhen 𝑝 > 2, the (𝐿𝑝,max{𝑎𝑡, 1}√𝜂𝑡)-consistency naturally implies the (𝐿2,max{𝑎𝑡, 1}√𝜂𝑡)-
consistency by Jensen’s inequality, which further implies the (𝐿2, (1+ log 𝑡)⋅√𝜂𝑡)-consistency
due to 𝑎𝑡 = 𝒪(log 𝑡). 2 Furthermore, the (𝐿𝑝,max{𝑎𝑡, 1}√𝜂𝑡)-consistency also leads to the

uniformly bounded 𝑝-th order moment as a result of 𝜂𝑡 log2 𝑡 → 0 in Assumption 3.2.5.

Corollary 3.3.2. Under the same conditions of Theorem 3.3.2, Assumption 3.2.6 holds.

Previous work requiring i.i.d. data often establish the (𝐿𝑝, √𝜂𝑡)-consistency[129, 140, 144].
We comment on the additional 𝑎𝑡 factor in Theorem 3.3.2. This is because most analyses for

Markovian randomness (including ours) use a conditioning argument of the geometric mix-

ing[20, 123]. Roughly speaking, this argument attempts to address the issue of𝔼[𝑯(𝒙⋆, 𝜉𝑡)|ℱ𝑡−1] ≠
0 by replacing it with 𝔼[𝑯(𝒙⋆, 𝜉𝑡)|ℱ𝑡−𝑎𝑡−1] = 𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉𝑡−𝑎𝑡−1). The geometric mixing in
Assumption 3.2.4 implies that the latter could be exponentially small given 𝑎𝑡 is sufficiently

large. More specifically, we have ‖𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉)‖ ≤ 𝜅𝜎𝜌𝑎𝑡 uniformly over 𝜉 ∈ Ξ from

Lemma 3.2.1. To derive the consistency result, it suffices to set ‖𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉)‖ ≤ 𝜂𝑡,

which explains the choice of 𝑎𝑡’s in (3.11). However, several approximation errors occur be-

fore this replacement is taken, whose addressing requires a further elaborate analysis which we

defer in the Section 3.4.3 due to the technical complexity. As a result, the square estimation

error 𝔼‖𝒙𝑡 − 𝒙⋆‖2 typically depends linearly on the squared mixing time 𝑎2
𝑡 (e.g., Theorem

2.1 in Chen, Maguluri, Shakkottai, Shanmugam [20]). Our result provides a more complete

characterization on the mixing time 𝑎𝑡’s, that is, 𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝 = 𝒪(𝑎𝑝
𝑡 𝜂

𝑝
2
𝑡 ) depends linearly on

𝑎𝑝
𝑡 .

3.3.3 Semiparametric Efficient Lower Bound

Theorem 3.3.1 shows the asymptotic variance of𝝓𝑇 (𝑟) at any fraction number 𝑟 ∈ [0, 1] is
𝑟𝑮−1𝑺𝑮−⊤. It is of theoretical interest to investigate whether this asymptotic variance matrix

is efficient or not. This question has already been addressed in the context of i.i.d. observations;

the asymptotic variance of the averaged iterate under this scheme (3.2) is known to achieve

the Cramér-Rao lower bound[30, 59]. However, the counterpart result for our Markovian root-

finding problem is unclear, which is our target in this subsection.

Before presenting the semi-parametric efficiency lower bound, we first formally describe

the estimation task. The parameter of interest 𝒙⋆ is the root of the equation 𝔼𝜉∼𝜋𝑯(𝒙, 𝜉) = 0
where 𝜋 is the stationary distribution of the transition kernel 𝑃 (𝜉, 𝑑𝜉′). We do not parameterize

2 This is because by 𝑡𝜂𝑡 ↑ ∞, we have 𝜂𝑡 ≿ 1
𝑡 .
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the kernel 𝑃 in a finite-dimensional space and thus enter the semiparametric world. We assume

a dataset 𝒟 = {𝜉𝑖}𝑖∈[𝑛] with 𝜉𝑖’s collected by following the Markov kernel 𝑃 . Here, we denote

by 𝑛 (instead of 𝑇 ) the size of 𝒟 following the notation in Greenwood, Wefelmeyer [145].

We define the following perturbed transition kernel 𝑃𝑛𝒉(𝜉, 𝑑𝜉′),
𝑃𝑛𝒉(𝜉, 𝑑𝜉′)
𝑃 (𝜉, 𝑑𝜉′) = 1 + 1

√𝑛
𝒉(𝜉, 𝜉′),

where 𝒉 is a function on Ξ × Ξ belonging to the following function class

ℬ ∶= {𝒉 ∈ ℝΞ×Ξ ∶ 𝒉 is bounded, measurable and 𝔼𝜉′∼𝑃 (𝜉,⋅)𝒉(𝜉, 𝜉′) = 0 for all 𝜉 ∈ Ξ}.

The boundedness of 𝒉 implies 𝑃𝑛𝒉 is well-defined as long as 𝑛 is large enough. By 𝜋𝑛𝒉 we

denote the stationary distribution of 𝑃𝑛𝒉 and by 𝒙⋆
𝑛𝒉 the root of the equation 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙, 𝜉) = 0.

Definition 3.3.1 (Regular asymptotic linearity). We say an estimator 𝑻 𝑛 (which is a measur-

able function of 𝒟 ) to be regular for 𝒙⋆ with limit 𝑳, if for all 𝒉 ∈ ℬ,

𝑛1/2(𝑻 𝑛 − 𝒙⋆
𝑛𝒉) 𝑑→ 𝑳 under 𝑃𝑛𝒉.

Furthermore, we say 𝑻 𝑛 to be regular asymptotically linear (RAL) if 𝑻 𝑛 is both regular for 𝒙⋆

and asymptotically linear with a measurable function 𝝋 such that

𝑛1/2(𝑻 𝑛 − 𝒙⋆) = 1
√𝑛

𝑛∑
𝑖=1

𝝋(𝜉𝑖−1, 𝜉𝑖) + 𝑜𝑃 𝑛(1),

where𝝋 is referred to as an influence function. It is satisfied that𝔼𝜉∼𝜋,𝜉′∼𝑃 (𝜉,⋅)𝝋(𝜉, 𝜉′)𝝋(𝜉, 𝜉′)⊤

is non-singular and 𝔼𝜉∼𝜋,𝜉′∼𝑃 (𝜉,⋅)𝝋(𝜉, 𝜉′) = 0.

To establish efficiency lower bound, we focus on an important class of estimators, the

regular asymptotically linear (RAL) estimators. Tsiatis [146] argued that RAL estimators pro-

vide a good tradeoff between expressivity and tractability. Informally speaking, an estimator

is regular if its limiting distribution is unaffected by local changes in the data-generating pro-

cess. In Definition 3.3.1, it means even we perturb the data-generating transition kernel from

𝑃 to another 𝑃𝑛𝒉, the asymptotic distribution of 𝑛1/2(𝑻 𝑛 − 𝒙⋆
𝑛𝒉) remains unchanged as 𝑳. This

regularity excludes super-efficient estimators, whose asymptotic variance can be smaller than

the Cramér-Rao lower bound for some parameter values, but which perform poorly in the

neighborhood of points of super-efficiency.

Our third result is the efficiency lower bound for the asymptotic variance of any RAL

estimators for 𝒙⋆. By Definition 3.3.1, any influence function 𝝋 determines an asymptotic
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linear estimator for 𝒙⋆. Theorem 3.3.3 serves as a concrete target in constructing the influ-

ence function, and any influence function that achieves this bound is the most efficient among

all RAL estimators. Theorem 3.3.3 is also helpful in understanding recent non-asymptotic

instance-dependent estimation bounds for Markovian linear SA[104]. These bounds show that

inf𝑻 𝑛 sup𝑃𝑛𝒉 𝔼‖𝑻 𝑛 − 𝒙⋆‖2
2, the minimax estimation bounds in ℓ2-norm, is lower bounded by

an instance-dependent quantity 1
𝑛‖𝑮−1𝑺1/2‖2

𝐹 , which can be computed directly from (3.12). 1

Similar correspondence is found in i.i.d. nonlinear SA[21, 100].

Theorem3.3.3 (Semiparametric efficient lower bound). Under Assumptions 3.2.1, 3.2.3, 3.2.4,

and 3.3.1, for any RAL estimator 𝑻 𝑛 for 𝒙⋆ that is computed from 𝒟 = {𝜉𝑖}𝑖∈[𝑛], we have

lim
𝑛→∞

𝑛 ⋅ 𝔼(𝑻 𝑛 − 𝒙⋆)(𝑻 𝑛 − 𝒙⋆)⊤ ⪰ 𝑮−1𝑺𝑮−⊤ (3.12)

with both 𝑮 and 𝑺 defined in Theorem 3.3.1.

Theorem 3.3.4 implies that for each 𝑟 ∈ [0, 1], 1
⌊𝑇 𝑟⌋

∑⌊𝑇 𝑟⌋
𝑡=0 𝒙𝑡 is most efficient estimator

among all RAL estimators and the influence function is given by 𝝋(𝜉, 𝜉′) = 𝑼 (𝒙⋆, 𝜉′) −
𝒫 𝑼 (𝒙⋆, 𝜉). One can show this by the fact that 𝝋(𝜉, 𝜉′) is mean-zero and its covariance matrix
is exactly 𝑺 when (𝜉, 𝜉′) ∼ 𝜋(𝑑𝜉) × 𝑃 (𝜉, 𝑑𝜉′). This theorem implies the partial-sum process

𝝓𝑇 has the optimal asymptotic variance at each fraction 𝑟 ∈ [0, 1]. By contrast, the scaled

last-iterate process typically fails to achieve it[129, 144].

Theorem 3.3.4. Under the same conditions of Theorem 3.3.1, for any 𝑟 ∈ [0, 1], the partial-
sum value 1

⌊𝑇 𝑟⌋
∑⌊𝑇 𝑟⌋

𝑡=0 𝒙𝑡 is a RAL estimator for 𝒙⋆ with the following decomposition

𝝓𝑇 (𝑟) ∶= 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

(𝒙𝑡 − 𝒙⋆) = 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝑮−1[𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] + 𝑜ℙ(1),

where 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1) = 𝔼[𝑼 (𝒙⋆, 𝜉𝑡)|ℱ𝑡−1] and 𝑜ℙ(1) denotes a random function whose uni-

form norm |||⋅||| converge to zero in probability.

Proof of Theorem 3.3.4. In Section 3.4.1, we have analyzed 𝝓𝑇 . We will make use of many

results obtained therein. We decompose 𝝓𝑇 into several terms in (3.20)

𝝓̃𝑇 (𝑟) − 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑗=0

𝑮−1𝒖𝑡 = 𝝍0(𝑟) + 𝝍1(𝑟) + 𝝍2(𝑟) + 𝝍3(𝑟).

1 For any standard basis 𝒆𝑗 ∈ ℝ𝑑 , we have lim
𝑛→∞

𝑛 ⋅ 𝔼𝒆⊤
𝑗 (𝑻 𝑛 − 𝒙⋆)(𝑻 𝑛 − 𝒙⋆)⊤𝒆𝑗 ≥ 𝒆⊤

𝑗 𝑮−1𝑺𝑮−⊤𝒆𝑗 . Summing over 𝑗 ∈ [𝑑],
we arrive at lim

𝑛→∞
𝑛𝔼‖𝑻 𝑛 − 𝒙⋆‖2

2 ≥ ‖𝑮−1𝑺1/2‖2
𝐹 .
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We also show that |||𝝓̃𝑇 − 𝝓𝑇 ||| = 𝑜ℙ(1) and |||𝝍𝑘||| = 𝑜ℙ(1) for 0 ≤ 𝑘 ≤ 3 as in Lemma 3.4.2.
In the proof of Lemma 3.4.1, we also decompose 𝒖𝑡 ∶= 𝒖𝑡,1 +𝒖𝑡,2 into two terms in (B.1) such

that we have

|
|
||

|
|
||

|
|
||

1
√𝑇

⌈𝑇 𝑟⌉∑
𝑡=1

𝒖𝑡,1

|
|
||

|
|
||

|
|
||

= 𝑜ℙ(1) and 𝒖𝑡,2 = [𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] .

Putting these results together and using Slutsky’s theorem, we complete the proof.

3.3.4 Functional Weak Convergence Rate

In this subsection, we provide a more quantitative result that specifies the rate at which

the weak convergence in Theorem 3.3.1 takes place. For two random processes 𝝓1 and 𝝓2

in D[0,1],ℝ𝑑 , we denote by 𝑑P the Lévy-Prokhorov distance between the probability measures

introduced in[147-148], that is,

𝑑P(𝝓1,𝝓2) ∶= inf{𝜀∶ ℙ(𝝓1 ∈ 𝐵) ≤ ℙ(𝝓2 ∈ 𝐵𝜀) + 𝜀, ∀𝐵 ∈ 𝒟[0,1],ℝ𝑑 }, (3.13)

where 𝐵𝜀 ∶= {𝝓1 ∈ D[0,1],ℝ𝑑 ∶ inf𝝓2∈𝐵 𝑑S(𝝓1,𝝓2) < 𝜀} is the 𝜀-neighborhood of 𝐵. Since

D[0,1],ℝ𝑑 with the Skorokhod metric is separable, convergence in the Lévy–Prokhorov metric

is equivalent to weak convergence of the corresponding measures, as a result of which, we

have 𝑑P(𝝓𝑇 ,𝑮−1𝑺1/2𝑾 ) → 0 from Theorem 3.3.1.

Assumption 3.3.3 (Further regularity conditions). (i) Assume the initial data 𝜉0 ∼ 𝜋 and

sup
𝜉∈Ξ

𝒫 ‖𝑯(𝒙⋆, 𝜉)‖2 ∶= sup
𝜉∈Ξ ∫Ξ

‖𝑯(𝒙⋆, 𝜉′)‖2𝑃 (𝜉, 𝑑𝜉′) < ∞.

(ii) {𝒙𝑡}𝑡≥0 satisfies the (𝐿𝑝, (1 + log 𝑡) ⋅ √𝜂𝑡)-consistency with 𝑝 > 2 given in Assump-

tion 3.2.2.

Theorem 3.3.5 (Functional weak convergence rate). Let Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4,

and 3.3.3 hold and choose the step size to be 𝜂𝑡 = 𝑡−𝛼 with 𝛼 ∈ (0.5, 1). It follows that for any
vector 𝜽 ∈ ℝ𝑑 with ‖𝜽‖∗ = 1,

𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) = ̃𝒪 (𝑇 −𝐽1(𝛼) + (𝑐𝑟 + 𝑡mix)
𝑝

2+𝑝 ⋅ 𝑇 −𝐽2(𝛼) + 𝑇 −(1−𝛼)[
𝑝−2

2(𝑝+1) ∧ 1
3 ] + 𝑡

1
6
mix𝑇 − 1

6 ) ,
(3.14)

where 𝑝 > 2 is given in Assumption 3.2.2, 𝑐𝑟 ∶= max{𝐿𝐺, 𝐿𝐻 +‖𝑮‖
𝛿𝐺 }, 𝑡mix is the mixing time
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defined in (3.6), and both 𝐽1 and 𝐽2 are increasing functions of 𝛼 given by 1

𝐽1(𝛼) =
⎧⎪
⎨
⎪⎩

𝛼𝑝
2(2+𝑝) if 𝛼 ∈ (0.5, 2

𝑝] ,
𝛼

𝛼+2 if 𝛼 ∈ [
2
𝑝 , 1) ,

and 𝐽2(𝛼) =
⎧⎪
⎨
⎪⎩

(𝛼 − 0.5) 𝑝
2+𝑝 if 𝛼 ∈ (0.5, 2

𝑝] ,
𝛼−0.5
𝛼+1 if 𝛼 ∈ [

2
𝑝 , 1) .

Here we hide dependence on uninterested parameters and the log factors in ̃𝒪(⋅).

Our last result is the functional weak convergence rate (3.14) for the one-dimensional

projected partial-sum process 𝜽⊤𝝓𝑇 . To establish this theorem, we impose an additional As-

sumption 3.3.3. It requires 𝜉0 is initialized as the stationary distribution 𝜋 and assumes a

uniform bound for sup𝜉∈Ξ 𝒫 ‖𝑯(𝒙⋆, 𝜉)‖2. The former condition is standard in nonasymptotic

analysis for Markovian data[104], while the later condition is mildly weaker than the uniform

boundedness used in the literature (see Remark 3.3.1). The discussion in Section 3.3.2 reveals

the (𝐿𝑝, (1+log 𝑡)⋅√𝜂𝑡)-consistency follows when Assumptions 3.3.1 and 3.3.2 hold. In short,
Assumption 3.3.3 is mild and standard.

The bound (3.14) is an analog of the Berry-Esseen bounds on the distance between the

distributions of cádág functions in D[0,1],ℝ measured in the Lévy-Prokhorov metric. To the

best of our knowledge, it is the first non-asymptotic bound of functional weak convergence

for the nonlinear iterative algorithm (3.2) in the existence of Markovian data. If {𝜽⊤(𝒙𝑡 −
𝒙⋆)}𝑡≥0 is i.i.d. with zero mean and bounded 𝑝-th order moments (𝑝 ∈ [2, 3]), Borovkov [149]

showed the bound for 𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) is 𝒪 (𝑇 − 𝑝−2
2(𝑝+1)

). Haeusler [110], Kubilius [150] showed

the same bound holds for martingale difference sequences under specific moment conditions.

However, our result has a slower rate, as the third term in (3.14) alone is already slower

than 𝒪 (𝑇 − 𝑝−2
2(𝑝+1)

). The main cause is that the sequence {𝜽⊤(𝒙𝑡 − 𝒙⋆)}𝑡≥0 is neither sta-

tionary nor martingale differences. The non-stationarity of 𝒙𝑡, not remaining at 𝒙⋆, introduces

additional errors, slowing down the rate. More exactly, Theorem 3.3.4 states that for any

𝑟 ∈ [0, 1], 𝝓𝑇 (𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=1 𝑮−1[𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] + 𝑜ℙ(1), with {𝑼 (𝒙⋆, 𝜉𝑡) −

𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)}𝑡≥1 being a fastmixingmartingale difference underAssumptions 3.2.4 and 3.3.3.

According to the existing result[150], the Lévy–Prokhorov distance between the partial-sum

process 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=1 𝜽⊤𝑮−1[𝑼 (𝒙⋆, 𝜉𝑡)−𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] and the scaled Brownian motion 𝜽⊤𝝍 =

𝜽⊤𝑮−1𝑺1/2𝑾 is roughly ̃𝒪(𝑇 − 𝑝−2
2(𝑝+1) ∧ 1

3 +𝑡
1
6
mix𝑇 − 1

6 ). Therefore, the remaining 𝑜ℙ(1) term causes

the slow convergence rate in (3.14). The detailed proof of Theorem 3.3.5 is collected in the

Appendix D.

1 Here we interpret (0.5, 2
𝑝 ] = ∅ if 𝑝 > 4.
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There are many implications from the bound (3.14). We list them below.

• Markovian data slows down the functional convergence rate polynomially due to the second

and fourth terms of (3.14). It together with Theorem 3.3.2 implies Markovian data with a

bounded mixing time has limited consequences on both the estimation error 𝑝√𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝

and the weak convergence rate 𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍).
• It is vital to ensure 𝑝 > 2, otherwise the third term in (3.14) might blow up or keep non-

diminishing. Furthermore, the bound (3.14) mildly changes when the moment order 𝑝 in-

creases.

• The non-linearity attacks theweak convergence rate via the quantity 𝑐𝑟 = max{𝐿𝐺, 𝐿𝐻 +‖𝑮‖
𝛿𝐺 }.

If we consider linear SA, then 𝛿𝐺 = ∞ and 𝐿𝐺 = 0 in Assumption 3.2.1, which implies

𝑐𝑟 = 0. For nonlinear SA, 𝑐𝑟 serves as a measure that quantifies the degree of nonlinearity.

• There exists a trade-off for the step size parameter 𝛼 ∈ (0.5, 1). Indeed, since both 𝐽1 and

𝐽2 are increasing, the first and second terms in (3.14) decrease in 𝛼, while the third term

increases in 𝛼. It is of theoretical interest to investigate the optimal 𝛼⋆ and the resulting

weak convergence rates. As Corollary 3.3.3 shows, the optimal rate in linear and i.i.d. case

nearly matches the pointwise rate ̃𝒪(𝑇 − 1
6 )[151] when the moment order 𝑝 is sufficiently large.

However, it deteriorates almost by half once either non-linearity or Markovian data gets

involved.

Corollary 3.3.3. Under the same conditions of Theorem 3.3.5, if 𝑡mix = 𝑐𝑟 = 0, then for any

small 𝜀 > 0,
min

𝛼∈[0.5+𝜀,1)
𝑑P𝑃 (𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) = ̃𝒪 (𝑇 −[

𝑝−2
4(𝑝+1) ∧ 1

6 ](1−2𝜀)
) ,

with the optimum achieved by 𝛼⋆ = 0.5 + 𝜀. If either 𝑡mix > 0 or 𝑐𝑟 > 0, it follows that

min
𝛼∈(0.5,1)

𝑑P𝑃 (𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) = ̃𝒪 ([(𝑐𝑟 + 𝑡mix)
𝑝

2+𝑝 + 1] ⋅ 𝑇 −𝐽(𝑝)
) ,

where 𝐽(⋅) is defined as follows

𝐽(𝑝) =
⎧⎪
⎪
⎨
⎪
⎪⎩

(𝑝−2)𝑝
2(3𝑝2+2𝑝−1) if 𝑝 ∈ (2, 𝑝0],

(2𝑝−1)−√3(𝑝2−𝑝+1)
2(𝑝+1) if 𝑝 ∈ [𝑝0, 8],

5−√19
6 ≈ 0.107 if 𝑝 ∈ [8, ∞),
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with 𝑝0 ∈ (3, 4) a number making 𝐽(⋅) continuous and and with optimum achieved by

𝛼⋆(𝑝) =
⎧⎪
⎪
⎨
⎪
⎪⎩

2𝑝2+𝑝−4
3𝑝2+2𝑝−4 if 𝑝 ∈ (2, 𝑝0],

√3(𝑝2−𝑝+1)−(𝑝+1)
𝑝−2 if 𝑝 ∈ [𝑝0, 8],

√19−3
2 ≈ 0.679 if 𝑝 ∈ [8, ∞).

Proof of Corollary 3.3.3. The proof can be found in Appendix D.1.

3.4 Proof Sketches

Before introducing our inference method, we provide the proof sketches for the four the-

orems present in the last chapter and highlight our technical contributions therein. The proofs

for several technical lemmas are deferred in the appendix.

3.4.1 Proof of Theorem 3.3.1

The proof for Theorem 3.3.1 contains three steps. Proofs for technical lemmas are deferred

in Appendix B.

Step one: Martingale-residual-coboundary decomposition Recall that the update rule is

𝒙𝑡+1 = 𝒙𝑡 − 𝜂𝑡𝑯(𝒙𝑡, 𝜉𝑡). We decompose𝑯(𝒙𝑡, 𝜉𝑡) into two terms:

𝑯(𝒙𝑡, 𝜉𝑡) = 𝒈(𝒙𝑡) + [𝑯(𝒙𝑡, 𝜉𝑡) − 𝒈(𝒙𝑡)] .

By Lemma 3.2.2, there exists a unique bivariate function𝑼 (𝒙, 𝜉) such that𝑯(𝒙𝑡, 𝜉𝑡) −𝒈(𝒙𝑡) =
𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡). We further decompose 𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡) into three terms:

𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡) = [𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒

+ [
𝜂𝑡+1
𝜂𝑡

𝒫 𝑼 (𝒙𝑡+1, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

+ [𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1) −
𝜂𝑡+1
𝜂𝑡

𝒫 𝑼 (𝒙𝑡+1, 𝜉𝑡)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑐𝑜𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

.

(3.15)

We refer to the last equation as martingale-residual-coboundary decomposition which is remi-

niscent of the martingale-coboundary decomposition that is originally proposed to establish

FCLTs for stationary sequences[152-153]. This martingale-residual-coboundary decomposi-

tion is recently used in the asymptotic analysis for stochastic approximation MCMC algo-
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rithms[111]. The telescoping structure in the coboundary term motivates us to introduce an

auxiliary process {𝒙̃𝑡}𝑡≥0 to remove its effect where

𝒙̃𝑡 = 𝒙𝑡 − 𝜂𝑡𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1).

As a result, we have

𝒙̃𝑡+1 = 𝒙̃𝑡 − 𝜂𝑡 [𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1) +
𝜂𝑡+1
𝜂𝑡

𝒫 𝑼 (𝒙𝑡+1, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡)] .

We then focus on {𝒙̃𝑡}𝑡≥0 and simplify the last equation by introducing the following shortcuts:

𝚫𝑡 = 𝒙̃𝑡 − 𝒙⋆ and

𝒓𝑡 = 𝒈(𝒙𝑡) − 𝑮𝚫𝑡, (3.16)

𝒖𝑡 = [𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)] , (3.17)

𝝂𝑡 =
𝜂𝑡+1
𝜂𝑡

𝒫 𝑼 (𝒙𝑡+1, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡). (3.18)

With the notation, the update rule becomes

𝚫𝑡+1 = 𝚫𝑡 − 𝜂𝑡 [𝑮𝚫𝑡 + 𝒓𝑡 + 𝒖𝑡 + 𝝂𝑡] = (𝑰 − 𝜂𝑡𝑮)𝚫𝑡 + 𝜂𝑡 [𝒓𝑡 + 𝒖𝑡 + 𝝂𝑡] . (3.19)

The following lemma explains the reason why we perform the decomposition (3.15). It shows,

while {𝑯(𝒙𝑡, 𝜉𝑡) − 𝒈(𝒙𝑡)}𝑡≥0 is not a martingale difference sequence, the decomposed {𝒖𝑡}𝑡≥0

is. Furthermore, {𝒖𝑡}𝑡≥0 admits an FCLT via a standard argument of multidimensional martin-

gale FCLT (e.g., Theorem 2.1 in Whitt [154]). The remaining terms {𝒓𝑡}𝑡≥0 and {𝝂𝑡}𝑡≥0 have

negligible effects because they vanish asymptotically.

Lemma 3.4.1 (Properties of decomposed terms). Under the same conditions of Theorem 3.3.1,

1. It follows that as 𝑇 → ∞, 1
√𝑇

∑𝑇
𝑡=0 𝔼‖𝒓𝑡‖ → 0;

2. {𝒖𝑡}𝑡≥0 is a martingale difference sequence satisfying sup𝑡≥0 𝔼‖𝒖𝑡‖𝑝 < ∞ where 𝑝 > 2
is given in Assumption 3.2.2. Furthermore, the following FCLT holds 1

√𝑇
∑⌊𝑇 𝑟⌋

𝑡=1 𝒖𝑡
𝑤→

𝑺1/2𝑾 (𝑟);
3. It follows that as 𝑇 → ∞, 1

√𝑇
∑𝑇

𝑡=0 𝔼‖𝝂𝑡‖ → 0.

Proof of Lemma 3.4.1. The proof can be found in Appendix B.1.

Step two: Martingale-remainder (or partial-sum) decomposition Setting 𝑩𝑡 = 𝑰 − 𝜂𝑡𝑮
and recurring (3.19) give

𝚫𝑡+1 =
⎛
⎜
⎜
⎝

𝑡∏
𝑗=0

𝑩𝑗
⎞
⎟
⎟
⎠
𝚫0 +

𝑡∑
𝑗=0

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝜂𝑗 [𝒓𝑗 + 𝒖𝑗 + 𝝂𝑗] .
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Here we use the convention that
∏𝑡

𝑗=𝑡+1 𝑩𝑗 = 𝑰 for any 𝑡 ≥ 0. As a result, for any 𝑟 ∈ [0, 1],

𝝓̃𝑇 (𝑟) ∶= 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

(𝒙̃𝑡 − 𝒙⋆)

= 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

⎧⎪
⎨
⎪⎩

⎛
⎜
⎜
⎝

𝑡∏
𝑗=0

𝑩𝑗
⎞
⎟
⎟
⎠
𝚫0 +

𝑡∑
𝑗=0

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝜂𝑗 [𝒓𝑗 + 𝒖𝑗 + 𝝂𝑗]
⎫⎪
⎬
⎪⎭

= 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

⎛
⎜
⎜
⎝

𝑡∏
𝑗=0

𝑩𝑗
⎞
⎟
⎟
⎠
𝚫0 + 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑗=0

⌊𝑇 𝑟⌋∑
𝑡=𝑗

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝜂𝑗 [𝒓𝑗 + 𝒖𝑗 + 𝝂𝑗] .

In the following, for simplicity we define

𝑨𝑛
𝑗 ∶=

𝑛∑
𝑡=𝑗

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝜂𝑗 .

Using the notation, we further simplify the last equation as

𝝓̃𝑇 (𝑟) = 1
√𝑇 𝜂0

𝑨⌊𝑇 𝑟⌋
0 𝑩0𝚫0 + 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑗=0

𝑨⌊𝑇 𝑟⌋
𝑗 [𝒓𝑗 + 𝒖𝑗 + 𝝂𝑗] .

Arrangement yields

𝝓̃𝑇 (𝑟) − 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑗=0

𝑮−1𝒖𝑡 = 1
√𝑇 𝜂0

𝑨⌊𝑇 𝑟⌋
0 𝑩0𝚫0 + 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑨⌊𝑇 𝑟⌋
𝑡 (𝒓𝑡 + 𝝂𝑡)

+ 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

(𝑨𝑇
𝑡 − 𝑮−1) 𝒖𝑡 + 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

(𝑨
⌊𝑇 𝑟⌋
𝑡 − 𝑨𝑇

𝑡 ) 𝒖𝑡

∶= 𝝍0(𝑟) + 𝝍1(𝑟) + 𝝍2(𝑟) + 𝝍3(𝑟). (3.20)

Step three: Establishment of FCLT By (3.20), we are ready to prove the Theorem 3.3.1.

First, from Lemma 3.4.1, the functional weak convergence follows that 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=1 𝑮−1𝒖𝑡

𝑤→

𝝍(𝑟) = 𝑺1/2𝑮−1𝑾 (𝑟) uniformly over 𝑟 ∈ [0, 1]. Second, 𝔼|||𝝓̃𝑇 − 𝝓𝑇 ||| ≾ 1
√𝑇

∑𝑇
𝑡=1 𝜂𝑇 → 0

because of Lemma 3.2.2, Assumption 3.2.5 and 3.2.6. It implies the random function 𝝓𝑇 has

the same asymptotic behavior as 𝝓̃𝑇 , i.e., 𝝓𝑇 = 𝝓̃𝑇 + 𝑜ℙ(1). To complete the proof, it suffices
to show that

|||𝝓̃𝑇 − 𝝍||| = sup
𝑟∈[0,1]

‖𝝓̃𝑇 (𝑟) − 𝝍(𝑟)‖ = 𝑜ℙ(1). (3.21)

In this way, one has 𝝓̃𝑇 = 𝝍 + 𝑜ℙ(1) and thus 𝝓𝑇 = 𝝍 + 𝑜ℙ(1) due to Slutsky’s theo-

rem. Lemma 3.4.2 provides a sufficient condition to (3.21) where the four separate terms
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sup𝑟∈[0,1] ‖𝝍𝑘(𝑟)‖(0 ≤ 𝑘 ≤ 3) respectively converge to zero in probability.

Lemma 3.4.2. Under the same conditions of Theorem 3.3.1, for all 0 ≤ 𝑘 ≤ 3, when 𝑇 → ∞,

|||𝝍𝑘||| = sup
𝑟∈[0,1]

‖𝝍𝑘(𝑟)‖ = 𝑜ℙ(1).

Proof of Lemma 3.4.2. The proof can be found in Appendix B.2.

Difficulty of analyzing 𝝍3 In the proof of Lemma 3.4.2, the largest difficulty is to ana-

lyze the last process 𝝍3. Because 𝝍3(𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 (𝑨

⌊𝑇 𝑟⌋
𝑡 − 𝑨𝑇

𝑡 ) 𝒖𝑡 is a weighted sum of

martingale differences 𝒖𝑡’s whose weights depend on the fraction 𝑟, we can’t apply Doob’s

inequality to bound 𝔼 sup𝑟∈[0,1] ‖𝝍3(𝑟)‖. We made a novel technical contribution towards an

elaborate analysis for sup𝑟∈[0,1] ‖𝝍3(𝑟)‖. In particular, a close inspection reveals that

|||𝝍3||| = sup
𝑟∈[0,1]

‖𝝍3(𝑟)‖ ≾ sup
𝑛∈[𝑇 ] ‖

1
√𝑇

1
𝜂𝑛+1

𝑛∑
𝑡=0 (

𝑛∏
𝑖=𝑡+1

𝑩𝑖)
𝜂𝑡𝒖𝑡‖

. (3.22)

In Lemma 3.4.3, we show that the right-hand side of (3.22) is indeed 𝑜ℙ(1).

Lemma 3.4.3. Let {𝜺𝑡}𝑡≥0 be a martingale difference sequence adapting to the filtration ℱ𝑡.

Define an auxiliary sequence {𝒚𝑡}𝑡≥0 as follows: 𝒚0 = 0 and for 𝑡 ≥ 0,

𝒚𝑡+1 = (𝑰 − 𝜂𝑡𝑮)𝒚𝑡 + 𝜂𝑡𝜺𝑡. (3.23)

It is easily verified that

𝒚𝑡+1 =
𝑡∑

𝑗=0

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

(𝑰 − 𝜂𝑖𝑮)
⎞
⎟
⎟
⎠

𝜂𝑗𝜺𝑗 . (3.24)

Let {𝜂𝑡}𝑡≥0 satisfy Assumption 3.2.5. If Re𝜆𝑖(𝑮) > 0 for all 𝑖 ∈ [𝑑] and sup𝑡≥0 𝔼‖𝜺𝑡‖𝑝 < ∞
for 𝑝 > 2, then we have that when 𝑇 → ∞

|||𝒚̄𝑇 |||
𝑝→ 0 where 𝒚̄𝑇 (𝑟) =

𝒚⌊(𝑇 +1)𝑟⌋

√𝑇 𝜂⌊(𝑇 +1)𝑟⌋
for 𝑟 ∈ [0, 1]. (3.25)

Furthermore, if setting 𝜂𝑡 = 𝑡−𝛼 with 𝛼 ∈ (0.5, 1), we have that for any 𝑝′ ∈ [2, 𝑝],

̃𝑑(𝒚̄𝑇 ) ∶= inf
𝜀≥0

𝜀 ∨ ℙ(|||𝒚̄𝑇 ||| ≥ 𝜀) = 𝒪 (𝑝′ ⋅ 𝑇 −(1−𝛼) 𝑝′−2
2(𝑝′+1)

) . (3.26)

Proof of Lemma 3.4.3. The proof can be found in Appendix B.3.

Although some works establish similar counterparts of Lemma 3.4.3 for SA algorithms,

our Lemma 3.4.3 is the most general in three aspects. First, it relaxes the restriction on −𝑮
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from being negative definite to Hurwitz[50, 62, 129]. Second, it requires uniformly bounded

𝑝(> 2)-th order moments on the martingale difference sequence {𝜺𝑡}𝑡≥0 rather than bounded

forth moments[21, 62]. Last, it accommodates a general step size in Assumption 3.2.5 instead

of simple polynomial step sizes[129]. We made this improvement from a key observation that

Lemma 3.4.3 is easy to prove via a similar argument in Lemma 2.5.8 when 𝑮 is further diag-

onalizable. For the general non-diagonalizable case, without loss of generality, we assume 𝑮
is a matrix of Jordan canonical form by utilizing its Jordan decomposition. Then, the fact that

𝑮 would be upper triangular motivates an induction proof to relate the projection components

of 𝒚𝑡+1 on non-diagonalizable Jordan blocks to those on diagonalizable ones, completing the

proof for the asymptotic result (3.25). The proof idea also motivates a method to quantify

the rate (3.26) of convergence in probability. One can show that ̃𝑑(𝒚̄𝑇 ) → 0 is equivalent to

|||𝒚̄𝑇 |||
𝑝→ 0. This quantitative bound (3.26) provides a great help in establishing the weak

convergence rate in Theorem 3.3.5. We believe it would benefit future quantitative studies on

weak convergence of iterative algorithms.

3.4.2 Establishment of (𝐿2, 𝑎𝑡√𝜂𝑡)-consistency

We present a proof for Theorem 3.3.2 in the following two subsections. The first subsec-

tion establishes (𝐿2, 𝑎𝑡√𝜂𝑡)-consistency, while the second subsection deals with (𝐿𝑝, 𝑎𝑡√𝜂𝑡)-
consistency. We begin with (𝐿2, 𝑎𝑡√𝜂𝑡)-consistency because it is easier to establish using

existing techniques. Additionally, based on this result, one can more easily understand the

way we prove (𝐿𝑝, 𝑎𝑡√𝜂𝑡)-consistency. At a high level, we adapt the generalized Lyapunov

approach developed in[20, 143] to our case. Throughout these subsections, we use the ℓ ̄𝑝-norm,

denoted by ‖ ⋅ ‖ ̄𝑝, defined in ℝ𝑑 . Readers should note that the ̄𝑝 used in this section has no

relation to the 𝑝 defined in Assumption 3.2.2.

Lemma 3.4.4 (Smoothness and approximation of the envelope, Lemma 2.1 in Chen, Maguluri,

Shakkottai, Shanmugam [143]). Let ‖⋅‖ ̄𝑝 denote the ℓ ̄𝑝-norm defined in ℝ𝑑 . Define the Moreau

envelope of 1
2‖ ⋅ ‖2 w.r.t. 1

2‖ ⋅ ‖2
̄𝑝 as

𝑀(𝒙) = min
𝒖∈ℝ𝑑 [

1
2‖𝒖‖2 + 𝜆

2‖𝒙 − 𝒖‖2
̄𝑝] .

We then have the following results

1. 𝑀(𝒙) is convex in 𝒙 and is ( ̄𝑝 − 1)𝜆-smooth w.r.t. the norm ‖ ⋅ ‖ ̄𝑝.
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2. Suppose 𝑙 ̄𝑝‖ ⋅ ‖ ≤ ‖ ⋅ ‖ ̄𝑝 ≤ 𝑢 ̄𝑝‖ ⋅ ‖, then for all 𝒙 ∈ ℝ𝑑 ,

(
1 + 𝜆

𝑢2
̄𝑝 )

𝑀(𝒙) ≤ 1
2‖𝒙‖2 ≤

(
1 + 𝜆

𝑙2
̄𝑝 )

𝑀(𝒙).

3. There exists one norm ‖ ⋅ ‖𝑀 such that 𝑀(𝒙) = 1
2‖𝒙‖2

𝑀 for all 𝒙 ∈ ℝ𝑑 .

Proof of Theorem 3.3.2. Recall that the update rule is 𝒙𝑡+1 = 𝒙𝑡 − 𝜂𝑡𝑯(𝒙𝑡, 𝜉𝑡). Hence, it fol-
lows that

𝑀(𝒙𝑡+1 − 𝒙⋆) ≤ 𝑀(𝒙𝑡 − 𝒙⋆) + ⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝒙𝑡+1 − 𝒙𝑡⟩ + ( ̄𝑝 − 1)𝜆
2 ‖𝒙𝑡 − 𝒙𝑡+1‖2

̄𝑝

= 𝑀(𝒙𝑡 − 𝒙⋆) − 𝜂𝑡⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩ +
( ̄𝑝 − 1)𝜆𝜂2

𝑡
2 ‖𝑯(𝒙𝑡, 𝜉𝑡)‖2

̄𝑝.

(3.27)

Let 𝒢𝑡 = 𝜎({𝜉𝜏}0≤𝜏<𝑡) be the 𝜎-filed generated by all random variables {𝜉𝜏}0≤𝜏<𝑡 strictly

before iteration 𝑡. Clearly, 𝒙𝑡 is 𝒢𝑡-measurable. We denote 𝔼𝑡(⋅) by 𝔼[⋅|𝒢𝑡] for simplicity and
𝔼(⋅) takes all randomness. For one thing,

𝔼𝑡‖𝑯(𝒙𝑡, 𝜉𝑡)‖2
̄𝑝 ≤ 𝔼𝑡 (‖𝑯(𝒙𝑡, 𝜉𝑡) − 𝑯(𝒙⋆, 𝜉𝑡)‖ ̄𝑝 + ‖𝑯(𝒙⋆, 𝜉𝑡)‖ ̄𝑝)

2

≤ 2 (𝔼𝑡‖𝑯(𝒙𝑡, 𝜉𝑡) − 𝑯(𝒙⋆, 𝜉𝑡)‖2
̄𝑝 + 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖2

̄𝑝)
≤ 2𝑢2

̄𝑝 (𝔼𝑡‖𝑯(𝒙𝑡, 𝜉𝑡) − 𝑯(𝒙⋆, 𝜉𝑡)‖2 + 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖2)
≤ 2𝑢2

̄𝑝 (𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝑯(𝒙⋆, 𝜉𝑡−1)‖2 + 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖2)
(𝑎)
≤ 2𝑢2

̄𝑝 (𝐿2
𝐻‖𝒙𝑡 − 𝒙⋆‖2 + 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖2)

(𝑏)
≤ 2𝑢2

̄𝑝 (
2𝐿2

𝐻 (
1 + 𝜆

𝑙2
̄𝑝 )

𝑀(𝒙𝑡 − 𝒙⋆) + 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖2
)

, (3.28)

where (𝑎) uses Assumption 3.2.3 and (𝑏) uses the Item 2 in Lemma 3.4.4.

For another thing, we decompose the cross term into three part as following

𝔼𝑡⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩

= ⟨∇𝑀(𝒙𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1)⟩

= ⟨∇𝑀(𝒙𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1) − 𝑐(𝒙𝑡 − 𝒙⋆)⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼

+ 𝑐⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝒙𝑡 − 𝒙⋆⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝐼

+ ⟨∇𝑀(𝒙𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝐼𝐼

.
(3.29)

We are going to analyze the three terms in (3.29) respectively in the following.
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For the term 𝐼 From the Item 3 in Lemma 3.4.4, we have 𝑀(𝒙) = 1
2‖𝒙‖2

𝑀 for all 𝒙 ∈ ℝ𝑑 .

Hence, ∇𝑀(𝒙) = ‖𝒙‖𝑀𝒗𝒙 where 𝒗𝒙 ∈ 𝜕‖𝒙‖𝑀 is a subgradient of the function ‖𝒙‖𝑀 at 𝒙.
Let ‖⋅‖⋆

𝑀 denote the dual norm of ‖⋅‖𝑀 , defined by ‖𝒙‖⋆
𝑀 = sup‖𝒚‖𝑀 ≤1⟨𝒙, 𝒚⟩. Since ‖⋅‖𝑀 is

a 1-Lipschitz w.r.t. the norm itself, we have ‖𝒙‖⋆
𝑀 ≤ 1 for all 𝒙 ∈ ℝ𝑑 . By Assumption 3.3.1,

it follows that

|𝐼| ≤ ‖𝒙𝑡 − 𝒙⋆‖𝑀‖𝒗𝒙𝑡−𝒙⋆‖⋆
𝑀‖𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1) − 𝑐(𝒙𝑡 − 𝒙⋆)‖𝑀

≤ ‖𝒙𝑡 − 𝒙⋆‖𝑀‖𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1) − 𝑐(𝒙𝑡 − 𝒙⋆)‖𝑀

For another thing, by the Item 2 in Lemma 3.4.4,(1 + 𝜆
𝑢2

̄𝑝 ) 𝑀(𝒙) ≤ 1
2‖𝒙‖2 ≤ (1 + 𝜆

𝑙2
̄𝑝 ) 𝑀(𝒙),

which is equivalent to 𝑙 ̄𝑝

√𝑙2
̄𝑝+𝜆

‖𝒙‖ ≤ ‖𝒙‖𝑀 ≤ 𝑢 ̄𝑝

√𝑢2
̄𝑝+𝜆

‖𝒙‖ for all 𝒙 ∈ ℝ𝑑 . Hence,

‖𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1) − 𝑐(𝒙𝑡 − 𝒙⋆)‖𝑀

≤
𝑢 ̄𝑝

√𝑢2
̄𝑝 + 𝜆

‖𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1) − 𝑐(𝒙𝑡 − 𝒙⋆)‖

≤
𝑐𝛾𝑢 ̄𝑝

√𝑢2
̄𝑝 + 𝜆

‖𝒙𝑡 − 𝒙⋆‖ ≤ 𝑐𝛾 ⋅
𝑢 ̄𝑝√𝑙2

̄𝑝 + 𝜆

𝑙 ̄𝑝√𝑢2
̄𝑝 + 𝜆

‖𝒙𝑡 − 𝒙⋆‖𝑀 .

As a result,

|𝐼| ≤ 2𝑐𝛾
𝑢 ̄𝑝√𝑙2

̄𝑝 + 𝜆

𝑙 ̄𝑝√𝑢2
̄𝑝 + 𝜆

𝑀(𝒙𝑡 − 𝒙⋆). (3.30)

For the term 𝐼𝐼 Since ‖⋅‖𝑀 is a convex function of𝒙, we have by the definition of convexity
that ‖0‖𝑀 − ‖𝒙𝑡 − 𝒙⋆‖𝑀 ≥ ⟨𝒗𝒙𝑡−𝒙⋆ , −(𝒙𝑡 − 𝒙⋆)⟩. Hence,

𝐼𝐼 = 𝑐‖𝒙𝑡 − 𝒙⋆‖𝑀⟨𝒗𝒙𝑡−𝒙⋆ ,𝒙𝑡 − 𝒙⋆⟩ ≥ 𝑐‖𝒙𝑡 − 𝒙⋆‖2
𝑀 = 2𝑐𝑀(𝒙𝑡 − 𝒙⋆). (3.31)

For the term 𝐼𝐼𝐼 The the term 𝐼𝐼𝐼 exists due to Markovian data. Note that 𝒙𝑡, ∇𝑀(𝒙𝑡 −
𝒙⋆) ∈ 𝒢𝑡 and 𝜉𝑡−1 ∈ 𝒢𝑡. By Lemma 3.2.1 and Assumption 3.2.3, for any 𝑡 ≥ 0,

‖𝔼[𝑯(𝒙⋆, 𝜉𝑡+1)|𝜉0 = 𝜉]‖ = ‖𝒫 𝑡+1𝑯(𝒙⋆, 𝜉)‖ ≤ 𝜅𝜌𝑡 sup
𝜉∈Ξ

‖𝒫 𝑯(𝒙⋆, 𝜉)‖ ≤ 𝜅𝜎𝜌𝑡.

Therefore, we are motivated to define

𝑎𝑡 = ⌈log𝜌
𝜂𝑡
𝜎𝜅 ⌉ if 𝜌 > 0; 𝑎𝑡 = 0 otherwise, (3.11)
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for each 𝑡 ≥ 0 such that for any 𝜉 ∈ Ξ,

‖𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉)‖ = ‖𝔼[𝑯(𝒙⋆, 𝜉𝑎𝑡+1)|𝜉0 = 𝜉]‖ = ‖𝔼[𝑯(𝒙⋆, 𝜉𝑡)|𝜉𝑡−𝑎𝑡−1 = 𝜉]‖ ≤ 𝜂𝑡, (3.32)

where the last equality holds because we consider a time-homogeneous Markov chain. Then,

𝔼𝐼𝐼𝐼 = 𝔼⟨∇𝑀(𝒙𝑡 − 𝒙⋆) − ∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩

+ 𝔼⟨∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉𝑡−𝑎𝑡−1)⟩.
(3.33)

Let ̄𝑞 ≥ 1 be the real number satisfying ̄𝑞−1 + ̄𝑝−1 = 1 for the given ̄𝑝. By Hölder’s inequality,

|⟨∇𝑀(𝒙𝑡 − 𝒙⋆) − ∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩|

≤ ‖∇𝑀(𝒙𝑡 − 𝒙⋆) − ∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)‖ ̄𝑞‖𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)‖ ̄𝑝

≤ 𝑢 ̄𝑝 ⋅ ‖∇𝑀(𝒙𝑡 − 𝒙⋆) − ∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)‖ ̄𝑞‖𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)‖. (3.34)

By the Item 1 in Lemma 3.4.4, we have

‖∇𝑀(𝒙𝑡−𝒙⋆)−∇𝑀(𝒙𝑡−𝑎𝑡 −𝒙⋆)‖ ̄𝑞 ≤ ( ̄𝑝−1)𝜆⋅‖𝒙𝑡−𝒙𝑡−𝑎𝑡‖ ̄𝑝 ≤ ( ̄𝑝−1)𝑢 ̄𝑝𝜆⋅‖𝒙𝑡−𝒙𝑡−𝑎𝑡‖. (3.35)

To proceed the proof, we introduce three useful lemmas in the following.

Lemma3.4.5 (Properties of 𝑎𝑡’s). Define {𝑎𝑡}𝑡≥0 according to (3.11). Under Assumption 3.2.5,it

follows that (i) 𝑎𝑡 = 𝒪(log 𝑡), (ii) 𝑎𝑡𝜂𝑡−𝑎𝑡 log 𝑡 = 𝑜(1)when 𝑡 goes to infinity, as a result of which,
there exists 𝐾 > 0 such that any 𝑡 ≥ 𝐾 , we have

𝑀𝑎𝑡𝜂𝑡−𝑎𝑡 ≤ log 2,

(iii) 𝜂𝑡−𝑎𝑡/𝜂𝑡 = 𝒪(1), and (vi) 𝑎𝑡 ≤ 𝑎𝑡+1 ≤ 𝑎𝑡 + 1 for any sufficiently large 𝑡.

Proof of Lemma 3.4.5. The proof can be found in Appendix C.1

Lemma 3.4.6. With {𝑎𝑡}𝑡≥0 defined in (3.11), we introduce

𝑔𝑡−1 =
⎧⎪
⎨
⎪⎩

sup
𝑡−𝑎𝑡≤𝜏≤𝑡−1

𝑔(𝜉𝜏) if 𝑎𝑡 ≥ 1;

0 if 𝑎𝑡 = 0.
(3.36)

Then under Assumption 3.2.3, 3.2.4, 3.2.5 and 3.3.2, for any 𝑡 ≥ 𝐾 ,

‖𝒙𝑡 − 𝒙𝑡−𝑎𝑡‖ ≤ 6𝑀𝑎𝑡𝜂𝑡−𝑎𝑡(‖𝒙𝑡‖ + 𝑔𝑡−1) ≤ 2(‖𝒙𝑡‖ + 𝑔𝑡−1).

Proof of Lemma 3.4.6. The proof can be found in Appendix C.2
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Lemma 3.4.7. Under Assumption 3.3.2, we have 𝔼𝑔𝑡−1 ≤ (𝔼𝑔
𝑝
2
𝑡−1)

2
𝑝 = 𝒪(𝑎𝑡) where 𝒪(⋅) hides

the linear dependence on sup𝑡≥0(𝔼|𝑔(𝜉𝑡)|
𝑝
2 )

2
𝑝 .

Proof of Lemma 3.4.7. The proof can be found in Appendix C.3

It then follows that for any 𝑡 ≥ 𝐾 ,

|⟨∇𝑀(𝒙𝑡 − 𝒙⋆) − ∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩|
(𝑎)
≤ ( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ ‖𝒙𝑡 − 𝒙𝑡−𝑎𝑡‖‖𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)‖
(𝑏)
≤ 6𝑀( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ 𝑎𝑡𝜂𝑡−𝑎𝑡(‖𝒙𝑡 − 𝒙⋆‖ + ‖𝒙⋆‖ + 𝑔𝑡−1)‖𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)‖
(𝑐)
≤ 6𝜎𝑀( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ 𝑎𝑡𝜂𝑡−𝑎𝑡(‖𝒙𝑡 − 𝒙⋆‖ + ‖𝒙⋆‖ + 𝑔𝑡−1)
(𝑑)
≤ 6𝜎𝑀( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ 𝑎𝑡𝜂𝑡−𝑎𝑡 (
1
2‖𝒙𝑡 − 𝒙⋆‖2 + 1 + ‖𝒙⋆‖ + 𝑔𝑡−1)

(𝑒)
≤ 6𝜎𝑀( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ 𝑎𝑡𝜂𝑡−𝑎𝑡 ((
1 + 𝜆

𝑙2
̄𝑝 )

𝑀(𝒙𝑡 − 𝒙⋆) + ‖𝒙⋆‖ + 𝑔𝑡−1 + 1
)

, (3.37)

where (𝑎) follows from (3.34) and (3.35), (𝑏) uses Lemma 3.4.6, (𝑐) uses ‖𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)‖ ≤
𝜎 from Assumption 3.2.2, (𝑑) uses 𝑥 ≤ 𝑥2+1

2 for any 𝑥 ∈ ℝ, and (𝑒) uses the Item 2 in

Lemma 3.4.4.

Notice that 0 is the uniqueminimizer of the smooth function𝑀(⋅), which implies∇𝑀(0) =
0. Similarly, we have

|⟨∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉𝑡−𝑎𝑡−1)⟩|

≤ ( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅ ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖‖𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉𝑡−𝑎𝑡−1)‖

(𝑎)
≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖

≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅ (‖𝒙𝑡−𝑎𝑡 − 𝒙𝑡‖ + ‖𝒙𝑡 − 𝒙⋆‖)

(𝑏)
≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ (2‖𝒙𝑡‖ + 2𝑔𝑡−1 + ‖𝒙𝑡 − 𝒙⋆‖)
≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅ (3‖𝒙𝑡 − 𝒙⋆‖ + 2(‖𝒙⋆‖ + 𝑔𝑡−1))

≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅ (

3
2‖𝒙𝑡 − 𝒙⋆‖2 + 3

2 + 2(‖𝒙⋆‖ + 𝑔𝑡−1))
(𝑐)
≤ 3𝜂𝑡( ̄𝑝 − 1)𝑢2

̄𝑝𝜆 ⋅
((

1 + 𝜆
𝑙2

̄𝑝 )
𝑀(𝒙𝑡 − 𝒙⋆) + (‖𝒙⋆‖ + 𝑔𝑡−1 + 1)

)
, (3.38)

where (𝑎) follows from (3.32), (𝑏) uses Lemma 3.4.6 and (𝑐) uses the Item 2 in Lemma 3.4.4.
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Combining (3.33), (3.37) and (3.38), we have for any 𝑡 ≥ 𝐾 ,

|𝔼𝐼𝐼𝐼| ≤ 3( ̄𝑝 − 1)𝑢2
̄𝑝𝜆

[(𝜂𝑡 + 2𝑀𝜎𝑎𝑡𝜂𝑡−𝑎𝑡) (
1 + 𝜆

𝑙2
̄𝑝 )

𝔼𝑀(𝒙𝑡 − 𝒙⋆)

+(𝜂𝑡 + 2𝑀𝜎𝑎𝑡𝜂𝑡−𝑎𝑡)(𝔼𝑔𝑡−1 + ‖𝒙⋆‖ + 1)] .

Putting them together Plugging the bounds for 𝔼𝐼, 𝔼𝐼𝐼, 𝔼𝐼𝐼𝐼 into (3.29) and combing the

resulting inequality with (3.27) and (3.28), we have for any 𝑡 ≥ 𝐾 ,

𝔼𝑀(𝒙𝑡+1 − 𝒙⋆) ≤ (1 + 𝐴1𝜂2
𝑡 + 𝐴2𝑎𝑡𝜂𝑡𝜂𝑡−𝑎𝑡 − 𝐴3𝜂𝑡)𝔼𝑀(𝒙𝑡 − 𝒙⋆)

+ 𝐴4𝜂2
𝑡 + 𝐴5𝑎𝑡𝜂𝑡𝜂𝑡−𝑎𝑡 + (𝐴6𝜂2

𝑡 + 𝐴7𝑎𝑡𝜂𝑡𝜂𝑡−𝑎𝑡)𝔼𝑔𝑡−1,
(3.39)

where for short we denote

𝐴1 = ( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 (3 + 2𝐿2

𝐻) (
𝜆
𝑙2

̄𝑝
+ 1

)
, 𝐴2 = 6𝑀𝜎( ̄𝑝 − 1)𝑢2

̄𝑝𝜆
(

𝜆
𝑙2

̄𝑝
+ 1

)
,

𝐴3 = 2𝑐
⎛
⎜
⎜
⎝
1 − 𝛾

𝑢 ̄𝑝√𝑙2
̄𝑝 + 𝜆

𝑙 ̄𝑝√𝑢2
̄𝑝 + 𝜆

⎞
⎟
⎟
⎠

, 𝐴4 = 𝑢2
̄𝑝( ̄𝑝 − 1)𝜆

(
sup
𝑡≥0

𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖2 + 3(‖𝒙⋆‖ + 1)
)

,

𝐴5 = 6𝑀𝜎( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 (1 + ‖𝒙⋆‖) , 𝐴6 = 3( ̄𝑝 − 1)𝑢2

̄𝑝𝜆, 𝐴7 = 6𝑀( ̄𝑝 − 1)𝑢2
̄𝑝𝜎𝜆.

Pay attention that by setting 𝜆 sufficiently small, we can ensure all 𝐴𝑖’s are positive.

Dividing (3.39) by 𝑎2
𝑡 𝜂𝑡 and simplifying the inequality, we arrive at

(1 + 𝑜(𝜂𝑡)) ⋅
𝔼𝑀(𝒙𝑡+1 − 𝒙⋆)

𝑎2
𝑡+1𝜂𝑡+1

≤ (1 + 𝐴1𝜂2
𝑡 + 𝐴2𝑎𝑡𝜂𝑡𝜂𝑡−𝑎𝑡 − 𝐴3𝜂𝑡)

𝔼𝑀(𝒙𝑡 − 𝒙⋆)
𝑎2

𝑡 𝜂𝑡
+ 𝒪(𝜂𝑡),

where we use 𝜂𝑡+1 = 𝜂𝑡(1 + 𝑜(𝜂𝑡)), 1 ≤ 𝑎𝑡 ≤ 𝑎𝑡+1 and 𝜂𝑡−𝑎𝑡/𝜂𝑡 = 𝑂𝑀(1) in Lemma 3.4.5, and

𝔼𝑔𝑡−1 = 𝒪(𝑎𝑡) in Lemma 3.4.7. As long as 𝑡 is sufficiently large, we have 1+𝐴1𝜂2
𝑡 +𝐴2𝑎𝑡𝜂𝑡𝜂𝑡−𝑎𝑡−𝐴3𝜂𝑡

1+𝑜(𝜂𝑡)
≤

1 − 𝐵1𝜂𝑡 and there exist a constant positive 𝐵2 > 0 such that

𝔼𝑀(𝒙𝑡+1 − 𝒙⋆)
𝑎2

𝑡+1𝜂𝑡+1
≤ (1 − 𝐵1𝜂𝑡)

𝔼𝑀(𝒙𝑡 − 𝒙⋆)
𝑎2

𝑡 𝜂𝑡
+ 𝐵2𝜂𝑡.

Using the last inequality and Lemma A.10 in[67], we have

sup
𝑡≥0

𝔼𝑀(𝒙𝑡 − 𝒙⋆)
𝑎2

𝑡 𝜂𝑡
< ∞.

By the Item 2 in Lemma 3.4.4, 𝔼𝑀(𝒙𝑡 −𝒙⋆) approximates 𝔼‖𝒙𝑡 −𝒙⋆‖2 up to constant factors.

It implies sup𝑡≥0
𝔼‖𝒙𝑡−𝒙⋆‖2

𝑎2
𝑡 𝜂𝑡

< ∞ and thus we establish the (𝐿2, 𝑎𝑡√𝜂𝑡)-consistency of {𝒙𝑡}𝑡≥0.
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3.4.3 Proof of Theorem 3.3.2

In this subsection, we further establish the (𝐿𝑝, 𝑎𝑡√𝜂𝑡)-consistency. Though the main idea
is similar to the case of (𝐿2, 𝑎𝑡√𝜂𝑡)-consistency, the proof procedure is much more circuitous
for the following two reasons.

1. First, following the spirit of the generalized Lyapunov approach, we should consider

the recursion of the form 𝔼𝑀(𝒙𝑡+1 − 𝒙⋆)
𝑝
2 where 𝒙𝑡+1 is updated according to (3.27).

However,𝔼𝑀(𝒙𝑡+1−𝒙⋆)
𝑝
2 doesn’t has a close-form expansion as the square counterpart

𝔼𝑀(𝒙𝑡+1 − 𝒙⋆). We then have to bound the incremental growth of 𝔼𝑀(𝒙𝑡+1 − 𝒙⋆)
𝑝
2

with respect to 𝔼𝑀(𝒙𝑡 − 𝒙⋆)
𝑝
2 via inequalities. To that end, we derive Lemma 3.4.8.

Lemma 3.4.8. For any scalar 𝐴 > 0 and any real number 𝑥 ≥ −𝐴, we have

(𝐴 + 𝑥)1+𝛼 ≤
{

𝐴1+𝛼 + (1 + 𝛼)𝐴𝛼𝑥 + |𝑥|1+𝛼 if 𝛼 ∈ (0, 1],
𝐴1+𝛼 + (1 + 𝛼)𝐴𝛼𝑥 + 𝑐𝛼(1+𝛼)

2 𝐴𝛼−1𝑥2 + 𝑐𝛼|𝑥|1+𝛼 if 𝛼 ∈ [1, ∞).
(3.40)

where 𝑐𝛼 in a universal constant depending 𝛼 and satisfying 𝛼 ≤ 𝑐𝛼 ≤ 3𝛼.

Proof of Lemma 3.4.8. The proof can be found in Appendix C.4.

2. Second, according to (3.40), the specific value of 𝛼 would affect the inequality we use.

It implies we should proceed the proof in two cases.

Now, we formally start the proof. By (3.27), we obtain

𝑀(𝒙𝑡+1 − 𝒙⋆) ≤ 𝑀(𝒙𝑡 − 𝒙⋆) − 𝜂𝑡𝛿𝑡,

where

𝛿𝑡 ∶= ⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩ − ( ̄𝑝 − 1)𝜆𝜂𝑡
2 ‖𝑯(𝒙𝑡, 𝜉𝑡)‖2

̄𝑝. (3.41)

It is clear that 𝑀(𝒙𝑡 − 𝒙⋆) − 𝜂𝑡𝛿𝑡 ≥ 𝑀(𝒙𝑡+1 − 𝒙⋆) ≥ 0. In the following, we set 𝛼 = 𝑝
2 − 1 for

short and have 𝛼 > 0 by assumption.

For the case of 𝛼 ∈ (0, 1] Taking (1+𝛼)-th order moment and using the first scalar inequality
in (3.40), we have

𝔼𝑀(𝒙𝑡+1 − 𝒙⋆)1+𝛼 ≤ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 − (1 + 𝛼)𝜂𝑡𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼𝛿𝑡 + 𝜂1+𝛼
𝑡 𝔼|𝛿𝑡|1+𝛼.

(3.42)

To analyze the second and third term in (3.42), we establish corresponding upper bounds

in Lemma 3.4.9 and Lemma 3.4.10.
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Lemma 3.4.9. Let 𝑑𝑡 = max𝑡−𝑎𝑡≤𝜏≤𝑡 𝔼𝑀(𝒙𝜏 − 𝒙⋆)1+𝛼. There exists a constant 𝐴8 > 0 such

that

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼𝛿𝑡 ≥ 𝐴3𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 − 𝐴8(𝜂𝑡 + 𝑎𝑡𝜂𝑡−𝑎𝑡) (𝑑𝑡 + 𝑎𝑡 ⋅ 𝑑
𝛼

1+𝛼
𝑡 ) .

Here 𝐴8 depends on 𝐴1, 𝐴2, 𝐴5, 𝐴6, {𝜂𝑡}𝑡≥0 and sup𝑡≥0 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝.

Proof of Lemma 3.4.9. The proof can be found in Appendix C.5.

Lemma 3.4.10. With 𝛿𝑡 defined in (3.41), there exists a constant 𝐴9 > 0 such that

𝔼|𝛿𝑡|1+𝛼 ≤ 𝐴9(𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + 𝜂1+𝛼
𝑡 ).

Here 𝐴9 depends on ̄𝑝, 𝜆, 𝑢 ̄𝑝, 𝐿𝐻 and sup𝑡≥0 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝.

Proof of Lemma 3.4.10. The proof can be found in Appendix C.6.

Denote 𝑣𝑡 = 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼. With 𝑑𝑡 defined in Lemma 3.4.9, we have 𝑣𝑡 ≤ 𝑑𝑡 by

definition. Plugging the bounds in Lemma 3.4.9 and Lemma 3.4.10 into (3.42), we have

𝑣𝑡+1 ≤ (1 − (1 + 𝛼)𝐴3𝜂𝑡) 𝑣𝑡 + (1 + 𝛼)𝐴8𝜂𝑡(𝜂𝑡 + 𝑎𝑡𝜂𝑡−𝑎𝑡) (𝑑𝑡 + 𝑎𝑡 ⋅ 𝑑
𝛼

1+𝛼
𝑡 ) + 𝐴9𝜂1+𝛼

𝑡 (𝑣𝑡 + 𝜂1+𝛼
𝑡 ).

We define ̃𝑑𝑡 = 𝑑𝑡𝑎
−2(1+𝛼)
𝑡 𝜂−(1+𝛼)

𝑡 and similarly ̃𝑣𝑡 = 𝑣𝑡𝑎
−2(1+𝛼)
𝑡 𝜂−(1+𝛼)

𝑡 . For sufficiently large

𝑡, we would have 1 − (1 + 𝛼)𝐴3𝜂𝑡 ∈ (0, 1). Dividing 𝜂1+𝛼
𝑡 𝑎2(1+𝛼)

𝑡 on the both sides of the last

inequality and using 𝜂𝑡+1 = 𝜂𝑡(1 + 𝑜(𝜂𝑡)) and 1 ≤ 𝑎𝑡 ≤ 𝑎𝑡+1, we arrive at

̃𝑣𝑡+1(1 + 𝑜(𝜂𝑡)) ≤ [1 − (1 + 𝛼)𝐴3𝜂𝑡 + (1 + 𝛼)𝐴8𝜂𝑡(𝜂𝑡 + 𝑎𝑡𝜂𝑡−𝑎𝑡) + 𝐴9𝜂1+𝛼
𝑡 ] ̃𝑑𝑡

+ (1 + 𝛼)𝐴8𝜂𝑡(1 + 𝑎𝑡𝜂𝑡−𝑎𝑡/𝜂𝑡)𝑎−1
𝑡 ̃𝑑

𝛼
1+𝛼
𝑡 + 𝐴9𝜂1+𝛼

𝑡

≤ [1 − (1 + 𝛼)𝐴3𝜂𝑡(1 + 𝑜(𝜂𝑡))] ̃𝑑𝑡 + 𝒪(𝜂𝑡) ⋅ ̃𝑑
𝛼

1+𝛼
𝑡 + 𝐴9𝜂1+𝛼

𝑡 (3.43)

where the last equality uses 𝑎𝑡𝜂𝑡−𝑎𝑡 = 𝑜(1) and 𝜂𝑡−𝑎𝑡/𝜂𝑡 = 𝒪(1) in Lemma 3.4.5.
We assert that

sup
𝑡≥0

̃𝑑𝑡 < ∞.

Weprove this statement in the following. For sufficiently large 𝑡, we have that 0 < 1−(1+𝛼)𝐴3𝜂𝑡
1+𝑜(𝜂𝑡)

≤
1 − 𝐵1𝜂𝑡 < 1 for some constant 𝐵1 > 0. Then we can find constants 𝐵2, 𝐵3 > 0 and sim-

plify (3.43) as

̃𝑣𝑡+1 ≤ (1 − 𝐵1𝜂𝑡) ̃𝑑𝑡 + 𝐵2𝜂𝑡 ̃𝑑
𝛼

1+𝛼
𝑡 + 𝐵3𝜂𝑡 =∶ ̃𝑑𝑡 − 𝜂𝑡ℎ( ̃𝑑𝑡) (3.44)
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where ℎ(𝑥) = 𝐵1𝑥 − 𝐵2𝑥
𝛼

1+𝛼 − 𝐵3 is a helper function. One can show that ℎ(𝑥) is a function
defined on [0, ∞) that starts from a negative value, then decreases, and finally increases to

infinity. As a result, there is a unique root 𝑑⋆ > 0 such that ℎ(𝑑⋆) = 0. With a sufficiently

large 𝑡, one has 𝑎𝑡 ≤ 𝑎𝑡+1 ≤ 𝑎𝑡 + 1 from Lemma 3.4.5. If ̃𝑑𝑡 ≥ 𝑑⋆, we then have ℎ( ̃𝑑𝑡) ≥ 0 and

thus ̃𝑣𝑡+1 ≤ ̃𝑑𝑡 from (3.44). As a result of the fact 𝑡 + 1 − 𝑎𝑡+1 ≥ 𝑡 − 𝑎𝑡, we have

̃𝑑𝑡+1 = max
𝑡+1−𝑎𝑡+1≤𝜏≤𝑡+1

̃𝑣𝑡 ≤ max
𝑡−𝑎𝑡≤𝜏≤𝑡+1

̃𝑣𝑡 = max{ max
𝑡−𝑎𝑡≤𝜏≤𝑡

̃𝑣𝑡, ̃𝑣𝑡+1} = max{ ̃𝑑𝑡, ̃𝑣𝑡+1} (3.45)

≤ ̃𝑑𝑡.

In short, once ̃𝑑𝑡 ≥ 𝑑⋆, ̃𝑑𝑡+1 decreases until it is smaller than 𝑑⋆. Furthermore, if ̃𝑑𝑡 < 𝑑⋆ and
̃𝑑𝑡+1 ≥ 𝑑⋆, from (3.45), we have ̃𝑑𝑡+1 ≤ ̃𝑣𝑡+1, which, together with (3.44), implies ̃𝑑𝑡+1 − ̃𝑑𝑡

is bounded by a universal constant. As a result, we conclude that ̃𝑑𝑡 is impossible to reach

infinity, and thus sup𝑡≥0 ̃𝑑𝑡 < ∞.

Given sup𝑡≥0 ̃𝑑𝑡 < ∞ and 𝑝
2 = 1+𝛼, we have that 𝔼𝑀(𝒙𝑡 −𝒙⋆)

𝑝
2 ≤ 𝐶𝑝𝜂

𝑝
2
𝑡 𝑎𝑝

𝑡 uniformly for

𝑡 ≥ 0 and a universal constant 𝐶𝑝 > 0. By Lemma 3.4.4, we have ‖𝒙𝑡 − 𝒙⋆‖2 ≾ 𝑀(𝒙𝑡 − 𝒙⋆).
As a result, we have 𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝 ≤ 𝐶𝑝𝜂

𝑝
2
𝑡 𝑎𝑝

𝑡 (by slightly abusing the notation 𝐶𝑝).

For the case of 𝛼 ∈ (1, ∞) Taking (1 + 𝛼)-th order moment and using the second scalar

inequality in (3.40), we have

𝔼𝑀(𝒙𝑡+1 − 𝒙⋆)1+𝛼 ≤ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 − (1 + 𝛼)𝜂𝑡𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼𝛿𝑡

+ 𝑐𝛼(1 + 𝛼)
2 𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1𝜂2

𝑡 |𝛿𝑡|2 + 𝑐𝛼𝜂1+𝛼
𝑡 𝔼|𝛿𝑡|1+𝛼.

(3.46)

Because most of the terms in (3.46) have been analyzed previously, we only focus on the

remaining term 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1|𝛿𝑡|2.

Lemma 3.4.11. There exists a positive constant 𝐴10 > 0 such that

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1|𝛿𝑡|2 ≤ 𝐴10 [𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼+1 + (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)
𝛼

𝛼+1 + 𝜂2
𝑡 (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼−1
𝛼+1 ] .

Here 𝐴10 depends on 𝐿𝐻 , 𝑀, ‖𝒙⋆‖, 𝜆, 𝑙 ̄𝑝, sup𝑡≥0 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝 and sup𝑡≥0 𝔼|𝑔(𝜉𝑡)|𝑝.

Proof of Lemma 3.4.11. The proof can be found in Appendix C.7.

Plugging these bounds in Lemma 3.4.9, Lemma 3.4.10, and Lemma 3.4.11 into (3.46),

we have

𝑣𝑡+1 ≤ (1 − (1 + 𝛼)𝐴3𝜂𝑡) 𝑣𝑡 + (1 + 𝛼)𝐴8𝜂𝑡(𝜂𝑡 + 𝑎𝑡𝜂𝑡−𝑎𝑡) (𝑑𝑡 + 𝑎𝑡 ⋅ 𝑑
𝛼

1+𝛼
𝑡 )
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+ (1 + 𝛼)𝑐𝛼𝐴10𝜂2
𝑡 [𝑣𝑡 + 𝑣

𝛼
1+𝛼
𝑡 + 𝜂2

𝑡 𝑣
𝛼−1
1+𝛼
𝑡 ] + 𝑐𝛼𝐴9𝜂1+𝛼

𝑡 (𝑣𝑡 + 𝜂1+𝛼
𝑡 ).

Recall that ̃𝑑𝑡 = 𝑑𝑡𝑎
−2(1+𝛼)
𝑡 𝜂−(1+𝛼)

𝑡 and ̃𝑣𝑡 = 𝑣𝑡𝑎
−2(1+𝛼)
𝑡 𝜂−(1+𝛼)

𝑡 . For simplicity, we let 𝒪(⋅) hide
positive constant factors. Then, dividing 𝜂1+𝛼

𝑡 𝑎2(1+𝛼)
𝑡 on the both sides of the last equation and

using 𝜂𝑡+1 = 𝜂𝑡(1 + 𝑜(𝜂𝑡)) and 1 ≤ 𝑎𝑡 ≤ 𝑎𝑡+1, we arrive at

̃𝑣𝑡+1(1 + 𝑜(𝜂𝑡)) ≤ [1 − (1 + 𝛼)𝐴3𝜂𝑡 + 𝒪(𝜂𝑡) ⋅ (𝜂𝑡 + 𝑎𝑡𝜂𝑡−𝑎𝑡) + 𝒪(𝜂1+𝛼
𝑡 )] ̃𝑑𝑡

+ 𝒪(𝜂𝑡) ⋅ (1 + 𝑎𝑡𝜂𝑡−𝑎𝑡/𝜂𝑡)𝑎−1
𝑡 ̃𝑑

𝛼
1+𝛼
𝑡 + 𝒪(𝜂2

𝑡 ) ⋅ ̃𝑑
𝛼−1
𝛼+1
𝑡 + 𝒪(𝜂1+𝛼

𝑡 )
(𝑎)
≤ [1 − (1 + 𝛼)𝐴3𝜂𝑡(1 + 𝑜(𝜂𝑡))] ̃𝑑𝑡 + 𝒪(𝜂𝑡) ⋅ ̃𝑑

𝛼
1+𝛼
𝑡 + 𝒪(𝜂2

𝑡 ) ⋅ ̃𝑑
𝛼−1
𝛼+1
𝑡 + 𝒪(𝜂1+𝛼

𝑡 )
(𝑏)
≤ [1 − (1 + 𝛼)𝐴3𝜂𝑡(1 + 𝑜(𝜂𝑡))] ̃𝑑𝑡 + 𝒪(𝜂𝑡) ⋅ ̃𝑑

𝛼
1+𝛼
𝑡 + 𝒪(𝜂1+𝛼

𝑡 ), (3.47)

where (𝑎) uses 𝑎𝑡𝜂𝑡−𝑎𝑡 = 𝑜(1) and 𝜂𝑡−𝑎𝑡/𝜂𝑡 = 𝒪(1) in Lemma 3.4.5 and (𝑏) follows because
we can assume ̃𝑑𝑡 ≥ 1 without loss of generality (which can be achieved by redefining ̃𝑑𝑡 ←
max{ ̃𝑑𝑡, 1}).

For sufficiently large 𝑡, we can find positive constants 𝐵1, 𝐵2, 𝐵3 > 0 such that

̃𝑣𝑡+1 ≤ (1 − 𝐵1𝜂𝑡) ̃𝑑𝑡 + 𝐵2𝜂𝑡 ̃𝑑
𝛼

𝛼+1
𝑡 + 𝐵3𝜂𝑡,

which is the inequality we have already analyzed in (3.44). By an identical argument therein,

we conclude sup𝑡≥0 ̃𝑑𝑡 < ∞. Therefore, we also have 𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝 ≤ 𝐶𝑝𝜂
𝑝
2
𝑡 𝑎𝑝

𝑡 when 𝛼 > 1.

3.4.4 Proof of Theorem 3.3.3

In literature, the semiparametric efficiency for empirical estimators has been well un-

derstood when the interest of (unknown) parameter is in an expectation form, i.e., 𝔼𝜉∼𝜋ℓ(𝜉)
for a function ℓ. However, our interest parameter is 𝒙⋆, which is the root of the equation

𝒈(𝒙) ∶= 𝔼𝜉∼𝜋𝑯(𝒙, 𝜉) = 0. To make use of the existing result, we provide the following

lemma to serve as a bridge.

Lemma 3.4.12. For any RAL estimator 𝑻 𝑛 for 𝒙⋆ on 𝜋 with limit 𝑳, we have that g(𝑻 𝑛) is an
RAL estimator for −𝔼𝜉∼𝜋𝑯(𝒙⋆, 𝜉) with limit 𝑮 ⋅ 𝑳.

For any RAL estimator 𝑻 𝑛 for 𝒙⋆ on 𝜋 with limit 𝑳, Lemma 3.4.12 shows the trans-

formed estimator g(𝑻 𝑛) is an RAL estimator for −𝔼𝜉∼𝜋𝑯(𝒙⋆, 𝜉) with limit 𝑮 ⋅ 𝑳. Because
−𝔼𝜉∼𝜋𝑯(𝒙⋆, 𝜉) is a parameter in the expectation form, the Markovian convolution theorem
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presented in Greenwood, Wefelmeyer [155] shows that 𝑮 ⋅ 𝑳 can be represented as M + N,
whereM is independent ofN andN is Gaussian distributed with zero mean and the covariance

𝔼𝜉∼𝜋 [(ℐ − 𝒫 )−1𝑯(𝒙⋆, 𝜉)] [(ℐ − 𝒫 )−1𝑯(𝒙⋆, 𝜉)]
⊤. By Lemma 3.2.2, we know the matrix

is exactly 𝑺. Therefore, under 𝑃 , Var(N) ⪰ 𝑺 and thus

lim
𝑛→∞

𝑛𝔼(𝑻 𝑛−𝒙⋆)(𝑻 𝑛−𝒙⋆)⊤ = Var(𝑳) = 𝑮−1Var(M+N)𝑮−⊤ ⪰ 𝑮−1Var(N)𝑮−⊤ = 𝑮−1𝑺𝑮−⊤.

At the end of this subsection, we provide the proof for Lemma 3.4.12.

Proof of Lemma 3.4.12. By the definition of RAL estimators, we need to check asymptotic

linearity and regularity. We denote by 𝒫 and 𝒫𝑛𝒉 forward operator of the transition kernels 𝑃
and 𝑃𝑛𝒉 respectively.

Asymptotic linearity From the regularity of 𝑻 𝑛, we have √𝑛(𝑻 𝑛 − 𝒙⋆) 𝑑→ 𝑳 under 𝑃 . It

implies that 𝑻 𝑛
𝑝→ 𝒙⋆ and 𝔼𝑃 𝑛‖𝑻 𝑛 − 𝒙⋆‖2 ≾ 1

𝑛 . By Assumption 3.2.1, it holds that

‖√𝑛 (g(𝑻 𝑛) − g(𝒙⋆)) − √𝑛𝑮(𝑻 𝑛 − 𝒙⋆)‖ ≤ 𝐿𝐺√𝑛‖𝑻 𝑛 − 𝒙⋆‖2 + 𝑜𝑃 𝑛(1) = 𝑜𝑃 𝑛(1).

By the asymptotic linearity of 𝑻 𝑛, we have √𝑛(𝑻 𝑛 − 𝒙⋆) = 1
√𝑛

∑𝑛
𝑖=1 𝝋(𝜉𝑖−1, 𝜉) + 𝑜𝑃 𝑛(1) and

thus

√𝑛(g(𝑻 𝑛) − g(𝒙⋆)) = √𝑛g(𝑻 𝑛) = 1
√𝑛

𝑛∑
𝑖=1

𝑮𝝋(𝜉𝑖−1, 𝜉𝑖) + 𝑜𝑃 𝑛(1).

Regularity We first control the sum 𝔼𝜉∼𝜋𝑯(𝒙⋆
𝑛𝒉, 𝜉) + 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉). By using the fact

𝔼∼∼𝜋𝑯(𝒙⋆, 𝜉) = 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆
𝑛𝒉, 𝜉) = 0, we have

𝔼𝜉∼𝜋𝑯(𝒙⋆
𝑛𝒉, 𝜉) + 𝔼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉)

=𝔼𝜉∼𝜋[𝑯(𝒙⋆
𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)] − 𝔼𝜉∼𝜋𝑛𝒉[𝑯(𝒙⋆

𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)]
(𝑎)=𝔼𝜉∼𝜋𝒫 [𝑯(𝒙⋆

𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)] − 𝔼𝜉∼𝜋𝑛𝒉𝒫𝑛𝒉[𝑯(𝒙⋆
𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)]

(𝑏)=𝔼𝜉∼𝜋𝒫 [𝑯(𝒙⋆
𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)] − 𝔼𝜉∼𝜋𝑛𝒉𝒫 [𝑯(𝒙⋆

𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)]

+ 1
√𝑛

𝔼𝜉′∼𝜋𝑛𝒉𝔼𝜉∼𝑃 (𝜉,⋅)𝒉(𝜉, 𝜉′)[𝑯(𝒙⋆
𝑛𝒉, 𝜉′) − 𝑯(𝒙⋆, 𝜉′)]

= ∫Ξ
𝒫 [𝑯(𝒙⋆

𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)](𝜋(𝑑𝜉) − 𝜋𝑛𝒉(𝑑𝜉))

+ 1
√𝑛

𝔼𝜉′∼𝜋𝑛𝒉𝔼𝜉∼𝑃 (𝜉,⋅)𝒉(𝜉, 𝜉′)[𝑯(𝒙⋆
𝑛𝒉, 𝜉′) − 𝑯(𝒙⋆, 𝜉′)]

∶=𝒵1 + 𝒵2.
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where (𝑎) uses the fact that 𝜋 and 𝜋𝑛𝒉 are stationary distributions of 𝑃 and 𝑃𝑛𝒉 and (𝑏) uses the
choice 𝑃𝑛𝒉(𝜉, 𝑑𝜉′) = 𝑃 (𝜉, 𝑑𝜉′) (1 + 1

√𝑛𝒉(𝜉, 𝜉′)).

We then bound the two term 𝒵1 and 𝒵2 respectively. By the boundedness of 𝒉 and

Assumption 3.2.3, we have

‖𝒵2‖ ≾ 1
√𝑛

𝔼𝜉∼𝜋𝑛𝒉𝒫 ‖𝑯(𝒙⋆
𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)‖ ≾ 1

√𝑛
‖𝒙⋆

𝑛𝒉 − 𝒙⋆‖.

On the other hand, fromAssumption 3.2.4, both of the transition kernels 𝑃 and 𝑃𝑛𝒉 are strongly

stable which is defined in Kartashov [156]. By Theorem 3 in Kartashov [156], it follows that

𝑑TV(𝜋, 𝜋𝑛𝒉) ≾ sup
𝜉∈Ξ

𝑑TV(𝑃 (𝜉, ⋅), 𝑃𝑛𝒉(𝜉, ⋅)). Therefore,

‖𝒵1‖ ≤ ∫Ξ
‖𝒫 [𝑯(𝒙⋆

𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)]‖ ⋅ |𝜋(𝑑𝜉) − 𝜋𝑛𝒉(𝑑𝜉)|

≤ sup
𝜉∈Ξ

𝒫 ‖𝑯(𝒙⋆
𝑛𝒉, 𝜉) − 𝑯(𝒙⋆, 𝜉)‖ ⋅ 𝑑TV(𝜋, 𝜋𝑛𝒉)

(𝑎)
≾ ‖𝒙⋆

𝑛𝒉 − 𝒙⋆‖ ⋅ sup
𝜉∈Ξ

𝑑TV(𝑃 (𝜉, ⋅), 𝑃𝑛𝒉(𝜉, ⋅))

(𝑏)
≤ ‖𝒙⋆

𝑛𝒉 − 𝑥⋆‖ ⋅ 1
√𝑛

sup
𝜉,𝜉′∈Ξ

‖𝒉(𝜉, 𝜉′)‖ ≾ 1
√𝑛

‖𝒙⋆
𝑛𝒉 − 𝑥⋆‖,

where (𝑎) follows from Assumption 3.2.3 and (𝑏) follows from the definition of 𝑃𝑛𝒉(𝜉, 𝑑𝜉′).
Combining these two bounds, we get that

g(𝒙⋆
𝑛𝒉) + 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉) = 𝔼𝜉∼𝜋𝑯(𝒙⋆

𝑛𝒉, 𝜉) + 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉) ≾
‖𝒙⋆

𝑛𝒉 − 𝒙⋆‖

√𝑛
.

Noting that𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉) = 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉)−𝔼𝜉∼𝜋𝑯(𝒙⋆, 𝜉), we can show𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉) =
𝒪(1/√𝑛) by using the same technique in bounding ‖𝒵1‖. Using the last inequality, we have

𝒈(𝒙⋆) − 𝒈(𝒙⋆
𝑛𝒉) = −𝔼𝜉∼𝜋𝑯(𝒙⋆

𝑛𝒉, 𝜉) − 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉) + 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉)

= 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉) + 𝒪
(

1
√𝑛

‖𝒙⋆
𝑛𝒉 − 𝒙⋆‖

)
.

By Assumption 3.3.1, it is easy to show that (1 − 𝛾)𝑐‖𝒙⋆
𝑛𝒉 − 𝒙⋆‖ ≤ ‖g(𝒙⋆

𝑛𝒉) − g(𝒙⋆)‖. Hence,

‖𝒙⋆
𝑛𝒉−𝒙⋆‖ ≤ ‖𝔼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉)‖+𝒪

(
1

√𝑛
‖𝒙⋆

𝑛𝒉 − 𝒙⋆‖
)

= 𝒪
(

1
√𝑛)

+𝒪
(

1
√𝑛

‖𝒙⋆
𝑛𝒉 − 𝒙⋆‖

)
.

Rearranging the last inequality yields ‖𝒙⋆
𝑛𝒉 − 𝒙⋆‖ ≾ 1

√𝑛 .

Finally, by the regularity of 𝑻 𝑛, we have √𝑛(𝑻 𝑛 − 𝒙⋆
𝑛𝒉) 𝑑→ 𝑳 under the perturbed distri-
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bution 𝑃𝑛𝒉 and thus 𝑻 𝑛
𝑝→ 𝒙⋆. Therefore,

√𝑛(𝒈(𝑻 𝑛) + 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉))

=√𝑛(𝒈(𝑻 𝑛) − 𝒈(𝒙⋆
𝑛𝒉)) + √𝑛 (g(𝒙⋆

𝑛𝒉) + 𝔼𝜉∼𝜋𝑛𝒉𝑯(𝒙⋆, 𝜉))
=√𝑛[(𝒈(𝑻 𝑛) − 𝒈(𝒙⋆)) − (𝒈(𝒙⋆

𝑛𝒉) − 𝒈(𝒙⋆))] + 𝒪(‖𝒙⋆
𝑛𝒉 − 𝒙⋆‖)

=√𝑛[𝑮(𝑻 𝑛 − 𝒙⋆) − 𝑮(𝒙⋆
𝑛𝒉 − 𝒙⋆)] + 𝒪 (√𝑛‖𝑻 𝑛 − 𝒙⋆

𝑛𝒉‖2 + √𝑛‖𝒙⋆
𝑛𝒉 − 𝒙⋆‖2

) + 𝒪(1/√𝑛)

=𝑮√𝑛(𝑻 𝑛 − 𝒙⋆
𝑛𝒉) + 𝒪𝑃 𝑛(1/√𝑛) = 𝑮√𝑛(𝑻 𝑛 − 𝒙⋆

𝑛𝒉) + 𝑜𝑃 𝑛(1)
𝑑→𝑮 ⋅ 𝑳.

The last equation means 𝒈(𝑻 𝑛) is a regular estimator for 𝔼𝜉∼𝜋𝑯(𝒙⋆, 𝜉) with limit 𝑮𝑳.

3.4.5 Preliminaries on the Lévy-Prokhorov Metric

Before presenting the proof of Theorem 3.3.5, we introduce additional preliminaries and

notation. We relate the Lévy-Prokhorov metric 𝑑S(⋅) in (3.13) with a Ky-Fan-metric-type

functional ̃𝑑(⋅) that would be frequently used latter on. For any continuous stochastic process
𝝓 ∈ D[0,1],ℝ𝑑 , we denote

̃𝑑(𝝓) ∶= inf
𝜀≥0

𝜀 ∨ ℙ(|||𝝓||| > 𝜀). (3.48)

Proposition 3.4.1. For any 𝝓1,𝝓2 ∈ D[0,1],ℝ𝑑 , it then follows that

𝑑P(𝝓1 + 𝝓2,𝝓1) ≤ ̃𝑑(𝝓2).

Proof of Proposition 3.4.1. For each 𝝓2, we assume the maximum in ̃𝑑(𝝓2) is achieved by 𝜀2

such that ̃𝑑(𝝓2) = 𝜀2 ∨ℙ(|||𝝓2||| > 𝜀2). It is obvious that 𝜀2 ≤ ̃𝑑(𝝓2). Recall that 𝐵𝜀 ∶= {𝝓1 ∶
inf
𝝓2∈𝐵

𝑑S(𝝓1,𝝓2) ≤ 𝜀}. Then, for any 𝐵 ∈ 𝒟[0,1],ℝ𝑑 , once 𝝓1 + 𝝓2 ∈ 𝐵 and |||𝝓2||| ≤ 𝜀, we

have 𝝓1 ∈ 𝐵𝜀. Therefore,

ℙ(𝝓1 + 𝝓2 ∈ 𝐵) = ℙ(𝝓1 + 𝝓2 ∈ 𝐵, |||𝝓2||| ≤ 𝜀2) + ℙ(𝝓1 + 𝝓2 ∈ 𝐵, |||𝝓2||| > 𝜀2)

≤ ℙ(𝝓1 ∈ 𝐵𝜀2) + ℙ(|||𝝓2||| > 𝜀2)

≤ ℙ(𝝓1 ∈ 𝐵 ̃𝑑(𝝓2)) + ̃𝑑(𝝓2).

By taking 𝐵 as all measurable set in 𝒟[0,1],ℝ𝑑 , we conclude that 𝑑P(𝝓1 + 𝝓2,𝝓1) ≤ ̃𝑑(𝝓2) by
the definition of 𝑑P in (3.13).

Proposition 3.4.2. Let 𝑔 ∶ D[0,1],ℝ𝑑 → D[0,1],ℝ𝑘(𝑘 ≥ 1) be 𝐿-Lipschitz continuous in |||⋅|||
in the sense that |||𝑓 (𝝓1) − 𝑓(𝝓2)||| ≤ 𝐿 ⋅ |||𝝓1 − 𝝓2||| for any 𝝓1,𝝓2 ∈ D[0,1],ℝ𝑑 . For any
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𝝓1,𝝓2 ∈ D[0,1],ℝ𝑑 , it follows that

𝑑P(𝑔(𝝓1), 𝑔(𝝓2)) ≤ (𝐿 ∨ 1) ⋅ 𝑑P(𝝓1,𝝓2).

Proof of Proposition 3.4.2. Let ̃𝐵 be any measurable Borel set in ℝ𝑘 and we define 𝐵 = {𝝓 ∈
D[0,1],ℝ ∶ 𝑔(𝝓) ∈ ̃𝐵}. Let 𝜀 = 𝑑P(𝝓1,𝝓2). By definition, we have ℙ(𝝓1 ∈ 𝐵) ≤ ℙ(𝝓2 ∈
𝐵𝜀) + 𝜀. Notice that ℙ(𝝓1 ∈ 𝐵) = ℙ(𝑔(𝝓1) ∈ ̃𝐵) and ℙ(𝝓2 ∈ 𝐵𝜀) ≤ ℙ(𝑔(𝝓2) ∈ ̃𝐵𝐿𝜀).

The second inequality uses the result that if 𝝓2 ∈ 𝐵𝜀, then there exists 𝝓3 ∈ 𝐵 such that

𝑔(𝝓3) ∈ 𝐵 and |||𝝓2 − 𝝓3||| ≤ 𝜀. Therefore, |||𝑔(𝝓2) − 𝑔(𝝓3)||| ≤ 𝐿 ⋅ |||𝝓2 − 𝝓3||| ≤ 𝐿 ⋅ 𝜀 and

thus 𝑔(𝝓2) ∈ ̃𝐵𝐿𝜀. Hence, by arbitrariness of ̃𝐵, 𝑑P(𝑔(𝝓1), 𝑔(𝝓2)) ≤ (𝐿 ∨ 1) ⋅ 𝑑P(𝝓1,𝝓2).

As a direct corollary of Proposition 3.4.2, we have

Corollary 3.4.1. For any vector 𝜽 ∈ ℝ𝑑 satisfying ‖𝜽‖∗ = 1,

𝑑P(𝜽⊤𝝓1,𝜽⊤𝝓2) ≤ 𝑑P(𝝓1,𝝓2).

Proposition 3.4.3. If 𝝓 ∈ D[0,1],ℝ𝑑 satisfies 𝔼|||𝝓|||𝑝 < ∞ with 𝑝 > 0, then

̃𝑑(𝝓) ≤ (𝔼|||𝝓|||𝑝)
1

𝑝+1 .

Proof of Proposition 3.4.3. With 𝜀 = (𝔼|||𝝓|||𝑝)
1

𝑝+1 , Markov’s inequality yields thatℙ(|||𝝓||| >
𝜀) ≤ 𝔼|||𝝓|||

𝑝

𝜀𝑝 = 𝜀. Hence, ̃𝑑(𝝓) ≤ 𝜀 ∨ ℙ(|||𝝓||| > 𝜀) = 𝜀 = (𝔼|||𝝓|||𝑝)
1

𝑝+1 .

Proposition 3.4.1 shows that the Lévy-Prokhorovmetric between𝝓1+𝝓2 and𝝓1 is exactly

bounded by ̃𝑑(𝝓2). Proposition 3.4.3 then implies ̃𝑑(𝝓2) is further bounded by (𝔼|||𝝓2|||
𝑝
)

1
𝑝+1

if the 𝑝-th order moment exists. In this way, we reduce the Lévy-Prokhorov metric between

two given random processes to the high-order moments of their difference. The latter is more

tractable and thus easier to analyze.

Theorem 3.4.1 (Corollary 1 in Kubilius [150])). Let (𝑋𝑛, 𝐹 𝑛) be a sequence of locally square

integrable martingales in ℝ, and (𝑋, 𝐹 ) be a continuous Gaussian martingale. Then for any

𝑇 > 0, and 0 < 𝛿 < 3/2,

𝑑P (𝑋𝑛, 𝑋) = 𝒪
⎛
⎜
⎜
⎝

⎧⎪
⎨
⎪⎩

(
𝔼 sup

𝑡⩽𝑇
|⟨𝑋𝑛⟩𝑡 − ⟨𝑋⟩𝑡|)

1
3

+ (𝔼 ∫
𝑇

0 ∫ℝ
|𝑥|2+2𝛿Π𝑛(𝑑𝑠, 𝑑𝑥))

1
3+2𝛿 ⎫⎪

⎬
⎪⎭

×
|
ln

(
𝔼 sup

𝑡⩽𝑇
|⟨𝑋𝑛⟩𝑡 − ⟨𝑋⟩𝑡| + 𝔼 ∫

𝑇

0 ∫ℝ
|𝑥|2+2𝛿Π𝑛(𝑑𝑠, 𝑑𝑥)

)|

1/2⎞
⎟
⎟
⎠

,

(3.49)

86



Chapter 3 Online Statistical Inference for Nonlinear Stochastic Approximation with Markovian Data

where ⟨𝑋⟩ is the quadratic characteristic of 𝑋 and Π𝑛 is the dual predictable projection of the

process 𝑋𝑛.

3.4.6 Proof of Theorem 3.3.5

With the preliminaries in the previous subsection, we are ready to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. Let 𝑝 = 2(1 + 𝛿) for simplicity. Then 𝑝 > 2 is equivalent to 𝛿 > 0.

Step one: Finer partial-sum process decomposition We have analyzed the partial-sum

decomposition in Section 3.4.1. Wewill further decompose two terms to proceed proof. Recall

that 𝝓̃𝑇 (𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 (𝒙̃𝑡 − 𝒙⋆) and 𝒙̃𝑡 = 𝒙𝑡 − 𝜂𝑡𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1). We directly quote the

result (3.20) here

𝝓̃𝑇 (𝑟) − 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑮−1𝒖𝑡 = 1
√𝑇 𝜂0

𝑨⌊𝑇 𝑟⌋
0 𝑩0𝚫0 + 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑨⌊𝑇 𝑟⌋
𝑡 (𝒓𝑡 + 𝝂𝑡)

+ 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

(𝑨𝑇
𝑡 − 𝑮−1) 𝒖𝑡 + 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

(𝑨
⌊𝑇 𝑟⌋
𝑡 − 𝑨𝑇

𝑡 ) 𝒖𝑡

∶= 𝝍0(𝑟) + 𝝍1(𝑟) + 𝝍2(𝑟) + 𝝍3(𝑟). (3.20)

First, we further decompose 𝝍1(𝑟) ∶= 𝝍1,1(𝑟) + 𝝍1,2(𝑟) into two terms and arrive at

𝝍1(𝑟) = 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑨⌊𝑇 𝑟⌋
𝑡 (𝒓𝑡+𝝂𝑡) ∶= 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑨⌊𝑇 𝑟⌋
𝑡 𝒓𝑡+

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑨⌊𝑇 𝑟⌋
𝑡 𝝂𝑡 =∶ 𝝍1,1(𝑟)+𝝍1,2(𝑟).

Second, we decompose the noise 𝒖𝑡 = 𝒖𝑡,1 + 𝒖𝑡,2 where

𝒖𝑡,1 = [𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)] − [𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] ,

𝒖𝑡,2 = [𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] .
(B.1)

This decomposition has been used to analyze the asymptotic behavior of 1
√𝑇

∑𝑇
𝑡=0 𝑮−1𝒖𝑡 in

Lemma 3.4.1. From the proof of 2 in Lemma 3.4.1, we know that both {𝒖𝑡,1}𝑡≥0 and {𝒖𝑡,2}𝑡≥0

are martingale difference sequences with bounded (2 + 2𝛿)-th order moment. For simplicity,
we denote

𝝍4,1(𝑟) = 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑮−1𝒖𝑡,1, 𝝍4,2(𝑟) = 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑮−1𝒖𝑡,2, and 𝝍(𝑟) = 𝑮−1𝑺1/2𝑾 (𝑟).
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Therefore, it follows that

𝝓𝑇 = (𝝓𝑇 − 𝝓̃𝑇 ) + 𝝍0 + 𝝍1,1 + 𝝍1,2 + 𝝍2 + 𝝍3 + 𝝍4,1 + 𝝍4,2.

By repeatedly using Proposition 3.4.1 and Corollary 3.4.1, it follows that for any 𝜽 ∈ ℝ𝑑

satisfying ‖𝜽‖∗ = 1,

𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) ≤ 𝑑P (𝜽⊤𝝓𝑇 ,𝜽⊤𝝓̃𝑇 ) + ̃𝑑(𝝍0) + ̃𝑑(𝝍1,1) + ̃𝑑(𝝍1,2)

+ ̃𝑑(𝝍2) + ̃𝑑(𝝍3) + ̃𝑑(𝝍4,1) + 𝑑P(𝜽⊤𝝍4,2,𝜽⊤𝝍).
(3.50)

Step two: Moment analysis By Proposition 3.4.3, each ̃𝑑(𝝍) is bounded by the moment

(𝔼|||𝝍|||𝑣)
1

𝑣+1 for any 1 ≤ 𝑣 ≤ 𝑝. Therefore, analyzing most of the terms in the right-hand side
of (3.50) is reduced to analyze their higher-order moment with the moment order 𝑣 unspecified
as a variable. Lemma 3.4.13 provides these higher order moment bounds with 𝜆, 𝑚, 𝑙, 𝑘 the

corresponding variables. Given the interested parameters include only 𝑡mix and 𝑇 , we will

hide other parameter dependence in ≾, 𝒪 and ̃𝒪 .

Lemma 3.4.13. Rewrite 𝑝 = 2(1+𝛿). Under the assumptions of Theorem 3.3.5, it follows that

𝑑P (𝜽⊤𝝓𝑇 ,𝜽⊤𝝓̃𝑇 ) = 𝒪
⎛
⎜
⎜
⎜
⎝

𝑡
1+𝑚
2+𝑚
mix ⋅ 𝑇

1+𝑚
2(2+𝑚) ⋅

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝑚
𝑡

⎞
⎟
⎟
⎠

1
2+𝑚 ⎞

⎟
⎟
⎟
⎠

∀𝑚 ∈ [0, 2𝛿 + 1], (3.51)

̃𝑑(𝝍0) = 𝒪 (𝑇 − 1
2 ) , (3.52)

̃𝑑(𝝍1,1) = ̃𝒪
⎛
⎜
⎜
⎜
⎝
(𝑐𝑟 + 𝑡mix)

1+𝜆
2+𝜆 ⋅ 𝑇

1+𝜆
2(2+𝜆) ⋅

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝜆
𝑡

⎞
⎟
⎟
⎠

1
2+𝜆 ⎞

⎟
⎟
⎟
⎠

∀𝜆 ∈ [0, 𝛿], (3.53)

̃𝑑(𝝍1,2) = ̃𝒪
⎛
⎜
⎜
⎜
⎝
(1 + 𝑡mix)

1+𝑚
2+𝑚 ⋅ 𝑇

1+𝑚
2(2+𝑚) ⋅

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝑚
𝑡

⎞
⎟
⎟
⎠

1
2+𝑚 ⎞

⎟
⎟
⎟
⎠

∀𝑚 ∈ [0, 2𝛿 + 1],

(3.54)

̃𝑑(𝝍2) = 𝒪 (𝑇 − 1−𝛼
3 ) , (3.55)

̃𝑑(𝝍3) = 𝒪 ((1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)
3+2𝑙 ) ∀𝑙 ∈ [0, 𝛿], (3.56)

̃𝑑(𝝍4,1) = ̃𝒪
⎛
⎜
⎜
⎜
⎝

√𝑘𝐶𝑘 ⋅
⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂𝑘/2
𝑡

⎞
⎟
⎟
⎠

1
1+𝑘 ⎞

⎟
⎟
⎟
⎠

∀𝑘 ∈ [1, 2(1 + 𝛿)], (3.57)
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𝑑P(𝜽⊤𝝍4,2,𝜽⊤𝝍) = 𝒪 (𝑇 − 𝛿
3+2𝛿 + 𝑇 −( 1

4 −𝑜(1)) + 𝑇 − 1
3 + 𝑡

1
6
mix𝑇 − 1

6 ) for an infinitesimal 𝑜(1),

(3.58)

where 𝑐𝑟 ∶= max{𝐿𝐺, 𝐿𝐻 +‖𝑮‖
𝛿𝐺 } and 𝐶𝑝 is the constant in the (𝐿𝑝, (1+log 𝑡)√𝜂𝑡) consistency.

Here, ̃𝒪(⋅) hides uninterested parameters and the log factor log 𝑇 .

Proof of Lemma 3.4.13. The proof can be found in Appendix D.2.

Step three: Variable selection Notice that for any 𝛽 ≥ 0, we have

1
𝑇

𝑇∑
𝑡=0

𝜂𝛽
𝑡 = 1

𝑇

𝑇∑
𝑡=0

𝑡−𝛼𝛽 =
⎧⎪
⎪
⎨
⎪
⎪⎩

𝒪 (
1

1−𝛼𝛽 𝑇 −𝛼𝛽
) if 𝛼𝛽 < 1

𝒪 (
log 𝑇

𝑇 ) if 𝛼𝛽 = 1
𝒪( 1

𝑇 ) if 𝛼𝛽 > 1

= ̃𝒪 (𝑇 −(𝛼𝛽)∧1) (3.59)

where ̃𝒪(⋅) hides the log factor log 𝑇 and constant dependence on 𝛼, 𝛽 and 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}.

With the help of (3.59), we simplify the bounds in Lemma 3.4.13 by choosing (nearly)

optimal variables 𝜆, 𝑚, 𝑙 and 𝑘. Recall that we rewrite 𝑝 = 2(1 + 𝛿) for simplicity.

• It is easy to verify that

𝐽1(𝛼) ∶= max
𝑘∈[1,2(1+𝛿)]

𝛼𝑘 ∧ 2
2(𝑘 + 1) =

⎧⎪
⎨
⎪⎩

𝛼(1+𝛿)
3+2𝛿 if 𝛼 ∈ (0, 1

1+𝛿 ] achieved by 𝑘 = 2(1 + 𝛿),
𝛼

2+𝛼 if 𝛼 ∈ [
1

1+𝛿 , 1) achieved by 𝑘 = 2
𝛼 .
(3.60)

By setting 𝑘 = min{2(1 + 𝛿), 2
𝛼 }, we get that

̃𝑑 (𝝍4,1) = ̃𝒪
(

𝐶 2
𝛼 ∧𝑝

√𝛼
⋅ 𝑇 −𝐽1(𝛼)

)
= ̃𝒪 (𝑇 −𝐽1(𝛼))

where the last equality uses 𝛼 ∈ (0.5, 1) and 𝐶𝑘 is increasing in 𝑘.
• Note that

𝑇
1+𝜆

2(2+𝜆) ⋅
⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝜆
𝑡

⎞
⎟
⎟
⎠

1
2+𝜆

= ̃𝒪 (𝑇 − 1+𝜆
2+𝜆 [(𝛼−0.5)∧ 1−𝜆

2(1+𝜆) ]
) = ̃𝒪 (𝑇 −ℎ0(𝜆))

where we denote

ℎ0(𝜆) = 1 + 𝜆
2 + 𝜆 [(𝛼 − 0.5) ∧ 1 − 𝜆

2(1 + 𝜆)] .
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One can show that

𝐽2(𝛼) ∶= max
𝜆∈[0,𝛿]

ℎ0(𝜆) =
⎧⎪
⎨
⎪⎩

(𝛼 − 0.5)1+𝛿
2+𝛿 if 𝛼 ∈ (0.5, 1

1+𝛿 ] achieved by 𝜆 = 𝛿,
𝛼−0.5
𝛼+1 if 𝛼 ∈ [

1
1+𝛿 , 1) achieved by 𝜆 = 1

𝛼 − 1.
(3.61)

By setting 𝜆 = min{𝛿, 1
𝛼 − 1}, we get that

max{ ̃𝑑 (𝝍1,1) , ̃𝑑 (𝝍1,2)} = ̃𝒪 ((1 + 𝑡mix)
1+𝛿
2+𝛿 ⋅ 𝑇 −𝐽2(𝛼)

) .

• Note that

max
𝑙∈[0,𝛿] [

1
3 ∧ 𝑙

3 + 2𝑙] =
{

𝛿
3+2𝛿 if 𝛿 ∈ [0, 3] achieved by 𝑙 = 𝛿,

1
3 if 𝛿 ∈ [3, ∞) achieved by 𝑙 = 3.

By setting 𝑙 = min{𝛿, 3}, we have that

max{ ̃𝑑 (𝝍2) , ̃𝑑 (𝝍3)} = ̃𝒪 (𝑇 −(1−𝛼)[
𝛿

3+2𝛿 ∧ 1
3 ]

) .

• Finally, we note that 𝑇 −(1−𝛼)[
𝛿

3+2𝛿 ∧ 1
3 ] ≥ max{𝑇 − 𝛿

3+2𝛿 , 𝑇 −( 1
4 −𝑜(1)), 𝑇 − 1

3 } due to 𝛼 ∈
(0, 1).

Combining these bounds and using 𝑝 = 2(1 + 𝛿), we arrive at

𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) = ̃𝒪 (𝑇 −𝐽1(𝛼) + (1 + 𝑡mix)
𝑝

2+𝑝 ⋅ 𝑇 −𝐽2(𝛼) + 𝑇 −(1−𝛼)[
𝛿

3+2𝛿 ∧ 1
3 ] + 𝑡

1
6
mix𝑇 − 1

6 ) .

(3.62)

A special case: I.i.d. data From the above analysis, one can find that 𝝍1,2 contributes a lot

to the bound (3.62). When it comes to the i.i.d. case,𝑼 (𝒙, 𝜉) = 𝑯(𝒙, 𝜉) and 𝒈(𝒙) = 𝒫 𝑯(𝒙, 𝜉)
for all 𝒙 ∈ ℝ𝑑 and 𝜉 ∈ Ξ. In this case, there is a refined decomposition where 𝝍1,2 doesn’t

show up. In contrast, 𝝍1,2 always appears in (3.50) no matter what the case is.

The key idea in the refined decomposition is to use 𝝓𝑇 rather than 𝝓̃𝑇 . With a slight of

notation abuse, we redefine𝚫𝑡 = 𝒙𝑡 −𝒙⋆, then similar to (3.19), we have𝚫𝑡+1 = (𝑰−𝜂𝑡𝑮)𝚫𝑡 +
𝜂𝑡[𝒓𝑡 +𝒖𝑡] where 𝒓𝑡 = 𝒈(𝒙𝑡) −𝑮(𝒙𝑡 −𝒙⋆). The key observation is that once iterating 𝝓𝑇 rather

than 𝝓̃𝑇 , the sum of the residual term and coboudary term in (3.15) equals to zero because

𝒫 𝑼 (𝒙𝑡, 𝜉) = 𝒈(𝒙𝑡) for all 𝜉 ∈ Ξ. Hence, by a similar recursion analysis in Section 3.4.1, we
have

𝝓𝑇 = 𝝍0 + 𝝍1,1 + 𝝍2 + 𝝍3 + 𝝍4,1 + 𝝍4,2.

By repeatedly using Proposition 3.4.1 and Corollary 3.4.1, it follows that for any 𝜽 ∈ ℝ𝑑
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satisfying ‖𝜽‖∗ = 1,

𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) ≤ ̃𝑑(𝝍0) + ̃𝑑(𝝍1,1) + ̃𝑑(𝝍2) + ̃𝑑(𝝍3) + ̃𝑑(𝝍4,1) + 𝑑P(𝜽⊤𝝍4,2,𝜽⊤𝝍).

It turns out that 𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) doesn’t depend on ̃𝑑(𝝍2) any more. We comment that (3.53)

is still a valid upper bound for ̃𝑑(𝝍1,1) even we change the definition of 𝚫𝑡 from 𝒙̃𝑡 − 𝒙⋆ to

𝒙𝑡 − 𝒙⋆.

Taking this special case into consideration, we have

max{ ̃𝑑 (𝝍1,1) , ̃𝑑 (𝝍1,2)} = ̃𝒪 ((𝑐𝑟 + 𝑡mix + (1 + 𝑡mix)1𝑡mix)
1+𝛿
2+𝛿 ⋅ 𝑇 −𝐽2(𝛼)

)

= ̃𝒪 ((𝑐𝑟 + 𝑡mix)
1+𝛿
2+𝛿 ⋅ 𝑇 −𝐽2(𝛼)

) ,

where 1𝑡mix is an indicator function for the event {𝑡mix > 0} satisfying 1𝑡mix ≤ 𝑡mix. As a result,

a finer bound is

𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) = ̃𝒪 (𝑇 −𝐽1(𝛼) + (𝑐𝑟 + 𝑡mix)
𝑝

2+𝑝 ⋅ 𝑇 −𝐽2(𝛼) + 𝑇 −(1−𝛼)[
𝛿

3+2𝛿 ∧ 1
3 ] + 𝑡

1
6
mix𝑇 − 1

6 ) .
(3.14)

3.5 Online Statistical Inference Procedure

In this section, we formally introduce the online statistical inferencemethod. As discussed

in Section 3.3.1, the key idea is to find a scale-invariant |||⋅|||-continuous functional 𝑓 so as

to cancel out the dependence of the unknown scale 𝑮−1𝑺. For analysis facilitation, we con-
tinuize the càdlàg function 𝝓𝑇 by linearly connecting points {𝝓𝑇 (

𝑛
𝑇 )}𝑛∈[𝑇 ]∪{0}

such that it

becomes an element in C[0,1],ℝ. In particular, we denote the continuous function by 𝝓c
𝑇 with

the following definition that given 𝑛 ∈ [𝑇 − 1] ∪ {0}, when 𝑟 ∈ [
𝑛
𝑇 , 𝑛+1

𝑇 ],

𝝓c
𝑇 (𝑟) = 𝝓𝑇 (

𝑛
𝑇 ) + (𝑇 𝑟 − 𝑛) [𝝓𝑇 (

𝑛 + 1
𝑇 ) − 𝝓𝑇 (

𝑛
𝑇 )] . (3.63)

One can show that 𝝓c
𝑇

𝑤→ 𝝍 in the uniform topology effortlessly from Theorem 3.3.1.

Theorem 3.5.1. Under the same assumptions of Theorem 3.3.1, it follows that

𝝓c
𝑇

𝑤→ 𝑮−1𝑮1/2𝑾

in the uniform topology with the same 𝑮,𝑺 given in Theorem 3.3.1.

Proof of Theorem 3.5.1. One can show that |||𝝓𝑇 − 𝝓c
𝑇 ||| = 𝑜ℙ(1). This is because of the
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equality |||𝝓𝑇 − 𝝓c
𝑇 ||| = 1

√𝑇
sup𝑛∈[𝑇 ] ‖𝒙𝑡 − 𝒙∗‖ and the fact that

1
𝑇 𝔼 sup

𝑡∈[𝑇 ]
‖𝒙𝑡 − 𝒙∗‖2 ≤ 1

𝑇

𝑇∑
𝑡=1

𝔼‖𝒙𝑡 − 𝒙∗‖2 ≾ log 𝑇
𝑇

𝑇∑
𝑡=1

𝜂𝑡 → 0.

Hence, we know that 𝝓c
𝑇

𝑤→ 𝝍 in the Skorokhod topology. That is for any bounded and

𝑑S-continuous functional ℎ ∶ D[0,1],ℝ𝑑 → ℝ, we have 𝔼ℎ(𝝓c
𝑇 ) → 𝔼ℎ(𝝍). Note that any

bounded and |||⋅|||-continuous functional ℎ ∶ C[0,1],ℝ𝑑 → ℝ can be viewed as a bounded and

𝑑S-continuous functional D[0,1],ℝ𝑑 → ℝ. Hence, 𝔼ℎ(𝝓c
𝑇 ) → 𝔼ℎ(𝝍) holds for any bounded

and |||⋅|||-continuous functional ℎ ∶ C[0,1],ℝ𝑑 → ℝ. It is equivalent to 𝝓c
𝑇

𝑤→ 𝝍 in the uniform

topology.

For simplicity, we focus on one-dimensional inference via the one-dimensional projected

process 𝜙𝑇 ∶= 𝜽⊤𝝓c
𝑇 for any 𝜽 ∈ ℝ𝑑 and consider the one-dimensional scale-invariant func-

tional 𝑓 ∶ C[0,1],ℝ𝑑 → ℝ. Such a 𝑓 satisfies 𝑓(𝑎𝜙) = 𝑓(𝜙) for any process 𝜙 ∈ C[0,1],ℝ and

positive number 𝑎 > 0.

Corollary 3.5.1. Under the same assumptions in Theorem 3.5.1, for any 𝜽 ∈ ℝ𝑑 and any

|||⋅|||-continuous scale-invariant functional 𝑓 ∶ C[0,1],ℝ → ℝ, it follows that as 𝑇 → ∞,

𝑓(𝜽⊤𝝓c
𝑇 ) 𝑤→ 𝑓(𝑊 ).

where 𝑊 = {𝑊 (𝑟) ∶ 𝑟 ∈ [0, 1]} is the standard one-dimensional Brownian motion on [0, 1].

Proof of Corollary 3.5.1. By Theorem 3.5.1, we have 𝑓(𝜽⊤𝝓c
𝑇 ) 𝑤→ 𝑓(𝜽⊤𝑮−1𝑺1/2𝑾 ). We

complete the proof by noting that 𝜽⊤𝑮−1𝑺1/2𝑾 𝑑= ‖𝜽⊤𝑮−1𝑺1/2‖2𝑊 and 𝑓 is a scale-invariant

functional so that 𝑓(‖𝜽⊤𝑮−1𝑺1/2‖2𝑊 ) = 𝑓(𝑊 ).

3.5.1 A Family of Scale-invariant Functional 𝑓𝑚

We then explore possible choices of adequate functional 𝑓 . In statistics, the 𝑡-statistic is
the ratio of the departure of the estimated value of a parameter from its hypothesized value to

its standard error. It is of great use when the population standard deviation is unknown. For the

partial-sum process𝝓𝑇 , 𝝓𝑇 (1) is exactly the difference between averaged estimator 1
𝑇
∑𝑇

𝑡=1 𝒙𝑡

and the hypothesized value 𝒙⋆ (up to a factor √𝑇 ). Following the spirit of 𝑡-statistics, we
propose a family of scale-invariant functional 𝑓𝑚(𝑚 ∈ ℕ) by using different normalization
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terms to remove the scale dependence

𝑓𝑚(𝜙) = 𝜙(1)
𝑚
√∫1

0 |𝜙(𝑟) − 𝑟𝜙(1)|𝑚𝑑𝑟
. (3.64)

In the econometrics literature, the pivotal statistics 𝑓2(𝜽⊤𝝓𝑇 ) is used to conduct robust

testing and result in the fixed bandwidth heteroskedasticity and autocorrelation robust (fixed-b

HAR) estimator. Such an estimator takes advantage of the underlying autocorrelation structure

in linear autoregressive models and overcomes the series correlation and heteroskedasticity

therein[63, 72]. Lee, Liao, Seo, Shin [62] utilizes and generalizes this technique to propose an

online statistical inference method named as random scaling for SGD iterates. Subsequent

works follow the spirit and propose similar procedures for specific iterates {𝒙𝑡}𝑡≥0 under i.i.d.

data[21, 50, 106]. In our work, we consider a general family of 𝑚-th root normalization in (3.64)
instead of the square root normalization in 𝑓2.

Proposition 3.5.1. The functional 𝑓𝑚 are scale-invariant and symmetric so that 𝑓𝑚(−𝜙) =
−𝑓𝑚(𝜙) for any process 𝜙 and 𝑚 ≥ 1. Furthermore, it is |||⋅|||-continuous in the uniform

topology.

As a result of Proposition 3.5.1, the limiting distribution 𝑓𝑚(𝑊 ) is mixedly normal and

symmetric around zero. For better illustration, we show the density probability function of

different 𝑓𝑚(𝑊 )’s in Figure 3.1(a) and compute the corresponding asymptotic critic values

𝑞𝛼,𝑚 in Table 3.1. We note that Abadir, Paruolo [72] calculates the probability density of 𝑓2(𝑊 )
explicitly, based on which more accurate asymptotic critic values are accessible. We perform

stochastic simulations to approximate each 𝑞𝛼,𝑚 as what Kiefer, Vogelsang, Bunzel [63] did

for simplicity and universality. Numerical experiments in Section 3.6 validate its sufficiency.

Finally, the following proposition shows how we can establish the confidence set by inverting

the asymptotic pivotal statistics.

Proposition 3.5.2. Under the same assumptions in Theorem 3.3.1, given 𝜽 ∈ ℝ𝑑 and 𝑚 ≥ 1,
it follows that when 𝑇 → ∞,

ℙ (𝜽⊤𝒙⋆ ∈ 𝒞 (𝛼, 𝑚)) → 1 − 𝛼,

where 𝒞 (𝛼, 𝑚) is the 𝛼-level confidence set defined by

𝒞 (𝛼, 𝑚) ∶= {𝜽⊤𝒙⋆ ∈ ℝ ∶ |𝑓𝑚(𝜽⊤𝝓c
𝑇 )| ≤ 𝑞𝛼,𝑚} (3.65)

and 𝑞𝛼,𝑚 is the critical value satisfying ℙ(|𝑓𝑚(𝑊 )| ≥ 𝑞𝛼,𝑚) = 𝛼.
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𝑓
1 − 𝛼 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

𝑓1 -10.705 -8.334 -6.569 -4.749 0.000 4.749 6.569 8.334 10.705
𝑓2 -8.628 -6.758 -5.316 -3.873 0.000 3.873 5.316 6.758 8.628
𝑓3 -7.495 -5.899 -4.650 -3.403 0.000 3.403 4.650 5.899 7.495
𝑓4 -6.798 -5.344 -4.232 -3.108 0.000 3.108 4.232 5.344 6.798
𝑓6 -5.969 -4.705 -3.728 -2.754 0.000 2.754 3.728 4.705 5.969
𝑓∞ -3.408 -2.711 -2.175 -1.626 0.000 1.626 2.175 2.711 3.408

Table 3.1 Asymptotic critic values 𝑞𝛼,𝑚 of 𝑓𝑚(𝑊 ) defined by 𝑞𝛼,𝑚 = sup{𝑞 ∶ ℙ(|𝑓𝑚(𝑊 )| ≥ 𝑞) ≤ 𝛼}. They
are computed via simulations. In particular, the Brownian motion 𝑊 is approximated by normalized sums
of i.i.d. 𝒩 (0, 1) pseudo-random deviates using 1,000 steps and 50,000 replications.
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Figure 3.1 (a) shows the probability density functions (p.d.f.) of different 𝑓𝑚(𝑊 )’s. The black line rep-
resents the standard normal distribution. (b) shows the p.d.f. of the denominator of different 𝑓𝑚(𝑊 )’s,
denoted by ℎ𝑚(𝑊 )’s. (c) computes the dominant quantities in the bound (3.72).

3.5.2 Online Computation Efficiency

We study per-iteration computation complexity of computing different 𝑓𝑚’s in the sub-

section. We denote 𝜙𝑇 = 𝜽⊤𝝓c
𝑇 and 𝒙̄𝑡 = 1

𝑡
∑𝑡

𝜏=0 𝒙𝜏 the averaged iterates at iteration 𝑡.

Proposition 3.5.3. 𝑓𝑚(𝜙𝑇 ) with an even number 𝑚 can be computed efficiently online.

We explain this above proposition in the following. First, the numerator is set to be

𝜙𝑇 (1) = 𝜽⊤𝝓c
𝑇 (1) = √𝑇𝜽⊤(𝒙̄𝑇 −𝒙⋆) where 𝒙̄𝑇 can be undated in a moving average form, in-

curring𝒪(1) additional computation cost per iteration. Second, denoting𝜙𝑛,𝑇 = 𝑛
√𝑇

𝜽⊤ (𝒙̄𝑛 − 𝒙̄𝑇 )
for simplicity, we have when 𝑟 ∈ [ 𝑛

𝑇 , 𝑛+1
𝑇 ) for some 𝑛 ∈ ℕ,

𝜙𝑇 (𝑟) − 𝑟𝜙𝑇 (1) = 𝜙𝑛,𝑇 + (𝑇 𝑟 − 𝑛)(𝜙𝑛+1,𝑇 − 𝜙𝑛,𝑇 ),

which has nothing to do with the unknown parameter 𝒙⋆. It is easy to verify that

∫
1

0
(𝜙𝑇 (𝑟) − 𝑟𝜙𝑇 (1))2𝑑𝑟 =

𝑇 −1∑
𝑛=0

∫

𝑛+1
𝑇

𝑛
𝑇

(𝜙𝑛,𝑇 + (𝑇 𝑟 − 𝑛)(𝜙𝑛+1,𝑇 − 𝜙𝑛,𝑇 ))2𝑑𝑟
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=
𝑇 −1∑
𝑛=0

(𝜙𝑛,𝑇 )2 + 𝜙𝑛,𝑇 𝜙𝑛+1,𝑇 + (𝜙𝑛+1,𝑇 )2

3𝑇 .

The right-hand side of the last equality can be computed in an online manner. Indeed, by ex-

panding (𝜙𝑛,𝑇 )2 into 𝑛2

𝑇 ((𝜽⊤𝒙̄𝑛)2 + 2(𝜽⊤𝒙̄𝑇 )2 + 𝜽⊤𝒙̄𝑛𝜽⊤𝒙̄𝑇 ) and doing similarly for𝜙𝑛,𝑇 𝜙𝑛+1,𝑇

and (𝜙𝑛+1,𝑇 )2, one can find that the sum of each decomposed terms can be updated fully online

without passing the observed data twice. A simpler method used for 𝑚 = 2 is to approximate

each (𝜙𝑛,𝑇 )2+𝜙𝑛,𝑇 𝜙𝑛+1,𝑇 +(𝜙𝑛+1,𝑇 )2

3𝑇 with (𝜙𝑛+1,𝑇 )2

𝑇
[21, 50, 62, 106]. In other words, we use the rectan-

gle rule to compute the integral ∫
𝑛+1
𝑇

𝑛
𝑇

(𝜙(𝑟) − 𝑟𝜙(1))2𝑑𝑟 instead of the Trapezoid rule so as to
simplify computation. In this way,

∫
1

0
(𝜙𝑇 (𝑟) − 𝑟𝜙𝑇 (1))2𝑑𝑟 ≈

𝑇∑
𝑛=1

(𝜙𝑇
𝑛 )2

𝑇 = 1
𝑇 2

𝑇∑
𝑛=1

𝑛2 [(𝜽⊤𝒙̄𝑛)2 + (𝜽⊤𝒙̄𝑇 )2 + 2𝜽⊤𝒙̄𝑛𝜽⊤𝒙̄𝑇 ]

(3.66)

can be constructed in a simpler online fashion via only two iterative updates of (𝜽⊤𝒙̄𝑛)2 and

𝜽⊤𝒙̄𝑛𝜽⊤𝒙̄𝑇 . Simulation studies turn out hardly any difference between them in terms of em-

pirical coverage and confidence interval lengths (see Table 3.2). Hence, we will use the

rectangle-rule approximation to compute ∫1
0 (𝜙𝑇 (𝑟) − 𝑟𝜙𝑇 (1))𝑚𝑑𝑟(𝑚 = 2, 4, 6) in all exper-

iments. Once the integral is computed and denoted by 𝜎𝑚,𝑇 , inverting (3.65) produces the

following the confidence interval

𝜽⊤𝒙⋆ ∈
[
𝜽⊤𝒙̄𝑇 −

𝑞𝛼,𝑚

√𝑇
⋅ 𝜎𝑚,𝑇 ,𝜽⊤𝒙̄𝑇 +

𝑞𝛼,𝑚

√𝑇
⋅ 𝜎𝑚,𝑇 ]

. (3.67)

However, 𝑓𝑚(𝝓c
𝑇 ) with an odd 𝑚 can’t be computed online efficiently. This is because

there is no similar decomposition as (3.66) for the integral ∫1
0 |𝜙𝑇 (𝑟)−𝑟𝜙𝑇 (1)|2𝑘+1𝑑𝑟 due to its

inner absolute value. More specially, computing (or approximating)∫1
0 (𝜙𝑇 +1(𝑟)−𝑟𝜙𝑇 +1(1))2𝑑𝑟

necessitates the calculation of all the values {𝜙𝑛,𝑇 +1}𝑛∈[𝑇 ], incurring 𝒪(𝑇 ) computation cost.
By contrast, as we illustrate in (3.66), the existence of a closed-form decomposition for the

integration with an even 𝑚 enables an incremental update to each decomposed term, incurring

only 𝒪(1) computation cost per iteration. For completeness, we include three examples with
𝑚 = 1, 3, ∞ for a fair comparison. When 𝑚 = ∞, we have 𝑓∞ = 𝜙(1)

sup𝑟∈[0,1] |𝜙(𝑟)−𝑟𝜙(1)| .

3.5.3 A Qualitative Study

In previous subsections, we have proposed a family of the scale-invariant functional 𝑓𝑚

which introduce the different asymptotic pivotal statistics 𝑓𝑚(𝑊 ). The choice of 𝑚’s not only
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affects the critical value 𝑞𝛼,𝑚 in the confidence interval (3.65) but also the convergence of

rejection probability. We measure the latter by 𝑒(𝑚, 𝑥) with the following definition

𝑒(𝑚, 𝑥) ∶= |ℙ(|𝑓𝑚(𝜽⊤𝝓c
𝑇 )| > 𝑥) − ℙ(|𝑓𝑚(𝑊 )| > 𝑥)|, (3.68)

which is the absolute error of the tail probability of |𝑓𝑚(𝜽⊤𝝓c
𝑇 )| against the tail probability of

the limiting distribution |𝑓𝑚(𝑊 )|.

Theorem 3.5.2. Let 𝜀P = 𝑑P(𝜽⊤𝝓c
𝑇 ,𝜽⊤𝝍) denote the Lévy-Prokhorov distance. 1 Under the

assumptions of Theorem 3.3.1, it follows that for any 𝑥 > 0 and 𝑧 > 0,

𝑒(𝑚, 𝑥) ≤ 2 [P
(0)
𝑚 (𝑥, 𝑧) ⋅ 𝜀P

𝜔 + max{P(1)
𝑚 (𝑥, 𝑧), P(2)

𝑚 (𝑥, 𝑧)}] + 𝑜(𝜀P), (3.69)

where

P(0)
𝑚 (𝑥, 𝑧) = 𝑟(𝑓𝑚(𝑊 ), 𝑥) ⋅ 𝑥 + 1

𝑧 ,

P(1)
𝑚 (𝑥, 𝑧) = ℙ (|𝑓𝑚(𝑊 )| > 𝑥 and ℎ𝑚(𝑊 ) ≤ 𝑧) ,

P(2)
𝑚 (𝑥, 𝑧) = ℙ (|𝑓𝑚(𝑊 )| ≤ 𝑥 and ℎ𝑚(𝑊 ) ≤ 𝑧) .

In this context, 𝑟(𝑋, 𝑥) refers to the probability density function value of the random variable

𝑋 at point 𝑥, while 𝜔 = ‖𝜽⊤𝑮−1𝑺1/2‖2 represents the unknown scale. Furthermore, we define

Prob𝑚(𝑥, 𝑧) as follows, where ℎ𝑚(𝑊 ) corresponds to the denominator of 𝑓𝑚(𝑊 ), Finally, the
𝑜(1) term denotes an infinitesimal term (that might depend on 𝑥, 𝑧) when 𝜀P → 0.

Proof of Theorem 3.5.2. Recall that𝜙𝑇 = 𝜽⊤𝝓c
𝑇 and𝜓 = 𝜽⊤𝝍 . Let𝐵𝑥 ∶= {𝜙 ∶ |𝑓𝑚(𝜙)| > 𝑥}

and 𝜀P = 𝑑P(𝜽⊤𝝓c
𝑇 ,𝜽⊤𝝍). From Proposition 3.5.1, the functional 𝑓𝑚 is continuous such that

𝐵𝑥 is a measurable set in its Borel 𝜎-field 𝒞[0,1],ℝ. By the definition of the Lévy-Prokhorov

distance in C[0,1],ℝ, we have

ℙ(𝜙𝑇 ∈ 𝐵𝑥) ≤ ℙ(𝜓 ∈ 𝐵𝜀P
𝑥 ) + 𝜀P and ℙ(𝜙𝑇 ∈ 𝐵𝑐

𝑥) ≤ ℙ(𝜓 ∈ (𝐵𝑐
𝑥)𝜀P) + 𝜀P,

where 𝐵𝜀
𝑥 is the 𝜀-neighborhood of 𝐵𝑥 defined as following and 𝐵𝑐

𝑥 is the complementary set

of 𝐵𝑥,

𝐵𝜀
𝑥 = {𝜙1 ∈ C[0,1],ℝ ∶ ∃𝜙2 ∈ C[0,1],ℝ such that |||𝜙1 − 𝜙2||| ≤ 𝜀 and 𝜙2 ∈ 𝐵𝑥} .

Then, it follows that

ℙ(|𝑓𝑚(𝜙𝑇 )| > 𝑥) − ℙ(|𝑓𝑚(𝜓)| > 𝑥) ≤ ℙ(𝜓 ∈ 𝐵𝜀P
𝑥 , 𝜓 ∉ 𝐵𝑥) + 𝜀P, (3.70)

1 Since both 𝜽⊤𝝓c
𝑇 and 𝑊 are continuous functions, the definition of the Lévy-Prokhorov distance for C[0,1],ℝ is different

than that for D[0,1],ℝ in the topology (i.e., the uniform topology) and the Borel 𝜎-field used.
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ℙ(|𝑓𝑚(𝜓)| > 𝑥) − ℙ(|𝑓𝑚(𝜙𝑇 )| > 𝑥) ≤ 𝜀P + ℙ(𝜓 ∈ 𝐵𝑥, 𝜓 ∉ (𝐵𝑐
𝑥)𝜀P). (3.71)

We rewrite 𝑓𝑚(𝜙) = 𝜙(1)
ℎ𝑚(𝜙) where ℎ𝑚(𝜙) = 𝑚

√∫1
0 (𝜙(𝑟) − 𝑟𝜙(1))𝑚𝑑𝑟 denotes the integral

functional. By theMinkowski inequality, we know that ℎ𝑚(𝜙) is a 1-Lipschitz |||⋅|||-continuous
functional in the sense that for any 𝜙1, 𝜙2 ∈ 𝒞[0,1],ℝ, |ℎ𝑚(𝜙1) − ℎ𝑚(𝜙2)| ≤ |||𝜙1 − 𝜙2|||.
Furthermore, we have

Proposition 3.5.4. When ℎ𝑚(𝜙1) ≥ 𝑧, ℎ𝑚(𝜙2) ≥ 𝑧 and |𝑓𝑚(𝜙1)| ≤ 𝑥, one can show that

|𝑓𝑚(𝜙1) − 𝑓𝑚(𝜙2)| ≤ 1 + 𝑥
𝑧 |||𝜙1 − 𝜙2|||.

Proof of Proposition 3.5.4. It follows that

|𝑓𝑚(𝜙1) − 𝑓𝑚(𝜙2)| ≤ |
𝜙1(1)

ℎ𝑚(𝜙1) − 𝜙1(1)
ℎ𝑚(𝜙2) | + |

𝜙2(1)
ℎ𝑚(𝜙2) − 𝜙2(1)

ℎ𝑚(𝜙2) |

≤ |
𝜙1(1)

ℎ𝑚(𝜙1) | ⋅ |ℎ𝑚(𝜙1) − ℎ𝑚(𝜙2)|
|ℎ𝑚(𝜙2)| + |𝜙2(1) − 𝜙1(1)|

|ℎ𝑚(𝜙2)|
≤ 𝑥

𝑧 |||𝜙1 − 𝜙2||| + 1
𝑧|||𝜙1 − 𝜙2||| = 1 + 𝑥

𝑧 |||𝜙1 − 𝜙2|||.

We then proceed to simplify (3.70). It follows that

ℙ(𝜓 ∈ 𝐵𝜀P
𝑥 , 𝜓 ∉ 𝐵𝑥) = ℙ (|𝑓𝑚(𝜓)| ≤ 𝑥 and ∃𝜓̃ satisfying |||𝜓̃ − 𝜓||| ≤ 𝜀P, |𝑓𝑚(𝜓̃)| > 𝑥)

≤ ℙ (|𝑓𝑚(𝜓)| ≤ 𝑥 and ∃𝜓̃ satisfying |||𝜓̃ − 𝜓||| ≤ 𝜀P, |𝑓𝑚(𝜓̃)| > 𝑥, ℎ𝑚(𝜓) ≥ 𝑧, ℎ𝑚(𝜓̃) ≥ 𝑧)
+ ℙ (|𝑓𝑚(𝜓)| ≤ 𝑥 and ∀𝜓̃ satisfying |||𝜓̃ − 𝜓||| ≤ 𝜀P, ℎ𝑚(𝜓̃) < 𝑧)
+ ℙ(|𝑓𝑚(𝜓)| ≤ 𝑥 and ℎ𝑚(𝜓) < 𝑧)

≤ ℙ (𝑥 − 𝑥 + 1
𝑧 𝜀P ≤ |𝑓𝑚(𝜓)| ≤ 𝑥) + 2ℙ (|𝑓𝑚(𝜓)| ≤ 𝑥 and ℎ𝑚(𝜓) ≤ 𝑧)

= 𝑟(|𝑓𝑚(𝜓)|, 𝑥) ⋅ 𝑥 + 1
𝑧 ⋅ 𝜀P + 2ℙ (|𝑓𝑚(𝜓)| ≤ 𝑥 and ℎ𝑚(𝜓) ≤ 𝑧) + 𝑜(𝜀P),

where the second inequality uses Proposition 3.5.4 and the 1-Lipschitz |||⋅|||-continuity of ℎ𝑚

and the last inequality uses the definition of differentiability.

By a similar argument, for any 𝑧 > 𝜀P, we simplify (3.71) to

ℙ(𝜓 ∈ 𝐵𝑥, 𝜓 ∉ (𝐵𝑐
𝑥)𝜀P) = ℙ (|𝑓𝑚(𝜓)| > 𝑥 and ∀𝜓̃ satisfying |||𝜓̃ − 𝜓||| ≤ 𝜀P, |𝑓𝑚(𝜓̃)| > 𝑥)

≤ ℙ (|𝑓𝑚(𝜓)| > 𝑥 and ∀𝜓̃ satisfying |||𝜓̃ − 𝜓||| ≤ 𝜀P, |𝑓𝑚(𝜓̃)| > 𝑥, ℎ𝑚(𝜓) ≥ 𝑧 − 𝜀P, ℎ𝑚(𝜓̃) ≥ 𝑧 − 𝜀P)
+ ℙ (|𝑓𝑚(𝜓)| > 𝑥 and ∃𝜓̃ satisfying |||𝜓̃ − 𝜓||| ≤ 𝜀P, ℎ𝑚(𝜓̃) < 𝑧 − 𝜀P)
+ ℙ(|𝑓𝑚(𝜓)| > 𝑥 and ℎ𝑚(𝜓) < 𝑧 − 𝜀P)
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≤ ℙ (𝑥 ≤ |𝑓𝑚(𝜓)| ≤ 𝑥 + 𝑥 + 1
𝑧 − 𝜀P

𝜀P) + 2ℙ (|𝑓𝑚(𝜓)| > 𝑥 and ℎ𝑚(𝜓) ≤ 𝑧)

= 𝑟(|𝑓𝑚(𝜓)|, 𝑥) ⋅ 𝑥 + 1
𝑧 − 𝜀P

⋅ 𝜀P + 2ℙ (|𝑓𝑚(𝜓)| > 𝑥 and ℎ𝑚(𝜓) ≤ 𝑧) + 𝑜(𝜀P),

= 𝑟(|𝑓𝑚(𝜓)|, 𝑥) ⋅ 𝑥 + 1
𝑧 ⋅ 𝜀P + 2ℙ (|𝑓𝑚(𝜓)| > 𝑥 and ℎ𝑚(𝜓) ≤ 𝑧) + 𝑜(𝜀P).

Combing these bounds for (3.70) and (3.71), we have for any 𝑧 > 0

|ℙ(|𝑓𝑚(𝜙𝑇 )| > 𝑥) − ℙ(|𝑓𝑚(𝜓)| > 𝑥)| ≤ 𝑟(|𝑓𝑚(𝜓)|, 𝑥) ⋅ 𝑥 + 1
𝑧 ⋅ 𝜀P + 2 ⋅ Prob𝑚(𝑥, 𝑧) + 𝑜(𝜀P).

where

Prob𝑚(𝑥, 𝑧) = max{ℙ (|𝑓𝑚(𝜓)| > 𝑥 and ℎ𝑚(𝜓) ≤ 𝑧) , ℙ (|𝑓𝑚(𝜓)| ≤ 𝑥 and ℎ𝑚(𝜓) ≤ 𝑧)} .

Let𝜔 = ‖𝜽⊤𝑮−1𝑺1/2‖2. We then have that𝜓 𝑑= 𝜔𝑊 . On one hand, we note that 𝑟(|𝑓𝑚(𝜓)|, 𝑥) =
2 ⋅ 𝑟(𝑓𝑚(𝜓), |𝑥|) = 2 ⋅ 𝑟(𝑓𝑚(𝑊 ), |𝑥|) due to the symmetry of the probability density function
of 𝑓𝑚(𝜓) and its scale-invariance, i.e., 𝑓𝑚(𝜓) 𝑑= 𝑓𝑚(𝜔𝑊 ) = 𝑓𝑚(𝑊 ). On the other hand, we
have ℎ𝑚(𝜓) 𝑑= 𝜔ℎ𝑚(𝑊 ). Therefore,

Prob𝑚(𝑥, 𝑧) = max{ℙ (|𝑓𝑚(𝑊 )| > 𝑥 and ℎ𝑚(𝑊 ) ≤ 𝑧
𝜔) , ℙ (|𝑓𝑚(𝑊 )| ≤ 𝑥 and ℎ𝑚(𝑊 ) ≤ 𝑧

𝜔)} .

Finally,we complete the proof by replacing 𝑧 with 𝑧𝜔 and still denote the last equation as

Prob𝑚(𝑥, 𝑧) with a slight abuse of notation.

Theorem 3.5.2 shows that the absolute error 𝑒(𝑚, 𝑥) depends on three factors, namely

the Lévy-Prokhorov distance 𝜀P, the probability density function values 𝑟(𝑓𝑚(𝑊 ), 𝑥), and the
joint probability Prob𝑚(𝑥, 𝑧) where ℎ𝑚(𝑊 ) = 𝑚

√∫1
0 |𝑊 (𝑟) − 𝑟𝑊 (1)|𝑚𝑑𝑟 is the denominator

of 𝑓𝑚(𝑊 ). From Theorem 3.5.1, we know that 𝜀P → 0 as 𝑇 → ∞. A non-asymptotic bound

for 𝜀P is accessible via a similar argument in proving Theorem 3.3.5 that makes the weak

convergence bound for 𝑑P(𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) explicit.
The bound (3.69) captures the convergence rate of rejection probability. The dependence

of 𝑒(𝑚, 𝑞𝛼,𝑚) on 𝑚 is of interest because it provides practical instruction for selecting 𝑚. Let 𝑧𝑚

be the number satisfying ℙ (ℎ𝑚(𝑊 ) ≤ 𝑧𝑚) = 𝜀P
𝜔 . Plugging 𝑥 = 𝑞𝛼,𝑚 and 𝑧 = 𝑧𝑚 into (3.69)

yields that

𝑒(𝑚, 𝑞𝛼,𝑚) = 2P(0)
𝑚 (𝑞𝛼,𝑚, 𝑧𝑚)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
decreasing in 𝑚

⋅𝜀P
𝜔 + 2max{P(1)

𝑚 (𝑞𝛼,𝑚, 𝑧𝑚),P(2)
𝑚 (𝑞𝛼,𝑚, 𝑧𝑚)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

increasing in 𝑚

+𝑜(𝜀P). (3.72)

When we set 𝛼 = 0.975 and 𝜀P
𝜔 = 0.05, the first two terms in (3.72) are of comparable mag-
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nitude, but are still difficult to analyze. To understand the behavior of 𝑒(𝑚, 𝑞𝛼,𝑚) as a func-
tion of 𝑚, we compute the individual components of the bound (3.72) and plot them in Fig-

ure 3.1(c). In Figure 3.1, we present the probability density functions for 𝑟(𝑓𝑚(𝑊 ), 𝑥), which
reveal that 𝑟(𝑓𝑚(𝑊 ), 𝑥) decreases in 𝑚 for a given 𝑥 ∈ (2.5, 10), an interval where most of the
97.5%-level asymptotic critic values 𝑞0.975,𝑚 are located. By contrast, Figure 3.1(c) demon-

strates that 𝑟(𝑓𝑚(𝑊 ), 𝑞𝛼,𝑚) increases with 𝑚. By applying Hölder’s inequality, we observe

that ℎ𝑚(𝑊 ) and 𝑧𝑚 increase with 𝑚, whereas |𝑓𝑚(𝑊 )| and 𝑞𝛼,𝑚 decrease for any 𝛼 > 0 (Ta-

ble 3.1 confirms this). Consequently, the term P(0)
𝑚 (𝑞𝛼,𝑚, 𝑧𝑚) decreases with 𝑚. Furthermore,

Figure 3.1(c) illustrates that P(2)
𝑚 (𝑞𝛼,𝑚, 𝑧𝑚) increases with 𝑚 and has a greater magnitude than

both P(0)
𝑚 (𝑞𝛼,𝑚, 𝑧𝑚) and P(1)

𝑚 (𝑞𝛼,𝑚, 𝑧𝑚). Therefore, the final dependency of 𝑒(𝑚, 𝑞𝛼,𝑚) on 𝑚 is

dominated by P(2)
𝑚 (𝑞𝛼,𝑚, 𝑧𝑚) and remains increasing. This trend is further supported by the

experimental findings in Figure 3.2 and 3.3. It implies that, smaller 𝑚 contributes to a faster

convergence of ℙ(|𝑓𝑚(𝜽⊤𝝓c
𝑇 )| > 𝑞𝛼,𝑚) and, in turn, a more rapid convergence of empirical

coverage.

We then study the effect of 𝑚 on the length of the asymptotic confidence interval. We

denote the length by 𝐿𝑚,𝑇 ∶= 2
√𝑇

⋅ 𝑞𝛼,𝑚𝜎𝑚,𝑇 according to (3.67). By Hölder’s inequality, we

know that 𝜎𝑚,𝑇 increases in 𝑚 for any fixed 𝑇 , while Table 3.1 shows that 𝑞𝛼,𝑚 decreases in 𝑚
for most used 𝛼’s. Numerical experiments turn out that the final monotone tendency of 𝑚 on

the length 𝐿𝑚,𝑇 is still decreasing (see Table 3.2).

Finally, we comment that (3.69) can be further minimized by choosing an optimal 𝑧 when
an explicit formula of the growth rate in 𝑥 of the head probability ℙ(ℎ𝑚(𝑊 ) ≤ 𝑧) is available.
The following corollary serves as an example.

Corollary 3.5.2. Under the assumptions of Theorem 3.3.1, if there exist 𝑎𝑚, 𝑏𝑚 > 0 such that

ℙ(ℎ𝑚(𝑊 ) ≤ 𝑧) = 𝑎𝑚 ⋅ 𝑧𝑏𝑚 + 𝑜(𝑧𝑏𝑚) when 𝑧 → 0, then it follows that for any 𝑥 > 0,

𝑒(𝑚, 𝑥) = 4𝑎
1

𝑏𝑚+1
𝑚 ⋅ (

𝑟(𝑓𝑚(𝑊 ), 𝑥) ⋅ (𝑥 + 1)
𝑤 ⋅ 𝜀P)

𝑏𝑚
𝑏𝑚+1

+ 𝑜
(

𝜀
𝑏𝑚

𝑏𝑚+1
P )

.

Proof of Corollary 3.5.2. We omit the dependency on 𝑚 for simplicity. The corollary follows

by noting Prob𝑚(𝑥, 𝑧) ≤ ℙ(ℎ𝑚(𝑊 ) ≤ 𝑧) = 𝑎𝑚 ⋅ 𝑧𝑏𝑚 + 𝑜(𝑧𝑏𝑚) for any 𝑥 > 0 and using the

particular choice of 𝑧 = (
𝑟(𝑓𝑚(𝑊 ),𝑥)⋅(𝑥+1)𝜔𝑏𝑚

𝑎𝑚
𝜀P)

1
𝑏𝑚+1 .
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Method
𝑇 400 2000 10000 50000 400 2000 10000 50000

𝑓1 (Both) 87.8 91.2 91.6 94.0 131.208 57.871 27.032 12.23
(1.464) (1.267) (1.241) (1.062) (75.616) (29.175) (12.445) (5.583)

𝑓2 (Both) 87.6 90.8 92.6 94.4 126.916 56.731 26.424 11.961
(1.474) (1.293) (1.171) (1.028) (69.3) (27.11) (11.531) (5.168)

𝑓3
86.4 90.2 92.4 94.8 122.709 55.44 25.827 11.718

(1.533) (1.33) (1.185) (0.993) (64.969) (25.656) (10.898) (4.89)

𝑓4
86.2 89.6 91.8 94.2 118.943 54.179 25.274 11.497

(1.542) (1.365) (1.227) (1.045) (61.729) (24.524) (10.421) (4.681)

𝑓6
85.2 89.2 91.8 93.6 114.021 52.534 24.597 11.242

(1.588) (1.388) (1.227) (1.095) (57.747) (23.102) (9.848) (4.428)

𝑓∞
79.2 84.8 88.2 90.8 89.64 43.073 20.852 9.835

(1.815) (1.606) (1.443) (1.293) (42.106) (17.296) (7.631) (3.465)

Bootstrap
𝑇 40 200 1000 5000 40 200 1000 5000

𝐵 = 10 39.0 65.4 73.8 78.2 17.501 25.63 19.352 9.404
(2.181) (2.127) (1.966) (1.846) (5.185) (6.595) (4.876) (2.262)

𝐵 = 50 49.0 80.6 90.8 92.0 19.368 29.883 24.374 11.943
(2.236) (1.768) (1.293) (1.213) (4.409) (4.434) (3.206) (1.57)

𝐵 = 100 47.8 79.0 92.6 95.0 19.672 31.176 25.191 12.473
(2.234) (1.822) (1.171) (0.975) (4.121) (3.854) (2.401) (1.145)

𝐵 = 200 51.4 79.8 92.0 92.8 32.339 48.869 37.095 17.801
(2.235) (1.796) (1.213) (1.156) (8.637) (6.128) (3.056) (1.184)

Table 3.2 Averaged coverage rates (%, left) and average lengths (10−2, right) of different inference meth-
ods over 500 Monte-Carlo simulations. Standard deviations are reported inside the parentheses.

3.6 Numerical Experiments

In this numerical section, we not only conduct validation experiments to support the claims

in the last section, but also investigate the empirical performance of the proposed inference

procedures and their corresponding coverage rates for different examples introduced in Sec-

tion 3.2.2.

3.6.1 Linear regression with autoregressive noises

In this experiment, we consider linear regression with autoregressive noises. In this linear

problem, the observed data 𝜉𝑡 = (𝒂𝑡, 𝑦𝑡) is generated as the following manner

𝒂𝑡
𝑖.𝑖.𝑑.∼ 𝒩 (0, 𝑰𝑑), 𝑦𝑡 = ⟨𝒂𝑡,𝒙⋆⟩ + 𝜁𝑡, 𝜁𝑡 = 𝜌𝜀 ⋅ 𝜁𝑡−1 + 𝜀𝑡, 𝜀𝑡

𝑖.𝑖.𝑑.∼ √𝑑 ⋅ Uniform(𝔹𝑑−1),
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Figure 3.2 Performance of different inference methods for linear regression with autoregressive noises.
(a) shows the empirical coverage rates based on 500 repeated experiments. The black dot line represents
the nominal 95% coverage rate. (b) shows the averaged confidence interval (CI) lengths.

where the infused noise 𝜁𝑡 is sampled from an autoregressive process and 𝜌𝜀 is the unknown

coefficient. In this setup, one can find that all of the imposed assumptions are satisfied, the

update (3.2) reduces to 𝒙𝑡 = 𝒙𝑡−1 − 𝜂𝑡𝒂𝑡(⟨𝒂𝑡,𝒙⟩ − 𝑦𝑡), and the confidence interval is given

in (3.67). Here our target is to estimate and construct confidence intervals for 𝜽⊤𝒙⋆ with

𝜽 = (1, ⋯ , 1)⊤/√𝑑 ∈ ℝ𝑑 and 𝒙⋆’s coordinates evenly spread in the interval [0, 1]. We

test the performance of each 𝑓𝑚, where 𝑚 takes values from {1, 2, 3, 4, 6, ∞}, and use two

methods to calculate the integral in the denominator of 𝑓1, 𝑓2. Our benchmark is the online

bootstrap inference method for linear SA with Markov data[43]. This method approximates the

distribution of 𝒙̄𝑇 by maintaining and bootstrapping 𝐵 = 200 perturbed SA iterates {𝒙̄𝑏
𝑇 }𝑏∈[𝐵].

The perturbations are made by computing 𝒙𝑏
𝑡+1 = 𝒙𝑏

𝑡 − 𝜂𝑡𝑊 𝑏
𝑡 𝑯(𝒙𝑏

𝑡 , 𝜉𝑡) and 𝒙̄𝑏
𝑇 = 1

𝑇
∑

𝑡∈[𝑇 ] 𝒙𝑏
𝑡

where {𝑊 𝑏
𝑡 }𝑡∈[𝑇 ],𝑏∈[𝐵] is a bounded sequence of i.i.d. random variables with mean one and

variance one.

We report the performance of confidence intervals with their average coverage rates and

average lengths in Table 3.2 and Figure 3.2. We note the following findings from these re-

sults. Firstly, there is minimal difference in the average length and coverage rate between the

exact computation and the rectangle-rule approximation for the denominators of 𝑓1 and 𝑓2.

Therefore, for simplicity, we use the latter method in all future experiments. Secondly, as the

iteration number 𝑇 increases, all averaged coverage rates gradually grow towards 95% while

the length of the intervals decreases. Finally, a larger value of 𝑚 slightly reduces the average

coverage rate but slightly decreases the length of the asymptotic confidence intervals. The

impact of 𝑚 on the performance is minimal, suggesting that 𝑓2 could be used without further

considerations.
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The benchmark method, with a value of 𝐵 = 200, reaches an average coverage rate of

95% after 5 × 103 iterations, while our method 𝑓2 accomplishes a similar coverage rate in 104

iterations. At first glance, Figure 3.2 and Table 3.2 suggest that the online Bootstrap method

is more sample efficient as it requires fewer iterations to achieve the nominal coverage rate

of 95%. However, this efficiency is contingent on the availability of multiple oracles that

can compute {𝑯(𝒙𝑏
𝑡 , 𝜉𝑡)}𝑏∈[𝐵] for different iterates {𝒙𝑏

𝑡 }𝑏∈[𝐵] at a given data 𝜉𝑡. In practi-

cal scenarios where one-trajectory sampling is performed, accessing multiple oracles is often

not feasible due to limited control over the environment. 1 By contrast, our method does not

require multiple oracles and even uses fewer gradient computations compared to the bench-

mark. 2 Table 3.2 demonstrates that given the same budget of gradient calls (e.g., 5×104), our

method produces higher average coverage rates. Additionally, the bootstrap method is time-

consuming, with the completion time of 5 × 103 updates taking approximately 1.5 hours for

500 repeated experiments, roughly equal to the time it takes for our method 𝑓2 to finish 5×104

updates. Finally, an improperly chosen small value for 𝐵 will reduce the performance, while

a reasonably large value for 𝐵 increases computation and memory demands. The difficulty of

tuning a reasonable value for 𝐵 contributes to the final disadvantage of the bootstrap method.

3.6.2 Asynchronous Q-Learning

In this experiment, we evaluate the performance in asynchronous Q-Learning with differ-

ent methods (𝑓2, 𝑓4, 𝑓6) in a randomMDP. The behavior policy is set to be uniformly random,

and the target of the estimation is 𝔼(𝑠,𝑎)∼Uniform(𝒮 ×𝒜)𝑄⋆(𝑠, 𝑎) where 𝑄⋆ is the optimal Q-value

function. We did not include the online bootstrap method of Ramprasad, Li, Yang, Wang, Sun,

Cheng [43] in our comparison due to two reasons. Firstly, it is not theoretically guaranteed in

nonlinear SA settings. Secondly, a direct application of the method resulted in unreasonable

confidence intervals.

From the results shown in Figure 3.3, all of our methods reach the desired 95% coverage

rate after approximately 4×104 iterations The length of the confidence intervals first increases

and then decreases, which is due to the initialization of the length at zero, followed by the

accumulation of errors, and finally the convergence. As expected, larger 𝑚 values result in

shorter confidence interval lengths, but slightly slower convergence of the empirical coverage.

1 Ramprasad, Li, Yang, Wang, Sun, Cheng [43 ] tested their algorithm in online game environments where rewards are
deterministic and 𝜉𝑡 is equal to the current state 𝑠𝑡 of the underlying Markov chain. Hence, 𝑯(𝒙, 𝜉) is a deterministic
function of 𝒙 and the state 𝑠, making multiple gradient oracles accessible. However, in other applications, such as finance
where rewards are random and Markov, accessing multiple oracles is not possible.

2 It is worth noting that the online Bootstrap method requires 𝐵 + 1 gradient calls per iteration.
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(c) The trajectory of averaged CIs

Figure 3.3 Performance of different inference methods for asynchronous Q-Learning. (a) shows the em-
pirical coverage rates based on 200 repeated experiments. (b) shows the averaged confidence interval (CI)
lengths therein. (c) shows the trajectory of averaged confidence intervals with shadows presenting their
lengths. Black dot lines represent the nominal 95% coverage rate in (a) and the parameter of interest in (c).
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(c) The trajectory of averaged CIs

Figure 3.4 Performance of different inference methods for logistic regression with Markovian data. (a)
shows the empirical coverage rates based on 200 repeated experiments. (b) shows the averaged confidence
interval (CI) lengths therein. (c) shows the trajectory of averaged confidence intervals with shadows pre-
senting their lengths. Black dot lines represent the nominal 95% coverage rate in (a) and the target parameter
in (c).

In Figure 3.3(c), we present the evolution of the averaged confidence intervals. After around

1.5 × 104 iterations, the averaged confidence interval starts to include the interest parameter

with its center gradually increasing and converging to the interest parameter.

3.6.3 Logistic regression with Markovian data

In this experiment, we consider logistic regressionwithMarkovian data. We take a similar

simulation setup as Sun, Sun, Yin [122]. The observed data 𝜉𝑡 = (𝒂𝑡, 𝑦𝑡) is generated as the

following manner

𝒂𝑡 = 𝑨𝒂𝑡−1 + 𝒆1𝑊𝑡 with 𝑨𝑖,𝑖−1
𝑖.𝑖.𝑑.∼ Uniform([0.8, 0.99]), 𝑊𝑡

𝑖.𝑖.𝑑.∼ 𝒩 (0, 1),

𝑦𝑡 =
{

1 with probability 𝑆 (⟨𝒂𝑡,𝒙⋆⟩) ,
0 with probability 1 − 𝑆 (⟨𝒂𝑡,𝒙⋆⟩) ,
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Figure 3.5 Sensitivity analysis for logistic regression withMarkovian data. In these experiments, we chose
𝑓2, set the step size to be 𝜂𝑡 = 𝜂𝑡−𝛼 and treat 𝒙𝑁 as the initial iterate for a warm-up. The perturbed parameters
include 𝛼, 𝜂 and 𝑁 with the legend specifying the used values. (a) (d) (g) show the sensitivity of empirical
coverage, (b) (e) (h) show the sensitivity of CI lengths, and (c) (f) (i) show the sensitivity of absolute errors.

where𝑨 ∈ ℝ𝑑×𝑑 is a subdiagonal matrix with only {𝑨𝑖,𝑖−1}1≤𝑖≤𝑑 non-zero, 𝒆1 is the first vector

in the standard basis, and 𝑆(𝑥) = 𝑒𝑥

1+𝑒𝑥 is the sigmoid function. The target parameter in this

experiment is 𝜽⊤𝒙⋆, which is constructed similarly to the first experiment. By applying the

update rule in Equation (3.2) to the negative log-likelihood objective, the experimental results

are shown in Figure 3.4. All of our methods reach the desired 95% coverage rate, with 𝑓2

having a slight advantage in terms of convergence speed. The confidence interval (CI) lengths

decrease as the iteration progresses or as 𝑚 increases. Figure 3.4(c) displays the trajectory of

the average CI lengths, which start to include the target parameter from the very beginning.

Figure 3.5 displays the sensitivity of the results produced by our method to various param-

eters, including the step size parameter 𝛼, the step size scale 𝜂, and the warm-up iteration 𝑁 .

The empirical coverage rates and the averaged lengths of the confidence intervals are plotted

with respect to each of these parameters. From Figure 3.5(a), it can be seen that the empiri-
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cal coverage rates are relatively robust to changes in the step size parameter within the range

(0.5, 0.6). However, for larger values of 𝛼 in the range (0.6, 1), the empirical coverage rates
begin to degrade. The optimal step size parameter predicted by Corollary 3.3.3 (𝛼 = 0.679)
is not seen to have an impact in this particular logistic regression experiment. This could be

because the nonlinearity and Markovian data have a minimal impact, leading to 𝑐𝑟 ≈ 0 and

𝑡mix ≈ 0. In this case, the optimal 𝛼 is close to 0.5, which is consistent with the results shown
in Figure 3.5(a). Figures 3.5(b) and 3.5(c) provide insight into why smaller values of 𝛼 result

in faster convergence of the empirical coverage: for smaller 𝛼, the center of the confidence in-
tervals converges more quickly, while the length of the intervals is even wider than for larger

values of 𝛼. Additionally, from the middle and lowest row of Figure 3.5, both the absolute

estimation error and the length of the confidence intervals converge more quickly for smaller

values of 𝜂 or larger values of 𝑁 . However, these advantages are relatively small and our

methods are robust to changes in the step size scale 𝜂 and the warm-up iteration 𝑁 .

3.7 Conclusion

From a methodological standpoint, in this chapter, we introduce a fully online statistical

inferencemethod for nonlinear stochastic approximation using a single trajectory ofMarkovian

data. Our approach, motivated by the random scaling introduced in the last chapter, centers

around constructing an asymptotic pivotal quantity through the application of a continuous

scale-invariant functional 𝑓 to the partial-sum process 𝝓𝑇 . To accomplish this, we propose a

family of suitable functionals 𝑓𝑚 that are indexed by 𝑚 ∈ ℕ. In our simulations, we found that
smaller values of𝑚 result in faster convergence of empirical coverage, although the confidence

interval lengths may be slightly wider.

From a theoretical perspective, we demonstrate the validity of our approach through a

functional central limit theorem and provide the first non-asymptotic upper bound on its weak

convergence rate measured in the Lévy-Prokhorov metric. The asymptotic result in Equation

(3.25) and the qualitative bound in Equation (3.26) for the coefficient-varying remainder pro-

cess 𝝍3 can be leveraged in future studies on the weak convergence of iterative algorithms.

Additionally, we present a semiparametric efficient lower bound to highlight the statistical ef-

ficiency of the partial-sum process 𝝓𝑇 . It is the most efficient RAL estimator among all RAL

estimators with an asymptotic variance that attains the semiparametric efficient lower bound

for all fractions 𝑟 ∈ [0, 1].
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Chapter 4 Conclusion and Future Directions

4.1 Summary

In this dissertation, we investigated ways to conduct online statistical inference in feder-

ated learning (FL) and nonlinear stochastic approximation (SA), focusing on the Local SGD

algorithm in FL and asynchronous Q-Learning in RL. Both of them are instances of nonlinear

SAs, because they can be formulated as a stochastic iterative algorithm in the root finding prob-

lem of 𝒈(𝒙) ∶= ∫Ξ 𝑯(𝒙, 𝜉)𝜋(𝑑𝜉) = 0, where the root is denoted by 𝒙⋆ that satisfies 𝒈(𝒙⋆) = 0.
The (possibly nonlinear) function 𝒈 is the gradient of the aggregated global loss function in FL
while being the Bellman equation in RL. Our target quantity is a linear functional of the true

parameter 𝒙⋆, which is 𝜽⊤𝒙⋆ for a unit norm vector 𝜽.

For Local SGD, we introduced two inference methods to construct confidence intervals:

the plug-in method in Section 2.4.1 and the random scaling type method in Section 2.4.2. We

establish either asymptotic normality or functional central limit theorem to support these meth-

ods. We compare these two methods in terms of their computational complexity and memory

requirements. The plug-in method requires the access of noisy observations of the derivative

of 𝒈(𝒙) to estimate 𝑮, i.e., the ability to evaluate ∇𝑯(𝒙, 𝜉), which satisfies 𝔼𝜉∼𝜋∇𝑯(𝒙, 𝜉) =
∇𝒈(𝒙). To obtain a consistent estimator for the asymptotic variance, the plug-in method needs
to store both estimates of 𝑮 and 𝑺 and take the inverse of 𝑮 at each iteration. This requires

𝒪(𝑑2) memory space and 𝒪(𝑑3) computation complexity. In contrast, the random scaling

method does not attempt to estimate the asymptotic variance. It formulates an asymptotically

pivotal statistic by utilizing the trajectory information, which is more computationally efficient

and memory-friendly, requiring only 𝒪(𝑑) memory space and 𝒪(𝑑) computation complexity
at each iteration.

For nonlinear SA, due to the lack of Hessian information, we propose a nonparametric

inference following the spirit of random scaling in Section 3.5. Under the existence of Marko-

vian data, we establish a functional central limit theorem for the partial-sum process 𝝓𝑇 . Fur-

thermore, we propose a semeparametric efficient lower bound for the asymptotic variance and

a non-parametric upper bound for weak convergence quantified by the Lévy-Prokhorov dis-

tance. By selecting any continuous scale-invariant functional 𝑓 , this quantity 𝑓(𝝓𝑇 ) becomes
an asymptotic pivotal statistic, allowing us to construct an asymptotically valid confidence in-
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terval. We proposed a family of functionals 𝑓𝑚 and analyze its several aspects including the

rejection probability and confidence lengths. In the numerical part, we compare our method

with another popular approach namely the online bootstrap method[43]. In general, despite

its popularity, bootstrap is not suitable for trajectory data analysis where a complete control

of the environment is lacked because it requires multiple oracles. Additionally, the memory

and computation complexity of bootstrap methods are much more severe because they main-

tain multiple (say 𝐵) perturbed iterates and need to update them at each iteration. Hence, the

complexity depends on the value of 𝐵. To ensure the estimated confidence intervals stable, 𝐵
should be set sufficiently large, increasing the handwork of parameter tuning.

4.2 Future Directions

There are many other interesting issues presented in this dissertation that can be explored

in future work.

Statistical analysis for decentralized data We first focus on the distributed learning setting.

Recall that federated learning is a special case of distributed learning.

1. Weaker assumptions: One direction is to relax the current assumptions and consider Local

SGD for more challenging optimization problems (e.g., non-smooth or non-convex prob-

lems). The quantile regressions would be an important application of non-smooth optimiza-

tion. The use of neural networks forces us to step into theworld of non-convex optimization.

2. Asymptotic analysis for other FL methods: Our theory shows that Local SGD enjoys sta-

tistical optimality in an asymptotic sense, and it is definitely not also optimal in finite-time

convergence[60]. We can analyze the asymptotic normality of other state-of-the-art algo-

rithms in FL. For example, Karimireddy, Kale, Mohri, Reddi, Stich, Suresh [84] proposed

a new algorithm using control variates to remove the effect of data heterogeneity, which

achieves a better non-asymptotic convergence rate.

3. Double efficient algorithms: From an theoretical perspective, it would be interesting to

investigate algorithms that are efficient both asymptotically and non-asymptotically. The

former means the produced estimate, say 𝒙𝑇 , enjoys an asymptotic normality where the

asymptotic variance matrix nearly matches the Cramer-Rao lower bound, while the latter

means the convergence rate of 𝒙𝑇 is as tight as possible in terms of 𝑇 and other instant-

dependent quantities. This question has been answered partially[68, 103] in the context of

the single-agent setting. It would be interesting to investigate similar double efficient algo-
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rithms as well inference methods to handle the challenge in the big data era[3].

Random scaling for online statistical inference The idea of random scaling motivates the

online inference method introduced in Chapter 3. Despite the progress made in our paper,

several avenues for further research remain.

1. High-dimensional cases: It is important to extend our methods to high-dimensional sce-

narios. One possible solution is to use a proximal Robbins-Monro method[157] with ℓ1

penalization in cases where the root 𝒙⋆ is high-dimensional but sparse in its coordinates.

The other possible method is stochastic mirror descent[158-160]. Although the last-iterate

process of online ℓ1 penalized problems has been analyzed[134], the partial-sum process of

proximal methods has yet to be similarly studied.

2. Other stochastic optimization methods: We essentially establish a functional central limit

theorem for SGD. Recent years witness many progresses in stochastic optimization and

many efficient algorithms have been proposed. For example, the Nesterov accelerated

gradient and proximal gradient descent for composite optimization, and variance reduced

methods for finite-sum minimization[161-162]. It would be very interesting to establish sim-

ilar FCLTs for these variants of SGD. In this way, we expect to achieve fast convergence

and efficient statistical inference simultaneously. However, for these more delicate algo-

rithms, our iterative analysis method should be modified, but we speculate the high-level

picture is still similar.

3. Combination with other inference methods: Recent years have many nonparametric infer-

ence methods been proposed. The bootstrap replies on the multiple oracles[43], while the

conformal inference methods depends on the exchangeability of observed data[163]. How

to combine them with random scaling in an organic way so as to take their advantages for

online statistical inference would be another interesting future direction.

4. Other efficient functional 𝑓 : Although we propose a family of functionals 𝑓 ’s, it is not
clear whether there exist other functionals that can be efficiently computed online and also

have improved empirical performance in terms of smaller confidence interval lengths and

faster convergence of empirical coverage. Establishing similar weak convergence rates for

different functionals would allow for their theoretical comparison.

5. Lower bound for weak convergence: The tightness of our upper bound for weak conver-

gence remains uncertain. Determining the minimax lower bound for weak convergence and

finding the optimal iterative procedure to match it are ongoing open problems.

6. Functional data analysis: In this work, we essentially consider data in the Euclidean space,
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while statistical methods for analyzing functional data have been extensively developed

in the past decades[164]. It is typically considered challenging to conduct statistical in-

ference for streaming functional data. When data points are functions, it is more appro-

priate to consider stochastic approximation methods in Banach spaces. Recently, Mou,

Khamaru, Wainwright, Bartlett, Jordan [103] studied the problem of estimating the fixed

point of a contractive operator defined on a separable Banach space. They proposed a

variance-reduced stochastic approximation method that achieves the local asymptotic min-

imax risk non-asymptotically. Xie, Shi, Sang, Shang, Jiang, Kong [165] proposed an online

bootstrap resampling procedure to conduct inference for functional linear regression in a

similar manner as Ramprasad, Li, Yang, Wang, Sun, Cheng [43] did in their online boot-

strap linear SA paper. It is possible and would be interesting to extend the random scaling

method for functional data.
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Appendix A Omitted Proofs for Theorem 2.4.2

The proof idea of Theorem 2.4.2 has already been illustrated in Section 2.5. In this section,

we provide the omitted proofs for the lemmas introduced therein.

A.1 Proof of Lemma 2.5.2

Proof of Lemma 2.5.2. Define ℱ𝑡 = 𝜎({𝜉𝑘
𝜏 }1≤𝑘≤𝐾,0≤𝜏<𝑡) by the natural filtration generated by

𝜉𝑘
𝜏 ’s, so {𝒙𝑘

𝑡 }𝑡 is adapted to {ℱ𝑡}𝑡 and {𝒙̄𝑡𝑚}𝑚 is adapted to {ℱ𝑡𝑚}𝑚. Notice that 𝒗𝑚 = 𝒉𝑚 +𝜹𝑚

where

𝒉𝑚 = 1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡) and ∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡) =
𝐾∑

𝑘=1
𝑝𝑘∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑘

𝑡 ),

implying 𝔼[𝒉𝑚|ℱ𝑡𝑚] = ∇𝑓(𝒙̄𝑡𝑚). The 𝐿-smoothness of 𝑓(⋅) gives that

𝑓(𝒙̄𝑡𝑚+1) ≤ 𝑓(𝒙̄𝑡𝑚) + ⟨∇𝑓(𝒙̄𝑡𝑚), 𝒙̄𝑡𝑚+1 − 𝒙̄𝑡𝑚⟩ + 𝐿
2 ‖𝒙̄𝑡𝑚+1 − 𝒙̄𝑡𝑚‖2

= 𝑓(𝒙̄𝑡𝑚) − 𝛾𝑚⟨∇𝑓(𝒙̄𝑡𝑚), 𝒗𝑚⟩ + 𝛾2
𝑚𝐿
2 ‖𝒗𝑚‖2.

Conditioning on ℱ𝑡𝑚 in the last inequality gives

𝔼[𝑓(𝒙̄𝑡𝑚+1)|ℱ𝑡𝑚]

≤ 𝑓(𝒙̄𝑡𝑚) − 𝛾𝑚⟨∇𝑓(𝒙̄𝑡𝑚), 𝔼[𝒗𝑚|ℱ𝑡𝑚]⟩ + 𝛾2
𝑚𝐿
2 𝔼[‖𝒗𝑚‖2|ℱ𝑡𝑚]

= 𝑓(𝒙̄𝑡𝑚) − 𝛾𝑚‖∇𝑓(𝒙̄𝑡𝑚)‖2 − 𝛾𝑚⟨∇𝑓(𝒙̄𝑡𝑚), 𝔼[𝜹𝑚|ℱ𝑡𝑚]⟩ + 𝛾2
𝑚𝐿
2 𝔼[‖𝒉𝑚 + 𝜹𝑚‖2|ℱ𝑡𝑚]

≤ 𝑓(𝒙̄𝑡𝑚) − 𝛾𝑚‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 𝛾𝑚
2 ‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 𝛾𝑚

2 ‖𝔼[𝜹𝑚|ℱ𝑡𝑚]‖2

+ 𝛾2
𝑚𝐿𝔼[‖𝒉𝑚‖2|ℱ𝑡𝑚] + 𝛾2

𝑚𝐿𝔼[‖𝜹𝑚‖2|ℱ𝑡𝑚]

= 𝑓(𝒙̄𝑡𝑚) − 𝛾𝑚
2 ‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 𝛾2

𝑚𝐿𝔼[‖𝒉𝑚‖2|ℱ𝑡𝑚] + (
𝛾𝑚
2 + 𝛾2

𝑚𝐿) 𝔼[‖𝜹𝑚‖2|ℱ𝑡𝑚], (A.1)

where we use the conditional Jensen’s inequality ‖𝔼[𝜹𝑚|ℱ𝑡𝑚]‖2 ≤ 𝔼[‖𝜹𝑚‖2|ℱ𝑡𝑚].
We then bound the last two terms in the right hand side of (A.1).

Step one For 𝔼[‖𝒉𝑚‖2|ℱ𝑡𝑚], it follows that

𝔼[‖𝒉𝑚‖2|ℱ𝑡𝑚] = ‖𝔼[𝒉𝑚|ℱ𝑡𝑚]‖2 + 𝔼[‖𝒉𝑚 − 𝔼[𝒉𝑚|ℱ𝑡𝑚]‖2|ℱ𝑡𝑚]
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= ‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 𝔼[‖𝒉𝑚 − ∇𝑓(𝒙̄𝑡𝑚)‖2|ℱ𝑡𝑚]

= ‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 1
𝐸𝑚

𝔼[‖∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙̄𝑡𝑚)‖2|ℱ𝑡𝑚],

where the last equality uses the fact that 𝒉𝑚 is the mean of 𝐸𝑚 i.i.d. copies of ∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) ∶=∑𝐾
𝑘=1 𝑝𝑘∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘

𝑡𝑚
) givenℱ𝑡𝑚 , so its conditional variance is𝐸𝑚 times smaller than the latter,

𝔼[‖𝒉𝑚 − ∇𝑓(𝒙̄𝑡𝑚)‖2|ℱ𝑡𝑚] = 1
𝐸𝑚

𝔼[‖∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙̄𝑡𝑚)‖2|ℱ𝑡𝑚]. (A.2)

Lemma A.1.1. Recall that 𝜀(𝒙̄𝑡𝑚) ∶= ∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙̄𝑡𝑚) and 𝜀𝑘(𝒙𝑘
𝑡 ) ∶= ∇𝑓(𝒙𝑘

𝑡 ; 𝜉𝑘
𝑡 ) −

∇𝑓(𝒙𝑘
𝑡 ). Under Assumption 3.2.2, it follows that

𝔼𝜉𝑘
𝑡
‖𝜀𝑘(𝒙𝑘

𝑡 )‖2 ≤ 𝐶1 + 𝐶2‖𝒙𝑘
𝑡 − 𝒙⋆‖2 and 𝔼𝜉𝑡𝑚

‖𝜀(𝒙̄𝑡𝑚)‖2 ≤ 𝐶1 + 𝐶2‖𝒙̄𝑡𝑚 − 𝒙⋆‖2,

where 𝐶1 = 𝑑 max𝑘∈[𝐾] ‖𝑺𝑘‖ + 𝑑𝐶
2 and 𝐶2 = 3𝑑𝐶

2 with 𝐶 defined in Assumption 3.2.2.

Proof of Lemma A.1.1. ByAssumption 3.2.2, we know that 𝜀(𝒙̄𝑡𝑚) ∶= ∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚)−∇𝑓(𝒙̄𝑡𝑚)
satisfies

‖𝔼𝜉𝑡𝑚
𝜀(𝒙̄𝑡𝑚)𝜀(𝒙̄𝑡𝑚)⊤ − 𝑺‖ ≤ 𝐶 (‖𝒙̄𝑡𝑚 − 𝒙⋆‖ + ‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

) .

Therefore, it follows that

𝔼[‖∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙̄𝑡𝑚)‖2|ℱ𝑡𝑚] = 𝔼[‖𝜀(𝒙̄𝑡𝑚)‖2|ℱ𝑡𝑚] = 𝔼𝜉𝑡𝑚
‖𝜀(𝒙̄𝑡𝑚)‖2

= tr(𝔼𝜉𝑡𝑚
𝜀(𝒙̄𝑡𝑚)𝜀(𝒙̄𝑡𝑚)⊤)

≤ 𝑑‖𝔼𝜉𝑡𝑚
𝜀(𝒙̄𝑡𝑚)𝜀(𝒙̄𝑡𝑚)⊤‖

≤ 𝑑‖𝑺‖ + 𝑑𝐶‖𝒙̄𝑡𝑚 − 𝒙⋆‖ + 𝑑𝐶‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

≤ (𝑑‖𝑺‖ + 𝑑𝐶
2 ) + 3𝑑𝐶

2 ‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

≤ 𝐶1 + 𝐶2‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

with 𝐶1 = 𝑑 max𝑘 ‖𝑺𝑘‖ + 𝑑𝐶
2 and 𝐶2 = 3𝑑𝐶

2 . Here we use the fact that 𝑺 = ∑𝐾
𝑘=1 𝑝2

𝑘𝑺𝑘 and

thus ‖𝑺‖ ≤ ∑𝐾
𝑘=1 𝑝2

𝑘‖𝑺𝑘‖ ≤ ∑𝐾
𝑘=1 𝑝𝑘‖𝑺𝑘‖ ≤ max𝑘∈[𝐾] ‖𝑺𝑘‖.

With a similar argument, it follows that

𝔼𝜉𝑘
𝑡
‖𝜀𝑘(𝒙𝑘

𝑡 )‖2 ≤ 𝑑‖𝑺𝑘‖ + 𝑑𝐶
2 + 3𝑑𝐶

2 ‖𝒙𝑘
𝑡 − 𝒙⋆‖2 ≤ 𝐶1 + 𝐶2‖𝒙𝑘

𝑡 − 𝒙⋆‖2.

With Lemma A.1.1, we have

𝔼[‖∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙̄𝑡𝑚)‖2|ℱ𝑡𝑚] ≤ 𝐶1 + 𝐶2‖𝒙̄𝑡𝑚 − 𝒙⋆‖2.
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Then, it follows that

𝔼[‖𝒉𝑚‖2|ℱ𝑡𝑚] ≤ ‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 𝐶1
𝐸𝑚

+ 𝐶2
𝐸𝑚

‖𝒙̄𝑡𝑚 − 𝒙⋆‖2.

Step two For 𝔼[‖𝜹𝑚‖2|ℱ𝑡𝑚], by Jensen’s inequality, we have

𝔼[‖𝜹𝑚‖2|ℱ𝑡𝑚] = 𝔼[‖𝒗𝑚 − 𝒉𝑚‖2|ℱ𝑡𝑚]

= 𝔼
⎡
⎢
⎢
⎣

‖
‖
‖‖

1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝐾∑
𝑘=1

𝑝𝑘∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 ) − 1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝐾∑
𝑘=1

𝑝𝑘∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡 )

‖
‖
‖‖

2

|ℱ𝑡𝑚

⎤
⎥
⎥
⎦

≤ 1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝐾∑
𝑘=1

𝑝𝑘𝔼 [‖∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 ) − ∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡 )‖

2
|ℱ𝑡𝑚] .

Because 𝒙𝑘
𝑡 , 𝒙̄𝑡𝑚 ∈ ℱ𝑡 and ℱ𝑡𝑚 ⊆ ℱ𝑡 for 𝑡𝑚 ≤ 𝑡 < 𝑡𝑚+1, we have that

𝔼[‖∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 ) − ∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘
𝑡 )‖2|ℱ𝑡𝑚] = 𝔼[𝔼[‖∇𝑓𝑘(𝒙𝑘

𝑡 ; 𝜉𝑘
𝑡 ) − ∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘

𝑡 )‖2|ℱ𝑡]|ℱ𝑡𝑚]

= 𝔼[𝔼𝜉𝑘
𝑡
‖∇𝑓𝑘(𝒙𝑘

𝑡 ; 𝜉𝑘
𝑡 ) − ∇𝑓𝑘(𝒙̄𝑡𝑚; 𝜉𝑘

𝑡 )‖2|ℱ𝑡𝑚]

≤ 𝐿2𝔼[‖𝒙𝑘
𝑡 − 𝒙̄𝑡𝑚‖2|ℱ𝑡𝑚],

where the first equality follows from the tower rule of conditional expectation and the second

inequality follows from the expected 𝐿-smoothness in Assumption 2.3.1.

Combining the last two results, we have

𝔼[‖𝜹𝑚‖2|ℱ𝑡𝑚] ≤ 𝐿2

𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝐾∑
𝑘=1

𝑝𝑘𝔼[‖𝒙𝑘
𝑡 − 𝒙̄𝑡𝑚‖2|ℱ𝑡𝑚] ∶= 𝐿2

𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝑉𝑡,

where 𝑉𝑡 is the residual error defined by

𝑉𝑡 =
𝐾∑

𝑘=1
𝑝𝑘𝔼[‖𝒙𝑘

𝑡 − 𝒙̄𝑡𝑚‖2|ℱ𝑡𝑚]. (A.3)

The residual error is incurred by multiple local gradient descents. Intuitively, if no local update

is used (i.e., 𝐸𝑚 = 1), such a residual error would disappear. The following lemma helps us
bound 1

𝐸𝑚

∑𝑡𝑚+1−1
𝑡=𝑡𝑚

𝑉𝑡 in terms of 𝛾𝑚 and ‖𝒙̄𝑡𝑚 − 𝒙⋆‖2.

LemmaA.1.2. Under Assumptions 2.3.1 and 3.2.2, there exist some universal constants𝐶3, 𝐶4 >
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0 such that for any 𝑚 with 𝛾2
𝑚

𝐸𝑚−1
𝐸𝑚

𝐶4 ≤ 1, it follows that

1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝑉𝑡 ≤ 𝛾2
𝑚

𝐸𝑚 − 1
𝐸𝑚 (𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

) .

Proof of Lemma A.1.2. For a fixed 𝑚 ≥ 0, let us consider the case where 𝑡𝑚+1 > 𝑡𝑚 + 1,
otherwise the result follows directly due to 𝑉𝑡𝑚 = 0. For 𝑡𝑚 ≤ 𝑡 < 𝑡𝑚+1 − 1 and 𝑘 ∈ [𝐾], we
have 𝒙𝑘

𝑡𝑚
= 𝒙̄𝑡𝑚 and

𝒙𝑘
𝑡+1 = 𝒙𝑘

𝑡 − 𝜂𝑚∇𝑓𝑘(𝒙𝑘
𝑡 ; 𝜉𝑘

𝑡 ) ⇒ 𝒙𝑘
𝑡+1 = 𝒙̄𝑡𝑚 − 𝜂𝑚

𝑡∑
𝜏=𝑡𝑚

∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 ).

Using the last iteration relation, we obtain that

𝔼[‖𝒙𝑘
𝑡+1 − 𝒙̄𝑡𝑚‖2|ℱ𝑡𝑚] = 𝜂2

𝑚𝔼
⎡
⎢
⎢
⎣

‖
‖
‖‖

𝑡∑
𝜏=𝑡𝑚

∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 )
‖
‖
‖‖

2

|ℱ𝑡𝑚

⎤
⎥
⎥
⎦

≤ 𝜂2
𝑚(𝑡 + 1 − 𝑡𝑚)

𝑡∑
𝜏=𝑡𝑚

𝔼[‖∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 )‖2|ℱ𝑡𝑚]

≤ 𝜂2
𝑚𝐸𝑚

𝑡∑
𝜏=𝑡𝑚

𝔼[‖∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 )‖2|ℱ𝑡𝑚]

= 𝜂2
𝑚𝐸𝑚

𝑡∑
𝜏=𝑡𝑚

𝔼 [𝔼(‖∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 )‖2|ℱ𝜏)|ℱ𝑡𝑚] .

We then turn to bound 𝔼[‖∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 )‖2|ℱ𝜏] as follows:

𝔼[‖∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 )‖2|ℱ𝜏] = 𝔼[‖∇𝑓𝑘(𝒙𝑘
𝜏 ; 𝜉𝑘

𝜏 ) − ∇𝑓𝑘(𝒙𝑘
𝜏 )‖2|ℱ𝜏] + ‖∇𝑓𝑘(𝒙𝑘

𝜏 )‖2

≤ 𝔼𝜉𝑘
𝜏
‖𝜀𝑘(𝒙𝑘

𝜏 )‖2 + 2‖∇𝑓𝑘(𝒙𝑘
𝜏 ) − ∇𝑓𝑘(𝒙⋆)‖2 + 2‖∇𝑓𝑘(𝒙⋆)‖2

≤ (𝐶1 + 2‖∇𝑓𝑘(𝒙⋆)‖2) + (𝐶2 + 2𝐿2) ‖𝒙𝑘
𝜏 − 𝒙⋆‖2

≤ 𝐶3 + 𝐶4
2 ‖𝒙𝑘

𝜏 − 𝒙⋆‖2

≤ 𝐶3 + 𝐶4‖𝒙𝑘
𝜏 − 𝒙̄𝑡𝑚‖2 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2,

where 𝐶3 = 𝐶1 + 2max𝑘∈[𝐾] ‖∇𝑓𝑘(𝒙⋆)‖2 and 𝐶4 = 2𝐶2 + 4𝐿2. The second inequality uses

the 𝐿-smoothness to bound ‖∇𝑓𝑘(𝒙𝑘
𝜏 ) − ∇𝑓𝑘(𝒙⋆)‖ and Lemma A.1.1 to bound 𝔼𝜉𝑘

𝜏
‖𝜀𝑘(𝒙𝑘

𝜏 )‖2

which yields

𝔼𝜉𝑘
𝜏
‖𝜀𝑘(𝒙𝑘

𝜏 )‖2 ≤ 𝐶1 + 𝐶2‖𝒙𝑘
𝜏 − 𝒙⋆‖2.
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Therefore, by combing the last two results, we have

𝔼[‖𝒙𝑘
𝑡+1 − 𝒙̄𝑡𝑚‖2|ℱ𝑡𝑚] ≤ 𝜂2

𝑚𝐸𝑚

𝑡∑
𝜏=𝑡𝑚

[𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 + 𝐶4𝔼[‖𝒙𝑘
𝜏 − 𝒙̄𝑡𝑚‖2|ℱ𝑡𝑚]] .

Hence, for 𝑡𝑚 ≤ 𝑡 < 𝑡𝑚+1 − 1, we have

𝑉𝑡+1 =
𝐾∑

𝑘=1
𝑝𝑘𝔼(‖𝒙𝑘

𝑡+1 − 𝒙̄𝑡𝑚‖2|ℱ𝑡𝑚) ≤ 𝜂2
𝑚𝐸𝑚

𝑡∑
𝜏=𝑡𝑚

(𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 + 𝐶4𝑉𝜏) . (A.4)

Because 𝑉𝑡𝑚 = 0, it then follows that

1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝑉𝑡 = 1
𝐸𝑚

𝑡𝑚+1−2∑
𝑡=𝑡𝑚

𝑉𝑡+1

≤ 𝜂2
𝑚

𝑡𝑚+1−2∑
𝑡=𝑡𝑚

𝑡∑
𝜏=𝑡𝑚

(𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 + 𝐶4𝑉𝜏)

= 𝜂2
𝑚

𝑡𝑚+1−2∑
𝑡=𝑡𝑚

(𝑡𝑚+1 − 𝑡 − 1) (𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 + 𝐶4𝑉𝑡)

≤ 𝜂2
𝑚(𝐸𝑚 − 1)

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

(𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 + 𝐶4𝑉𝑡)

≤ 𝛾2
𝑚

𝐸𝑚 − 1
𝐸𝑚

⎛
⎜
⎜
⎝
𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 + 𝐶4

𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝑉𝑡
⎞
⎟
⎟
⎠

,

where we use the definition of 𝐸𝑚 = 𝑡𝑚+1 − 𝑡𝑚 and 𝛾𝑚 = 𝜂𝑚𝐸𝑚.

Hence, rearranging the last inequality and using the condition 𝛾2
𝑚

𝐸𝑚−1
𝐸𝑚

𝐶4 ≤ 1
2 gives

1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝑉𝑡 ≤ 2𝛾2
𝑚

𝐸𝑚 − 1
𝐸𝑚 (𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

) .

Finally redefining 𝐶3 ∶= 2𝐶3 and 𝐶4 ∶= 2𝐶4 completes the proof and the restriction on 𝛾𝑚

becomes 𝛾2
𝑚

𝐸𝑚−1
𝐸𝑚

𝐶4 ≤ 1 under the new notation of 𝐶4.

Almost sure convergence Denote Δ𝑚 = 𝑓(𝒙̄𝑡𝑚) − 𝑓(𝒙⋆) for simplicity, then from the 𝜇-
strongly convexity and 𝐿-smoothness of 𝑓(⋅), it follows that

𝜇
2 ‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 ≤ Δ𝑚 ≤ 1

2𝜇 ‖∇𝑓(𝒙̄𝑡𝑚)‖2 and 1
2𝐿‖∇𝑓(𝒙̄𝑡𝑚)‖2 ≤ Δ𝑚 ≤ 𝐿

2 ‖𝒙̄𝑡𝑚 − 𝒙⋆‖2.
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Note that 𝛾𝑚 → 0 when 𝑚 goes to infinity, which means there exists some 𝑚0, such that for any

𝑚 ≥ 𝑚0, we have 𝛾2
𝑚𝐶4 ≤ 1 and 𝛾𝑚 ≤ min{ 1

2𝐿 , 1}. It implies that we can apply Lemma A.1.2
for sufficiently large 𝑚. Combining the two parts and plugging them into (A.1) yield for any

𝑚 ≥ 𝑚0,

𝔼[Δ𝑚+1|ℱ𝑡𝑚] ≤ Δ𝑚 − 𝛾𝑚
2 ‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 𝛾2

𝑚𝐿 ⋅ [‖∇𝑓(𝒙̄𝑡𝑚)‖2 + 𝐶1
𝐸𝑚

+ 𝐶2
𝐸𝑚

‖𝒙̄𝑡𝑚 − 𝒙⋆‖2
]

+ (
𝛾𝑚
2 + 𝛾2

𝑚𝐿) 𝛾2
𝑚𝐿2

(𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2
)

≤ Δ𝑚 − 𝛾𝑚𝜇Δ𝑚 + 𝛾2
𝑚𝐿 ⋅ [

𝐶1
𝐸𝑚

+ (2𝐿 + 2𝐶2
𝜇𝐸𝑚 ) Δ𝑚]

+ (
𝛾𝑚
2 + 𝛾2

𝑚𝐿) 𝛾2
𝑚𝐿2

(𝐶3 + 2𝐶4
𝜇 Δ𝑚)

≤ Δ𝑚 − 𝛾𝑚𝜇Δ𝑚 + 𝛾2
𝑚𝐿 ⋅ [𝐶1 + (2𝐿 + 2𝐶2

𝜇 ) Δ𝑚] + 𝛾3
𝑚𝐿2

(𝐶3 + 2𝐶4
𝜇 Δ𝑚)

≤ Δ𝑚 − 𝛾𝑚𝜇Δ𝑚 + 𝛾2
𝑚𝐿 ⋅ [𝐶1 + (2𝐿 + 2𝐶2

𝜇 ) Δ𝑚] + 𝛾2
𝑚𝐿2

(𝐶3 + 2𝐶4
𝜇 Δ𝑚)

= (1 + 𝑐1𝛾2
𝑚) Δ𝑚 + 𝑐2𝛾2

𝑚 − 𝜇𝛾𝑚Δ𝑚, (A.5)

where

𝑐1 = 2𝐿2 + 2(𝐿𝐶2 + 𝐿2𝐶4)
𝜇 and 𝑐2 = 𝐿𝐶1 + 𝐿2𝐶3.

To conclude the proof, we need to apply the Robbins-Siegmund theorem[166].

Lemma A.1.3 (Robbins-Siegmund theorem). Let {𝐷𝑚, 𝛽𝑚, 𝛼𝑚, 𝜁𝑚}∞
𝑚=0 be non-negative and

adapted to a filtration {𝒢𝑚}∞
𝑚=0, satisfying

𝔼[𝐷𝑚+1|𝒢𝑚] ≤ (1 + 𝛽𝑚)𝐷𝑚 + 𝛼𝑚 − 𝜁𝑚

for all 𝑚 ≥ 0 and both
∑

𝑚 𝛽𝑚 < ∞ and
∑

𝑚 𝛼𝑚 < ∞ almost surely. Then, with probability

one, 𝐷𝑚 converges to a non-negative random variable 𝐷∞ ∈ [0, ∞) and
∑

𝑚 𝜁𝑚 < ∞.

From Assumption 2.3.3, we have that 𝑐1
∑∞

𝑚=𝑚0
𝛾2

𝑚 < ∞ and 𝑐2
∑∞

𝑚=𝑚0
𝛾2

𝑚 < ∞. Hence,

based on (A.5), Lemma A.1.3 implies that Δ𝑚 = 𝑓(𝒙̄𝑡𝑚) − 𝑓(𝒙⋆) converges to a finite non-

negative random variable Δ∞ almost surely. Moreover, Lemma A.1.3 also ensures that

𝜇
∞∑

𝑚=𝑚0

𝛾𝑚Δ𝑚 < ∞. (A.6)

If ℙ(Δ𝑚 > 0) > 0, then the left-hand side of (A.6) would be infinite with positive probability
due to the fact

∑∞
𝑚=𝑚0

𝛾𝑚 = ∞. It reveals that ℙ(Δ𝑚 = 0) = 1 and thus 𝑓(𝒙̄𝑡𝑚) → 𝑓(𝒙⋆) as
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well as 𝒙̄𝑡𝑚 → 𝒙⋆ with probability one when 𝑚 goes to infinity.

𝐿2 convergence We will obtain the 𝐿2 convergence rate from (A.5). This part follows the

same argument of Su, Zhu [67] (see Page 37-38 therein). For completeness, we conclude this

section by presenting the proof of it. Taking expectation on both sides of (A.5),

𝔼Δ𝑚+1
𝛾𝑚

≤
𝛾𝑚−1 (1 − 𝜇𝛾𝑚 + 𝑐1𝛾2

𝑚)
𝛾𝑚

𝔼Δ𝑚
𝛾𝑚−1

+ 𝑐2𝛾𝑚.

Because 𝛾𝑚 → 0, we have that for sufficiently large 𝑚, 𝑐1𝛾2
𝑚 ≤ 0.5𝜇𝛾𝑚, and hence,

𝔼Δ𝑚+1
𝛾𝑚

≤
𝛾𝑚−1 (1 − 𝜇

2 𝛾𝑚)
𝛾𝑚

𝔼Δ𝑚
𝛾𝑚−1

+ 𝑐2𝛾𝑚.

Lemma A.1.4 (Lemma A.10 in Su, Zhu [67]). Let 𝑐1, 𝑐2 be arbitrary positive constants. As-

sume 𝛾𝑚 → 0 and 𝛾𝑚−1
𝛾𝑚

= 1 + 𝑜(𝛾𝑚). If 𝐵𝑚 > 0 satisfies 𝐵𝑚 ≤ 𝛾𝑚−1(1−𝑐1𝛾𝑚)
𝛾𝑚

𝐵𝑚−1 + 𝑐2𝛾𝑚, then

sup𝑚 𝐵𝑚 < ∞.

With the above lemma, we claim that there exists some 𝐶5 > 0 such that

sup
0<𝑚<∞

𝔼Δ𝑚
𝛾𝑚−1

< 𝐶5, (A.7)

which immediately concludes that

𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 ≤ 2
𝜇 𝔼Δ𝑚 ≤ 2𝐶5

𝜇 𝛾𝑚−1 = 2𝐶5
𝜇 (1 + 𝑜(𝛾𝑚))𝛾𝑚 ≤ 𝐶0𝛾𝑚.

A.2 Proof of Lemma 2.5.3

Proof of Lemma 2.5.3. Recall that

𝜺𝑚 = 𝒉𝑚 − ∇𝑓(𝒙̄𝑡𝑚) = 1
𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

(∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡) − ∇𝑓(𝒙̄𝑡𝑚)) ,

where ∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡) = ∑𝐾
𝑘=1 𝑝𝑘∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑘

𝑡 ) and 𝜉𝑡 = {𝜉𝑘
𝑡 }𝑘∈[𝐾], and recall that 𝜀(𝒙̄𝑡𝑚) =

∇𝑓(𝒙̄𝑡𝑚; 𝜉𝑡𝑚) − ∇𝑓(𝒙̄𝑡𝑚). Hence 𝜺𝑚 is the mean of 𝐸𝑚 i.i.d. copies of 𝜀(𝒙̄𝑡𝑚) at a fixed 𝒙̄𝑡𝑚 .

Define ℱ𝑡 = 𝜎({𝜉𝑘
𝜏 }1≤𝑘≤𝐾,0≤𝜏<𝑡) by the natural filtration generated by 𝜉𝑘

𝜏 ’s and 𝒢𝑚−1 =
ℱ𝑡𝑚 . Then {𝜺𝑚}∞

𝑚=1 is a martingale difference with respect to {𝒢𝑚}∞
𝑚=0 (for convention 𝒢0 =

{∅, Ω} if 𝒙̄0 is deterministic, otherwise 𝒢0 = 𝜎(𝒙̄0)): 𝔼[𝜺𝑚|𝒢𝑚−1] = 0.
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The following lemma establishes an invariance principle which allows us to extend tradi-

tional martingale CLT. Interesting readers can find its proof in Hall, Heyde [167] (see Theorems

4.1, 4.2 and 4.4 therein).

LemmaA.2.1 (Invariance principles in the martingale CLT). Let {𝑆𝑛, 𝒢𝑛}𝑛≥1 be a zero-mean,

square-integrablemartingale with difference𝑋𝑛 = 𝑆𝑛−𝑆𝑛−1(𝑆0 = 0). Let𝑈 2
𝑛 = ∑𝑛

𝑚=1 𝔼[𝑋2
𝑚|𝒢𝑚−1]

and 𝑠2
𝑛 = 𝔼𝑈 2

𝑛 = 𝔼𝑆2
𝑛 . Define 𝜁𝑛(𝑡) as the linear interpolation among the points (0, 0),

(𝑈 −2
𝑛 𝑈 2

1 , 𝑈 −1
𝑛 𝑆1), (𝑈 −2

𝑛 𝑈 2
2 , 𝑈 −1

𝑛 𝑆2), … , (1, 𝑈 −1
𝑛 𝑆𝑛), namely, for 𝑡 ∈ [0, 1] and 0 ≤ 𝑖 ≤ 𝑛 − 1,

𝜁𝑛(𝑡) ∶= 𝑈 −1
𝑛 [𝑆𝑖 + (𝑈 2

𝑖+1 − 𝑈 2
𝑖 )−1(𝑡𝑈 2

𝑛 − 𝑈 2
𝑖 )𝑋𝑖+1] if 𝑈 2

𝑖 ≤ 𝑡𝑈 2
𝑛 < 𝑈 2

𝑖+1.

As 𝑛 → ∞, if (i) the Linderberg conditions holds, namely for any 𝜀 > 0,

𝑠−2
𝑛

𝑛∑
𝑚=1

𝔼[𝑋2
𝑚𝐼(|𝑋𝑚| ≥ 𝜀𝑠𝑛)] → 0, (A.8)

and (ii) 𝑠−2
𝑛 𝑈 2

𝑛 → 1 almost surely and 𝑠2
𝑛 → ∞, then

𝜁𝑛(𝑡) ⇒ 𝐵(𝑡) in the sense of (𝐶, 𝜌).

Here 𝐵(𝑡) is the standard Brownian motion on [0, 1] and 𝐶 = 𝐶[0, 1] is the space of real, con-
tinuous functions on [0, 1]with the uniformmetric 𝜌 ∶ 𝐶[0, 1] → [0, ∞), 𝜌(𝜔) = max𝑡∈[0,1] |𝜔(𝑡)|.

LemmaA.2.1 is for univariatemartingales. Wewill use the Cramér-Wold device to reduce

the issue of convergence of multivariate martingales to univariate ones. To that end, we fix any

uni-norm vector 𝒂 and define 𝑋𝑚 = 𝒂⊤𝜺𝑚. We then check the two conditions in Lemma A.2.1

hold for such {𝑋𝑚, 𝒢𝑚}𝑚≥1.

The Linderberg condition For one thing, since 𝒙̄𝑡𝑚 → 𝒙⋆ almost surely from Lemma 2.5.2,

we have 𝔼‖𝜀(𝒙̄𝑡𝑚)‖2+𝛿2 ≾ 1 from Assumption 3.2.2 when 𝑚 is sufficiently large.

LemmaA.2.2 (Marcinkiewicz–Zygmund inequality andBurkholder inequality). If𝑍1, … , 𝑍𝑛

are independent random vectors such that 𝔼𝑍𝑚 = 0 and 𝔼|𝑍𝑚|𝑝 < ∞ for 1 ≤ 𝑝 < ∞, then

𝔼
|
1
𝑛

𝑛∑
𝑚=1

𝑍𝑚|

𝑝

≤
𝐶𝑝

𝑛
𝑝
2

𝔼
(

1
𝑛

𝑛∑
𝑚=1

|𝑍𝑚|
2
)

𝑝
2

,

where the 𝐶𝑝 are positive constants which depend only on 𝑝 and not on the underlying distri-

bution of the random variables involved. If 𝑍1, … , 𝑍𝑛 are martingale difference sequence,

the above inequality still holds. It is named as Burkholder’s inequality[168].
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Notice that we can rewrite 𝑋𝑚 as the mean of 𝐸𝑚 i.i.d. random variables which have the

same distribution as 𝑍1 = 𝒂⊤𝜀(𝒙̄𝑡𝑚): 𝑋𝑚 = 1
𝐸𝑚

∑𝐸𝑚
𝑖=1 𝑍𝑖. With the Marcinkiewicz–Zygmund

inequality and Jensen inequality, it follows that

𝔼|𝑋𝑚|2+𝛿2 ≾ 𝐸
−(1+ 𝛿2

2 )
𝑚 𝔼

(
1
𝑛

𝑛∑
𝑚=1

|𝑍𝑚|
2
)

1+ 𝛿2
2

≾ 𝐸
−(1+ 𝛿2

2 )
𝑚 𝔼 |𝑍1|

2+𝛿2

≾ 𝐸
−(1+ 𝛿2

2 )
𝑚 ‖𝒂‖2+𝛿2𝔼‖𝜀(𝒙̄𝑡𝑚)‖2+𝛿2 ≾ 𝐸−1

𝑚 . (A.9)

Moreover, from Assumption 3.2.2 and Lemma 2.5.2, we have that

|𝒂
⊤

[𝔼𝜀(𝒙̄𝑡𝑚)𝜀(𝒙̄𝑡𝑚)⊤ − 𝑺]𝒂| ≤ 𝐶 [𝔼‖𝒙̄𝑡𝑚 − 𝑥⋆‖ + 𝔼‖𝒙̄𝑡𝑚 − 𝑥⋆‖2
]

≤ 𝐶(√𝛾𝑚 + 𝛾𝑚) → 0.

Recall that
∑𝑇

𝑚=1 𝐸𝑚
−1 → ∞ as 𝑇 → ∞. The Stolz–Cesàro theorem (Lemma A.2.3) implies

that

lim
𝑇 →∞

𝑠2
𝑇∑𝑇

𝑚=1
1

𝐸𝑚
𝒂⊤𝑺𝒂

= lim
𝑇 →∞

∑𝑇
𝑚=1

𝒂⊤𝔼𝜀(𝒙̄𝑡𝑚 )𝜀(𝒙̄𝑡𝑚 )⊤𝒂
𝐸𝑚∑𝑇

𝑚=1
1

𝐸𝑚
𝒂⊤𝑺𝒂

= lim
𝑇 →∞

𝒂⊤𝔼𝜀(𝒙̄𝑡𝑇 )𝜀(𝒙̄𝑡𝑇 )⊤𝒂
𝒂⊤𝑺𝒂

= 1.

(A.10)

Hence, for any 𝜀 > 0, as 𝑇 → ∞, we have that

𝑠−2
𝑇

𝑇∑
𝑚=1

𝔼[𝑋2
𝑚𝐼(|𝑋𝑚| ≥ 𝜀𝑠𝑇 )] ≤ 𝜀−𝛿2𝑠−(2+𝛿2)

𝑇

𝑇∑
𝑚=1

𝔼[|𝑋𝑚|2+𝛿2𝐼(|𝑋𝑚| ≥ 𝜀𝑠𝑇 )]

≤ 𝜀− 𝛿2
2 𝑠−(2+𝛿2)

𝑇

𝑇∑
𝑚=1

𝔼|𝑋𝑚|2+𝛿2

≾ 𝜀−𝛿2𝑠−(2+𝛿2)
𝑇

𝑇∑
𝑚=1

1
𝐸𝑚

≍ 𝜀−𝛿2𝑠−𝛿2
𝑇 → 0.

The second condition We have established the divergence of {𝒔2
𝑇 }𝑇 in (A.10). Notice that

𝑈 2
𝑇 =

𝑇∑
𝑚=1

𝔼[𝑋2
𝑚|𝒢𝑚−1] =

𝑇∑
𝑚=1

1
𝐸𝑚

𝒂⊤𝔼[𝜀(𝒙̄𝑡𝑚)𝜀(𝒙̄𝑡𝑚)⊤|𝒢𝑚−1]𝒂

=
𝑇∑

𝑚=1

1
𝐸𝑚

𝒂⊤𝔼𝜉𝑡𝑚
𝜀(𝒙̄𝑡𝑚)𝜀(𝒙̄𝑡𝑚)⊤𝒂.
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Therefore, from (A.10) and the Stolz–Cesàro theorem (Lemma A.2.3), it follows almost surely

that

lim
𝑇 →∞ |

𝑈 2
𝑇

𝑠2
𝑇

− 1
|

≤ lim
𝑇 →∞

𝐶
𝑠2

𝑇

𝑇∑
𝑚=1

1
𝐸𝑚 [‖𝒙̄𝑡𝑚 − 𝒙⋆‖ + ‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

]

= lim
𝑇 →∞

𝐶
𝒂⊤𝑺𝒂 [‖𝒙̄𝑡𝑇 − 𝒙⋆‖ + ‖𝒙̄𝑡𝑇 − 𝒙⋆‖2

] → 0.

Lemma A.2.3 (Stolz–Cesàro theorem). Let {𝑎𝑛}𝑛≥1 and {𝑏𝑛}𝑛≥1 be two sequences of real

numbers. Assume that {𝑏𝑛}𝑛≥1 is a strictly monotone and divergent sequence. We have that

if lim
𝑛→∞

𝑎𝑛+1 − 𝑎𝑛
𝑏𝑛+1 − 𝑏𝑛

= 𝑙, then lim
𝑛→∞

𝑎𝑛
𝑏𝑛

= 𝑙.

We have shown that the two conditions in Lemma A.2.1 hold. Hence, by definition,

𝜁𝑇 (𝑟) ⇒ 𝐵(𝑟) where

𝜁𝑇 (𝑟) ∶= 𝑈 −1
𝑇 [𝑆𝑖 + (𝑈 2

𝑖+1 − 𝑈 2
𝑖 )−1(𝑟𝑈 2

𝑇 − 𝑈 2
𝑖 )𝑋𝑖+1] if 𝑈 2

𝑖 ≤ 𝑟𝑈 2
𝑇 < 𝑈 2

𝑖+1

and 𝑆𝑖 =
∑𝑖

𝑚=1 𝑋𝑚. Since 𝑠𝑇 /𝑈𝑇 → 1 almost surely and (A.10), it follows that

√𝑡𝑇
𝑇 𝑈𝑇 𝜁𝑇 (𝑟) ⇒ √𝜈√𝒂⊤𝑺𝒂𝐵(𝑟) 𝑑.= √𝜈𝒂⊤𝑺1/2𝑾 (𝑟),

where𝑾 (𝑟) is the 𝑑-dimensional standard Brownian motion. Recall that

ℎ(𝑟, 𝑇 ) = max
⎧⎪
⎨
⎪⎩

𝑛 ∈ ℤ+|𝑟
𝑇∑

𝑚=1

1
𝐸𝑚

≥
𝑛∑

𝑚=1

1
𝐸𝑚

⎫⎪
⎬
⎪⎭

.

Lemma A.2.4. Under the same condition of Lemma 2.5.3, it follows that

sup
𝑟∈[0,1] |

√𝑡𝑇
𝑇 𝑈𝑇 𝜁𝑇 (

𝑈 2
ℎ(𝑟,𝑇 )

𝑈 2
𝑇 )

− √𝑡𝑇
𝑇 𝑈𝑇 𝜁𝑇 (𝑟)

|
→ 0 in probability.

Hence,

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=1

𝒂⊤𝜺𝑚 = √𝑡𝑇
𝑇 𝑆ℎ(𝑟,𝑇 ) = √𝑡𝑇

𝑇 𝑈𝑇 𝜁𝑇 (
𝑈 2

ℎ(𝑟,𝑇 )

𝑈 2
𝑇 )

⇒ √𝜈𝒂⊤𝑺1/2𝑾 (𝑟).

By the arbitrariness of 𝒂, it follows that 1

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=1

𝜺𝑚 ⇒ √𝜈𝑺1/2𝑾 (𝑟).

1 See the proof of Theorem 4.3.5. in Whitt [169 ] for more detail about how to argue multivariate weak convergence from
univariate weak convergence along any direction.
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Applying the continuous mapping theorem to the linear function 𝜺 ∶ 𝜺 ↦ 𝑮−1𝜺, we have

√𝑡𝑇
𝑇

ℎ(𝑟,𝑇 )∑
𝑚=1

𝑮−1𝜺𝑚 ⇒ √𝜈𝑮−1𝑺1/2𝑾 (𝑟).

Finally, since 𝔼√𝑡𝑇
𝑇 ‖𝑮−1𝜺0‖ → 0, it implies that √𝑡𝑇

𝑇 𝑮−1𝜺0 = 𝑜ℙ(1). Then it is clear that
√𝑡𝑇

𝑇
∑ℎ(𝑟,𝑇 )

𝑚=0 𝑮−1𝜺𝑚 ⇒ √𝜈𝑮−1𝑺1/2𝑾 (𝑟).

A.3 Proof of Lemma A.2.4

Proof of Lemma A.2.4. From the Theorem A.2 of Hall, Heyde [167], if some random func-

tion 𝜙𝑛 ⇒ 𝜙 in the sense of (𝐶, 𝜌), {𝜙𝑛} must be tight in the sense that for any 𝜀 > 0,
ℙ(sup|𝑠−𝑡|≤𝛿 |𝜙𝑛(𝑠) − 𝜙𝑛(𝑡)| ≥ 𝜀) → 0 uniformly in 𝑛 as 𝛿 → 0. Since √𝑡𝑇

𝑇 𝑈𝑇 𝜁𝑇 (𝑟) ⇒

√𝜈𝒂⊤𝑺1/2𝑾 (𝑟), {√𝑡𝑇
𝑇 𝑈𝑇 𝜁𝑇 }𝑇 is tight. We denote the following notation for simplicity

𝜙𝑇 (𝑟) = √𝑡𝑇
𝑇 𝑈𝑇 𝜁𝑇 (𝑟) and 𝑝𝑇 (𝑟) =

𝑈 2
ℎ(𝑟,𝑇 )

𝑈 2
𝑇

.

Since 𝑝𝑇 (𝑟) satisfies 𝑝𝑇 (0) = 1 − 𝑝𝑇 (1) = 0 and 𝑝𝑇 (𝑟) is non-decreasing and right-

continuous in 𝑟, we can view 𝑝𝑇 (𝑟) as the cumulative distribution function of some random

variable on [0, 1] and 𝑝(𝑟) ∶ 𝑟 ↦ 𝑟 is the cumulative distribution function of uniform distribu-

tion on [0, 1]. It is clearly that 𝑝𝑇 (𝑟) → 𝑝(𝑟) for every 𝑟 ∈ [0, 1] almost surely, because

lim
𝑇 →∞

𝑝𝑇 (𝑟) = lim
𝑇 →∞

𝑈 2
ℎ(𝑟,𝑇 )

𝑈 2
𝑇

= lim
𝑇 →∞

𝑠2
ℎ(𝑟,𝑇 )

𝑠2
𝑇

= lim
𝑇 →∞

∑ℎ(𝑟,𝑇 )
𝑚=1

1
𝐸𝑚∑𝑇

𝑚=1
1

𝐸𝑚

= 𝑟 = 𝑝(𝑟).

Here we use ℎ(𝑟, 𝑇 ) → ∞ for any 𝑟 ∈ [0, 1] as 𝑇 → ∞. Since 𝑝(⋅) is additionally continuous,
weak convergence implies uniform convergence in cumulative distribution functions, i.e.,

lim
𝑇 →∞

sup
𝑟∈[0,1]

|𝑝𝑇 (𝑟) − 𝑟| = 0. (A.11)

By the tightness of {𝜙𝑛}, for any 𝜀, 𝜂 > 0, we can find a sufficiently small 𝛿 such that

lim sup
𝑇 →∞

ℙ
(

sup
|𝑠−𝑡|≤𝛿

|𝜙𝑇 (𝑠) − 𝜙𝑇 (𝑡)| ≥ 𝜀
)

≤ 𝜂.

With (A.11), for this 𝛿, ℙ(sup𝑟∈[0,1] |𝑝𝑇 (𝑟) − 𝑟| > 𝛿) → 0 as 𝑇 → ∞. It implies that

lim sup
𝑇 →∞

ℙ
(

sup
𝑟∈[0,1]

|𝜙𝑇 (𝑝𝑇 (𝑟)) − 𝜙𝑇 (𝑟)| ≥ 𝜀
)
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≤ lim sup
𝑇 →∞

ℙ
(

sup
𝑟∈[0,1]

|𝜙𝑇 (𝑝𝑇 (𝑟)) − 𝜙𝑇 (𝑟)| ≥ 𝜀, sup
𝑟∈[0,1]

|𝑝𝑇 (𝑟) − 𝑟| ≤ 𝛿
)

+ lim
𝑇 →∞

ℙ
(

sup
𝑟∈[0,1]

|𝑝𝑇 (𝑟) − 𝑟| > 𝛿
)

≤ lim sup
𝑇 →∞

ℙ
(

sup
|𝑠−𝑡|≤𝛿

|𝜙𝑇 (𝑠) − 𝜙𝑇 (𝑡)| ≥ 𝜀
)

≤ 𝜂.

Because 𝜂 is arbitrary, we have shown that

sup
𝑟∈[0,1]

|𝜙𝑇 (𝑝𝑇 (𝑟)) − 𝜙𝑇 (𝑟)| → 0 in probability.

A.4 Proof of Lemma 2.5.4

Proof of Lemma 2.5.4. Recall that 𝑮 = ∇2𝑓(𝒙⋆), 𝒔𝑚 = 𝒙̄𝑡𝑚 − 𝒙⋆ and

𝒓𝑚 = ∇𝑓(𝒙̄𝑡𝑚) − 𝑮𝒔𝑚.

When ‖𝒔𝑚‖ ≤ 𝛿1, by Assumption 2.3.1, ‖∇2𝑓(𝑠𝒔𝑚 + 𝒙⋆) − ∇2𝑓(𝒙⋆)‖ ≤ 𝑠𝐿′‖𝒔𝑚‖, then

‖𝒓𝑚‖ = ‖∇𝑓(𝒔𝑚 + 𝒙⋆) − ∇𝑓(𝒙⋆) − ∇2𝑓(𝒙⋆)𝒔𝑚‖

= ‖∫
1

0
∇2𝑓(𝑠𝒔𝑚 + 𝒙⋆)𝒔𝑚𝑑𝑠 − ∇2𝑓(𝒙⋆)𝒔𝑚‖

≤ ∫
1

0
‖∇2𝑓(𝑠𝒔𝑚 + 𝒙⋆) − ∇2𝑓(𝒙⋆)‖ ‖𝒔𝑚‖𝑑𝑠

≤ 𝐿′

2 ‖𝒔𝑚‖2.

When ‖𝒔𝑚‖ > 𝛿1, ‖𝒓𝑚‖ ≤ ‖∇𝑓(𝒙̄𝑡𝑚)‖ + ‖𝑮𝒔𝑚‖ ≤ 𝐿‖𝒔𝑚‖ + 𝐿‖𝒔𝑚‖ = 2𝐿‖𝒔𝑚‖. Applying the
results above yields

‖𝒓𝑚‖ ≤ 𝐿′‖𝒔𝑚‖21{‖𝒔𝑚‖≤𝛿1} + 2𝐿‖𝒔𝑚‖1{‖𝒔𝑚‖>𝛿1}.

Hence,

√𝑡𝑇
𝑇

𝑇∑
𝑚=0

‖𝒓𝑚‖ ≤ √𝑡𝑇
𝑇

𝑇∑
𝑚=0

[𝐿′‖𝒔𝑚‖21{‖𝒔𝑚‖≤𝛿1} + 2𝐿‖𝒔𝑚‖1{‖𝒔𝑚‖>𝛿1}] .
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By Lemma 2.5.2, 𝒔𝑚 → 0 almost surely, which implies

√𝑡𝑇
𝑇

𝑇∑
𝑚=0

‖𝒔𝑚‖1{‖𝒔𝑚‖>𝛿1} → 0 almost surely.

It then suffices to show that √𝑡𝑇
𝑇

∑𝑇
𝑚=0 ‖𝒔𝑚‖21{‖𝒔𝑚‖≤𝛿1} = 𝑜ℙ(1), which is implied by

√𝑡𝑇
𝑇

𝑇∑
𝑚=0

𝔼‖𝒔𝑚‖2 = 𝑜(1).

It holds because √𝑡𝑇
𝑇

∑𝑇
𝑚=0 𝔼‖𝒔𝑚‖2 ≾ √𝑡𝑇

𝑇
∑𝑇

𝑚=0 𝛾𝑚 → 0 from Lemma 2.5.2 and Assump-

tion 2.3.4.

A.5 Proof of Lemma 2.5.5

Proof of Lemma 2.5.5. In the proof of Lemma 2.5.2 (see the Part 2 therein), we have estab-

lished for sufficiently large 𝑚,

𝔼[‖𝜹𝑚‖2|ℱ𝑡𝑚] ≤ 𝐿2

𝐸𝑚

𝑡𝑚+1−1∑
𝑡=𝑡𝑚

𝑉𝑡 ≤ 𝐿2𝛾2
𝑚

𝐸𝑚 − 1
𝐸𝑚 (𝐶3 + 𝐶4‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

) ,

where 𝑉𝑡 is the residual error defined in (A.3) and 𝐶3, 𝐶4 > 0 are universal constants defined

in Lemma A.1.2. Besides, Lemma 2.5.2 implies that 𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖2 ≾ 𝛾𝑚 ≾ 1. It follows that

𝔼‖𝜹𝑚‖2 ≤ 𝐿2𝛾2
𝑚 (𝐶3 + 𝐶4𝔼‖𝒙̄𝑡𝑚 − 𝒙⋆‖2

) ≾ 𝛾2
𝑚.

In order to prove the conclusion, it suffices to show that √𝑡𝑇
𝑇

∑𝑇
𝑚=0 𝔼 ‖𝜹𝑚‖ → 0, which is

satisfied because

√𝑡𝑇
𝑇

𝑇∑
𝑚=0

𝔼 ‖𝜹𝑚‖ ≤ √𝑡𝑇
𝑇

𝑇∑
𝑚=0

√𝔼 ‖𝜹𝑚‖
2 ≾ √𝑡𝑇

𝑇

𝑇∑
𝑚=0

𝛾𝑚 → 0

from Lemma 2.5.2 and Assumption 2.3.4.
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A.6 Proof of Lemma 2.5.6

Proof of Lemma 2.5.6. If {𝐸𝑚} is uniformly bounded (i.e., there exists some 𝐶 such that 1 ≤
𝐸𝑚 ≤ 𝐶 for all 𝑚), the conclusion follows because

0 ≤
(
∑𝑇 −1

𝑚=0 𝐸𝑚)(
∑𝑇 −1

𝑚=0 𝐸−1
𝑚 𝑎𝑚,𝑇 )

𝑇 2 ≤
𝐶𝑇 (

∑𝑇 −1
𝑚=0 𝑎𝑚,𝑇 )
𝑇 2 = 1

𝑇

𝑇 −1∑
𝑚=0

𝑎𝑚,𝑇 → 0 when 𝑇 → ∞.

In the following, we instead assume 𝐸𝑚 is non-decreasing in 𝑚 (i.e., 1 ≤ 𝐸𝑚 ≤ 𝐸𝑚+1 for all

𝑚). Let 𝐻𝑘 = ∑𝑘
𝑚=0 𝑎𝑚,𝑇 . For any 𝜀, there exist some 𝑁 = 𝑁(𝜀), such that for any 𝑚 ≥ 𝑁 ,

0 ≤ 𝐻𝑚 ≤ 𝑚𝜀. Then
𝑇∑

𝑛=𝑁

𝑎𝑚,𝑇
𝐸𝑚

=
𝑇∑

𝑛=𝑁

𝐻𝑚 − 𝐻𝑚−1
𝐸𝑚

= 𝐻𝑇
𝐸𝑇

+
𝑇 −1∑
𝑛=𝑁

(
1

𝐸𝑚
− 1

𝐸𝑚+1 ) 𝐻𝑚 − 𝐻𝑁−1
𝐸𝑁

≤ 𝐻𝑇
𝐸𝑇

+
𝑇 −1∑
𝑛=𝑁

(
1

𝐸𝑚
− 1

𝐸𝑚+1 ) 𝑚𝜀 − 𝐻𝑁−1
𝐸𝑁

= 𝐻𝑇 − 𝑇 𝜀
𝐸𝑇

+
⎡
⎢
⎢⎣

𝑇 𝜀
𝐸𝑇

+
𝑇 −1∑
𝑛=𝑁

(
1

𝐸𝑚
− 1

𝐸𝑚+1 ) 𝑚𝜀 − (𝑁 − 1)𝜀
𝐸𝑁

⎤
⎥
⎥⎦

− 𝐻𝑁−1 − (𝑁 − 1)𝜀
𝐸𝑁

= 𝜀 ⋅
𝑇∑

𝑛=𝑁

1
𝐸𝑚

+ 𝐻𝑇 − 𝑇 𝜀
𝐸𝑇

− 𝐻𝑁−1 − (𝑁 − 1)𝜀
𝐸𝑁

≤ 𝜀 ⋅
𝑇∑

𝑛=𝑁

1
𝐸𝑚

+ 𝑁𝜀
𝐸𝑁

Recall 𝑡𝑇 = ∑𝑇 −1
𝑚=0 𝐸𝑚. Therefore,

𝑡𝑇 (∑𝑇 −1
𝑚=0 𝐸−1

𝑚 𝑎𝑚,𝑇 )
𝑇 2 =

𝑡𝑇 (∑𝑁−1
𝑚=0 𝐸−1

𝑚 𝑎𝑚,𝑇 )
𝑇 2 +

𝑡𝑇 (∑𝑇 −1
𝑚=𝑁 𝐸−1

𝑚 𝑎𝑚,𝑇 )
𝑇 2

≤
𝑡𝑇 (∑𝑁−1

𝑚=0 𝐸−1
𝑚 𝑎𝑚,𝑇 )

𝑇 2 + 𝜀
𝑡𝑇 (∑𝑇

𝑚=𝑁 𝐸−1
𝑚 )

𝑇 2 + 𝑡𝑇 𝑁𝜀
𝑇 2𝐸𝑁

.

Taking superior limit on both sides and noting 𝑎𝑚,𝑇 ≾ 1 uniformly and lim
𝑇 →∞

𝑡𝑇
𝑇 2 = 0, we have

0 ≤ lim sup
𝑇 →∞

𝑡𝑇 (∑𝑇 −1
𝑚=0 𝐸−1

𝑚 𝑎𝑚,𝑇 )
𝑇 2 ≤ 𝜀𝜈.

By the arbitrariness of 𝜀, we complete the proof.
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A.7 Proof of Lemma 2.5.7

Proof of Lemma 2.5.7. Without loss of generality, we assume 𝑮−1 is a positive diagonal ma-

trix. Otherwise, we apply the spectrum decomposition to 𝑮 = 𝑽 D𝑽 ⊤ and focus on the co-

ordinates of each 𝜺𝑚 with respect to the orthogonal base 𝑽 . This simplification reduces our

multivariate case to a univariate one. Hence, it is enough to show that the result holds for

one-dimensional 𝜺𝑚 and 𝑮. In the following argument, we focus on an eigenvalue 𝜆 of 𝑮 and

its eigenvector 𝒗, and denote 𝜀𝑚 = 𝒗⊤𝜺𝑚 and 𝐵𝑚 = 1 − 𝛾𝑚𝜆 ∈ ℝ for simplicity. Clearly, 𝜆 ≥ 0
and 0 < 𝐵𝑚 ≤ 1 for sufficiently large 𝑚.

Given a positive integer 𝑛, we separate the time interval [0, 𝑇 ] uniformly into 𝑛 portions

with ℎ𝑖 = [
𝑖𝑇
𝑛 ] (𝑖 = 0, 1, … , 𝑛) the 𝑖-th endpoint. The choice of 𝑛 is independent of 𝑇 , which

implies that lim𝑇 →∞ ℎ𝑖 = ∞ for any 𝑖. Define an event 𝒜 whose complement is

𝒜 𝑐 =
⎧⎪
⎨
⎪⎩

∃ℎ𝑖 s.t.
‖
‖
‖‖

√𝑡𝑇
𝑇 𝛾ℎ𝑖+1

ℎ𝑖∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ𝑖∏
𝑖=𝑚+1

𝐵𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜀𝑚

‖
‖
‖‖

≥ 𝜀
⎫⎪
⎬
⎪⎭

.

We claim that lim sup
𝑇 →∞

ℙ(𝒜 𝑐) = 0. Indeed, by the union bound and Markov’s inequality,

ℙ(𝒜 𝑐) ≤
𝑛∑

𝑖=0
ℙ

⎧⎪
⎨
⎪⎩

‖
‖
‖‖

√𝑡𝑇
𝑇 𝛾ℎ𝑖+1

ℎ𝑖∑
𝑚=0

ℎ𝑖∏
𝑗=𝑚+1

𝐵𝑗𝛾𝑚𝜀𝑚

‖
‖
‖‖

≥ 𝜀
⎫⎪
⎬
⎪⎭

≾
𝑛∑

𝑖=0

𝑡𝑇
𝜀2𝑇 2𝛾2

ℎ𝑖+1

ℎ𝑖∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ𝑖∏
𝑗=𝑚+1

𝐵𝑗
⎞
⎟
⎟
⎠

2

𝛾2
𝑚

≾ 𝑡𝑇
𝜀2𝑇 2

𝑛∑
𝑖=0

1
𝛾ℎ𝑖+1

≤ 𝑡𝑇 (𝑛 + 1)
𝜀2𝑇 2𝛾𝑇 +1

→ 0 as 𝑇 → ∞.

Here the last two inequality uses for any 𝑖 ∈ [𝑛],

1
𝛾ℎ𝑖+1

ℎ𝑖∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ𝑖∏
𝑗=𝑚+1

𝐵𝑗
⎞
⎟
⎟
⎠

2

𝛾2
𝑚 ≾ 1,

which is implied by

lim
ℎ𝑖→∞

⎧⎪
⎨
⎪⎩

ℎ𝑖∑
𝑚=0

𝛾2
𝑚

⎛
⎜
⎜
⎝

𝑚∏
𝑗=0

𝐵𝑗
⎞
⎟
⎟
⎠

−2⎫⎪
⎬
⎪⎭

/
⎧⎪
⎨
⎪⎩

𝛾ℎ𝑖

⎛
⎜
⎜
⎝

ℎ𝑖∏
𝑗=0

𝐵𝑗
⎞
⎟
⎟
⎠

−2⎫⎪
⎬
⎪⎭
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= lim
ℎ𝑖→∞

⎧⎪
⎨
⎪⎩

𝛾2
ℎ𝑖

⎛
⎜
⎜
⎝

ℎ𝑖∏
𝑗=0

𝐵−2
𝑗

⎞
⎟
⎟
⎠

⎫⎪
⎬
⎪⎭

/
⎧⎪
⎨
⎪⎩

𝑜(𝛾ℎ𝑖−1)𝛾ℎ𝑖−1

ℎ𝑖∏
𝑗=0

𝐵−2
𝑗 + 𝛾ℎ𝑖

ℎ𝑖∏
𝑗=0

𝐵−2
𝑗 (1 − 𝐵2

ℎ𝑖
)
⎫⎪
⎬
⎪⎭

= lim
ℎ𝑖→∞

𝛾2
ℎ𝑖

𝑜(1)𝛾2
ℎ𝑖−1 + 2𝜆𝛾2

ℎ𝑖
− 𝜆2𝛾3

ℎ𝑖

= 1
2𝜆 < ∞

as a result of the Stolz–Cesàro theorem (Lemma A.2.3). Here we observe that the denominator

𝛾ℎ𝑖 (
∏ℎ𝑖

𝑗=0 𝐵𝑗)
−2

increases in ℎ𝑖 and diverges when ℎ𝑖 is sufficiently large.

Since the event 𝒜 𝑐 has diminishing probability, we focus on the event 𝒜 . We will prove

that on the event 𝒜 our target random sequence is uniformly tight. For notation simplicity, we

define

𝑋ℎ
𝑚 =

ℎ∏
𝑖=𝑚

𝐵𝑖.

It follows that

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

0≤ℎ≤𝑇

|
|
||

1
𝛾ℎ+1

ℎ∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ∏
𝑖=𝑚+1

𝐵𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜀𝑚

|
|
||

≥ 2𝜀 ; 𝒜
⎫⎪
⎬
⎪⎭

= ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

0≤ℎ≤𝑇

|
|
||

1
𝛾ℎ+1𝑋𝑇

ℎ+1

ℎ∑
𝑚=0

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚

|
|
||

≥ 2𝜀 ; 𝒜
⎫⎪
⎬
⎪⎭

≤
𝑛−1∑
𝑖=0

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

ℎ∈[ℎ𝑖,ℎ𝑖+1)

|
|
||

1
𝛾ℎ+1𝑋𝑇

ℎ+1

⎛
⎜
⎜
⎝

ℎ∑
𝑚=0

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚

⎞
⎟
⎟
⎠

|
|
||

≥ 2𝜀 ; 𝒜
⎫⎪
⎬
⎪⎭

≤
𝑛−1∑
𝑖=0

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

ℎ∈[ℎ𝑖,ℎ𝑖+1)

1
𝛾ℎ+1𝑋𝑇

ℎ+1

|
|
||

ℎ𝑖∑
𝑚=0

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚 +

ℎ∑
𝑚=ℎ𝑖+1

𝑋𝑇
𝑚𝛾𝑚𝜀𝑚

|
|
||

≥ 2𝜀 ; 𝒜
⎫⎪
⎬
⎪⎭

≤
𝑛−1∑
𝑖=0

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

ℎ∈[ℎ𝑖,ℎ𝑖+1)

⎡
⎢
⎢
⎣

1
𝛾ℎ+1𝑋𝑇

ℎ+1

|
|
||

ℎ𝑖∑
𝑚=0

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚

|
|
||

+
|
|
||

1
𝛾ℎ𝑋𝑇

ℎ+1

ℎ∑
𝑚=ℎ𝑖+1

𝑋𝑇
𝑚𝛾𝑚𝜀𝑚

|
|
||

⎤
⎥
⎥
⎦

≥ 2𝜀 ; 𝒜
⎫⎪
⎬
⎪⎭

≤
𝑛−1∑
𝑖=0

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

ℎ∈[ℎ𝑖,ℎ𝑖+1)

|
|
||

1
𝛾ℎ+1𝑋𝑇

ℎ+1

ℎ∑
𝑚=ℎ𝑖+1

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚

|
|
||

≥ 𝜀 ; 𝒜
⎫⎪
⎬
⎪⎭

≤
𝑛−1∑
𝑖=0

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

ℎ∈[ℎ𝑖,ℎ𝑖+1)

|
|
||

1
𝛾ℎ+1𝑋𝑇

ℎ+1

ℎ∑
𝑚=ℎ𝑖+1

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚

|
|
||

≥ 𝜀
⎫⎪
⎬
⎪⎭

=
𝑛−1∑
𝑖=0

ℙ
⎧⎪
⎨
⎪⎩

(
√𝑡𝑇

𝑇 )

2+𝛿

sup
ℎ∈[ℎ𝑖,ℎ𝑖+1) (

1
𝛾ℎ+1𝑋𝑇

ℎ+1 )

2+𝛿 |
|
||

ℎ∑
𝑚=ℎ𝑖+1

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚

|
|
||

2+𝛿

≥ 𝜀2+𝛿
⎫⎪
⎬
⎪⎭
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∶=
𝑛−1∑
𝑖=0

𝒫𝑖,

where 𝛿 is any positive real number less than min{𝛿2, 𝛿3}.

Let 𝑌ℎ = |
∑ℎ

𝑚=ℎ𝑖+1 𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚|

2+𝛿
. It is clear that 𝑌ℎ is a sub-martingale adapted to

the natural filtration. Let 𝑐ℎ = 1
(𝛾ℎ𝑋𝑇

ℎ )2+𝛿 . Then {𝑐ℎ} is a non-increasing sequence when ℎ is

sufficiently large because

𝛾ℎ𝑋𝑇
ℎ = 𝛾ℎ

𝛾ℎ+1
(1 − 𝜆𝛾ℎ)𝛾ℎ+1𝑋𝑇

ℎ+1 = (1 + 𝑜(𝛾ℎ))(1 − 𝜆𝛾ℎ)𝛾ℎ+1𝑋𝑇
ℎ+1 ≤ 𝛾ℎ+1𝑋𝑇

ℎ+1

for sufficiently large ℎ. Indeed, since ℎ ≥ ℎ𝑖 = [
𝑖𝑇
𝑛 ] → ∞ as 𝑇 → ∞, (1+𝑜(𝛾ℎ))(1−𝜆𝛾ℎ) ≤ 1

is solid and 𝑋𝑇
ℎ is non-negative when 𝑇 goes to infinity. Hence, each 𝒫𝑖 is the probability of

the event where the maximum of a sub-martingale multiplied by a non-increasing sequence is

larger than a threshold. To bound each 𝒫𝑖, we use Chow’s inequality which is a generalization

of Doob’s inequality[170]. It follows that

𝒫𝑖 = ℙ
{

𝑡1+𝛿/2
𝑇
𝑇 2+𝛿 sup

ℎ∈[ℎ𝑖,ℎ𝑖+1)
𝑐ℎ𝑌ℎ ≥ 𝜀2+𝛿

}

≤
𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿

⎧⎪
⎨
⎪⎩

𝑐ℎ𝑖+1−1𝔼𝑌ℎ𝑖+1−1 +
ℎ𝑖+1−2∑
𝑗=ℎ𝑖+1

(𝑐𝑖 − 𝑐𝑖+1)𝔼𝑌𝑗
⎫⎪
⎬
⎪⎭

. (A.12)

We then apply Burkholder’s inequality to bound each 𝔼𝑌𝑗 . Burkholder’s inequality is a gen-

eralization of the Marcinkiewicz–Zygmund inequality (Lemma A.2.2) to martingale differ-

ences[168]. That is,

𝔼𝑌𝑗 = 𝔼
|
|
||

𝑗∑
𝑚=ℎ𝑖+1

𝑋𝑇
𝑚+1𝛾𝑚𝜀𝑚

|
|
||

2+𝛿

≾ (𝑗 − ℎ𝑖)𝛿/2
𝑗∑

𝑚=ℎ𝑖+1
𝔼 |𝑋𝑇

𝑚+1𝛾𝑚𝜀𝑚|
2+𝛿

≾ (𝑗 − ℎ𝑖)𝛿/2
𝑗∑

𝑚=ℎ𝑖+1
(𝑋𝑇

𝑚+1𝛾𝑚)2+𝛿/𝐸1+𝛿/2
𝑚

≾ (𝑗 − ℎ𝑖)𝛿/2
𝑗∑

𝑚=ℎ𝑖+1
𝑐−1

𝑚 /𝐸1+𝛿/2
𝑚 ,

where we use 𝔼 |𝜀𝑚|
2+𝛿 ≾ 1/𝐸1+𝛿/2

𝑚 for sufficiently large 𝑚 that is already derived in (A.9).

137



Peking University PhD Thesis

Plugging it into (A.12) yields that 𝒫𝑖 is bounded by

𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿

⎧⎪
⎨
⎪⎩

𝑐ℎ𝑖+1−1𝔼𝑌ℎ𝑖+1−1 +
ℎ𝑖+1−2∑
𝑗=ℎ𝑖+1

(𝑐𝑖 − 𝑐𝑖+1)𝔼𝑌𝑗
⎫⎪
⎬
⎪⎭

≾
𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿

⎧⎪
⎨
⎪⎩

𝑐ℎ𝑖+1−1(ℎ𝑖+1−ℎ𝑖)
𝛿
2

ℎ𝑖+1−1∑
𝑚=ℎ𝑖+1

𝑐−1
𝑚

𝐸1+𝛿/2
𝑚

+
ℎ𝑖+1−2∑
𝑗=ℎ𝑖+1

(𝑐𝑗−𝑐𝑗+1)(𝑗−ℎ𝑖)
𝛿
2

𝑗∑
𝑚=ℎ𝑖+1

𝑐−1
𝑚

𝐸1+𝛿/2
𝑚

⎫⎪
⎬
⎪⎭

≤
𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿 (
𝑇
𝑛 )

𝛿/2 ⎧⎪
⎨
⎪⎩

𝑐ℎ𝑖+1−1

ℎ𝑖+1−1∑
𝑚=ℎ𝑖+1

𝑐−1
𝑚

𝐸1+𝛿/2
𝑚

+
ℎ𝑖+1−2∑
𝑗=ℎ𝑖+1

(𝑐𝑗 − 𝑐𝑗+1)
𝑗∑

𝑚=ℎ𝑖+1

𝑐−1
𝑚

𝐸1+𝛿/2
𝑚

⎫⎪
⎬
⎪⎭

=
𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿 (
𝑇
𝑛 )

𝛿/2 ⎧⎪
⎨
⎪⎩

𝑐ℎ𝑖+1−1

ℎ𝑖+1−1∑
𝑚=ℎ𝑖+1

𝑐−1
𝑚

𝐸1+𝛿/2
𝑚

+
ℎ𝑖+1−2∑
𝑚=ℎ𝑖+1

(𝑐𝑚 − 𝑐ℎ𝑖+1−1) 𝑐−1
𝑚

𝐸1+𝛿/2
𝑚

⎫⎪
⎬
⎪⎭

=
𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿 (
𝑇
𝑛 )

𝛿/2 ⎧⎪
⎨
⎪⎩

ℎ𝑖+1−1∑
𝑚=ℎ𝑖+1

𝑐𝑚
𝑐−1

𝑚
𝐸1+𝛿/2

𝑚

⎫⎪
⎬
⎪⎭

=
𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿 (
𝑇
𝑛 )

𝛿/2 ℎ𝑖+1−1∑
𝑚=ℎ𝑖+1

1
𝐸1+𝛿/2

𝑚
.

Recall 𝑡𝑇 = ∑𝑇 −1
𝑚=0 𝐸𝑚. Summing the last bound over 𝑖 = 0, 1, … , 𝑛 − 1 gives

𝑛−1∑
𝑖=0

𝒫𝑖 ≾
𝑡1+𝛿/2
𝑇

𝜀2+𝛿𝑇 2+𝛿 (
𝑇
𝑛 )

𝛿/2 𝑇 −1∑
𝑚=0

1
𝐸1+𝛿/2

𝑚

= 1
𝜀2+𝛿𝑛𝛿/2

( 1
𝑇
∑𝑇 −1

𝑚=0 𝐸𝑚)1+𝛿/2

1
𝑇
∑𝑇 −1

𝑚=0 𝐸1+𝛿/2
𝑚

∑𝑇 −1
𝑚=0 𝐸1+𝛿/2

𝑚
∑𝑇 −1

𝑚=0 1/𝐸1+𝛿/2
𝑚

𝑇 2

≾ 1
𝑛𝛿/2 ,

where we use (𝑖𝑖) in Assumption 2.3.4 which implies

sup
𝑇

∑𝑇 −1
𝑚=0 𝐸1+𝛿/2

𝑚
∑𝑇 −1

𝑚=0 1/𝐸1+𝛿/2
𝑚

𝑇 2 ≤ sup
𝑇

∑𝑇 −1
𝑚=0 𝐸1+𝛿3

𝑚
∑𝑇 −1

𝑚=0 1/𝐸1+𝛿3
𝑚

𝑇 2 < ∞

as a result of 𝛿 < 𝛿3.

Summing them all, we have

lim sup
𝑇 →∞

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

0≤ℎ≤𝑇

|
|
||

1
𝛾ℎ+1

ℎ∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ∏
𝑖=𝑚+1

𝐵𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜀𝑚

|
|
||

≥ 2𝜀
⎫⎪
⎬
⎪⎭

≤ lim sup
𝑇 →∞

ℙ
⎧⎪
⎨
⎪⎩

√𝑡𝑇
𝑇 sup

0≤ℎ≤𝑇

|
|
||

1
𝛾ℎ+1

ℎ∑
𝑚=0

⎛
⎜
⎜
⎝

ℎ∏
𝑖=𝑚+1

𝐵𝑖
⎞
⎟
⎟
⎠

𝛾𝑚𝜀𝑚

|
|
||

≥ 2𝜀 ; 𝒜
⎫⎪
⎬
⎪⎭

+ lim sup
𝑇 →∞

ℙ(𝒜 𝑐)
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≤ lim sup
𝑇 →∞

𝑛−1∑
𝑖=0

𝒫𝑖

≾ 1
𝑛𝛿/2 .

Since the probability of the left hand side has nothing to do with 𝑛, letting 𝑛 → ∞ concludes

the proof.
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Appendix B Omitted Proofs for Theorem 3.3.1

B.1 Proof of Lemma 3.4.1

Proof of Lemma 3.4.1. In the following, we use 𝑎 ≾ 𝑏 to denote 𝑎 ≤ 𝐶𝑏 for an unimportant

positive constant𝐶 > 0 that doesn’t depends on 𝑝 for simplicity. Let𝐶𝑈,𝒙𝑡 = 𝜅𝑡mix⋅(2𝐿𝐻‖𝒙𝑡−
𝒙⋆‖ + 𝜎). By 2 in Lemma 3.2.2, we have ‖𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)‖ ≤ 𝐶𝑈,𝒙𝑡 .

1. By Assumption 3.2.1, it implies that

‖𝒓𝑡‖ = ‖𝒈(𝒙𝑡) − 𝑮𝚫𝑡‖

≤ ‖𝒈(𝒙𝑡) − 𝑮(𝒙𝑡 − 𝒙⋆)‖ + 𝜂𝑡‖𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)‖

≤
{

𝐿𝐺 ⋅ ‖𝒙𝑡 − 𝒙⋆‖2 + 𝜂𝑡𝐶𝑈,𝒙𝑡 if ‖𝒙𝑡 − 𝒙⋆‖ ≤ 𝛿𝐺

(𝐿𝐻 + ‖𝑮‖) ⋅ ‖𝒙𝑡 − 𝒙⋆‖ + 𝜂𝑡𝐶𝑈,𝒙𝑡 if ‖𝒙𝑡 − 𝒙⋆‖ ≥ 𝛿𝐺

≤ max{𝐿𝐺, 𝐿𝐻 + ‖𝑮‖
𝛿𝐺 } ‖𝒙𝑡 − 𝒙⋆‖2 + 𝜂𝑡𝐶𝑈,𝒙𝑡 .

Since {𝒙𝑡}𝑡≥0 satisfies the (𝐿2, (1 + log 𝑡)√𝜂𝑡)-consistency (from Assumption 3.2.6),

𝔼‖𝒙𝑡 − 𝒙⋆‖2 ≾ 𝜂𝑡 log 𝑡. As a result, when 𝑇 → ∞,

1
√𝑇

𝑇∑
𝑡=0

𝔼‖𝒓𝑡‖ ≾ 1
√𝑇

𝑇∑
𝑡=0

𝔼‖𝒙𝑡 − 𝒙⋆‖2 + 1
√𝑇

𝑇∑
𝑡=0

𝜂𝑡 ≾ log 𝑇
√𝑇

𝑇∑
𝑡=0

𝜂𝑡 → 0.

2. By (3.17), we have 𝔼[𝑼 (𝒙𝑡, 𝜉𝑡)|ℱ𝑡−1] = 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1) where ℱ𝑡 is the 𝜎-field defined
by ℱ𝑡 ∶= 𝜎({𝜉𝜏}0≤𝜏≤𝑡). Hence, {𝒖𝑡}𝑡≥0 is a martingale difference sequence. By 2 in

Lemma 3.2.2 and Assumption 3.2.2,
∑⌊𝑇 𝑟⌋

𝑡=1 𝒖𝑡 is square integrable for all 𝑟 ∈ [0, 1].
By (3.17), we decompose 𝒖𝑡 into two parts 𝒖𝑡 = 𝒖𝑡,1 + 𝒖𝑡,2 where

𝒖𝑡,1 = [𝑼 (𝒙𝑡, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)] − [𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] ,

𝒖𝑡,2 = [𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] .
(B.1)

It’s clear that both {𝒖𝑡,1}𝑡≥0 and {𝒖𝑡,2}𝑡≥0 are also martingale difference sequences. We

assert that 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=1 𝒖𝑡 has the same asymptotic behavior as

1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=1 𝒖𝑡,2 due to

𝔼 sup
𝑟∈[0,1]

‖
‖
‖‖

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝒖𝑡 − 1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝒖𝑡,2

‖
‖
‖‖

2

= 𝔼 sup
𝑟∈[0,1]

‖
‖
‖‖

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝒖𝑡,1

‖
‖
‖‖

2

= 𝑜(1).
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This is because from Doob’s martingale inequality,

𝔼 sup
𝑟∈[0,1]

‖
‖
‖‖

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝒖𝑡,1

‖
‖
‖‖

2

≤ 1
𝑇

𝑇∑
𝑡=0

𝔼‖𝒖𝑡,1‖2 ≾ log 𝑇
𝑇

𝑇∑
𝑡=0

𝜂𝑡 → 0,

where the last inequality uses the following result

𝔼‖𝒖𝑡,1‖2 ≤ 2𝔼‖𝑼 (𝒙𝑡, 𝜉𝑡) − 𝑼 (𝒙⋆, 𝜉𝑡)‖2 + 2𝔼‖𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)‖2

= 2𝔼𝒫 ‖𝑼 (𝒙𝑡, 𝜉𝑡−1) − 𝑼 (𝒙⋆, 𝜉𝑡−1)‖2 + 2𝔼‖𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)‖2

(𝑎)
≤ 4𝔼𝒫 ‖𝑼 (𝒙𝑡, 𝜉𝑡−1) − 𝑼 (𝒙⋆, 𝜉𝑡−1)‖2

(𝑏)
≤ 4𝔼(𝒫 ‖𝑼 (𝒙𝑡, 𝜉𝑡−1) − 𝑼 (𝒙⋆, 𝜉𝑡−1)‖𝑝)

2
𝑝

(𝑐)
≤ 4𝐿2

𝑈 ⋅ 𝔼‖𝒙𝑡 − 𝒙⋆‖2
(𝑑)
≾ 𝜂𝑡 ⋅ log 𝑡.

Here (𝑎) follows from conditional Jensen’s inequality, (𝑏) follows from conditional

Holder’s inequality, (𝑐) uses 4 in Lemma 3.2.2, and (𝑑) uses 𝔼‖𝒙𝑡 − 𝒙⋆‖2 ≾ 𝜂𝑡 ⋅ log 𝑡
from Assumption 3.2.6.

We then focus on the partial-sum process 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=1 𝒖𝑡,2. For one thing, by Assump-

tion 3.2.2, {𝒖𝑡,2}𝑡≥0 has uniformly bounded 𝑝 > 2 moments, which is because

sup
𝑡≥0

𝔼‖𝒖𝑡,2‖𝑝 ≤ 2𝑝−1 sup
𝑡≥0

[𝔼‖𝑼 (𝒙⋆, 𝜉𝑡)‖𝑝 + 𝔼‖𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)‖𝑝] < ∞.

As a result, for any 𝜀 > 0, as 𝑇 goes to infinity,

𝔼
⎧⎪
⎨
⎪⎩

𝑇∑
𝑡=0

𝔼
⎡⎢⎢⎣‖

𝒖𝑡,2

√𝑇 ‖

2

1{‖𝒖𝑡,2‖≥√𝑇 𝜀}|ℱ𝑡−1
⎤⎥⎥⎦

⎫⎪
⎬
⎪⎭

≤ 1
𝜀

𝑝
2 −1𝑇

𝑝
2

𝔼
⎧⎪
⎨
⎪⎩

𝑇∑
𝑡=0

𝔼 [‖𝒖𝑡,2‖
𝑝

|ℱ𝑡−1]
⎫⎪
⎬
⎪⎭

≤
sup𝑡≥0 𝔼‖𝒖𝑡,2‖𝑝

𝜀
𝑝
2 −1𝑇

𝑝
2 −1

→ 0,

which implies
𝑇∑

𝑡=0
𝔼

⎡⎢⎢⎣‖
𝒖𝑡,2

√𝑇 ‖

2

1{‖𝒖𝑡,2‖≥√𝑇 𝜀}|ℱ𝑡−1
⎤⎥⎥⎦

𝑝→ 0.

For another thing, we notice that

𝔼 [[𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)] [𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)]
⊤

|ℱ𝑡−1]

=𝔼 [𝑼 (𝒙⋆, 𝜉𝑡)𝑼 (𝒙⋆, 𝜉𝑡)⊤
|ℱ𝑡−1] − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)⊤

=𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)𝑼 (𝒙⋆, 𝜉𝑡−1)⊤ − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)⊤,
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which together with Birkhoff’s ergodic theorem (Theorem 7.2.1 in[171]) implies

1
𝑇

𝑇∑
𝑡=1

[𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)𝑼 (𝒙⋆, 𝜉𝑡−1)⊤ − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)⊤]

𝑝→ 𝑺 = 𝔼𝜉∼𝜋 [𝒫 𝑼 (𝒙⋆, 𝜉)𝑼 (𝒙⋆, 𝜉)⊤ − 𝒫 𝑼 (𝒙⋆, 𝜉)𝒫 𝑼 (𝒙⋆, 𝜉)⊤] .

Because ∫Ξ 𝒫 (𝜉, 𝜉′)𝜋(𝑑𝜉) = 𝜋(𝜉′) by the definition of the stationary distribution 𝜋, we
have

𝔼𝜉∼𝜋𝒫 𝑼 (𝒙⋆, 𝜉)𝑼 (𝒙⋆, 𝜉)⊤ = 𝔼𝜉∼𝜋𝑼 (𝒙⋆, 𝜉)𝑼 (𝒙⋆, 𝜉)⊤.

Hence, we have

1
𝑇

𝑇∑
𝑡=1

𝔼[𝒖𝑡,2𝒖⊤
𝑡,2|ℱ𝑡−1] 𝑝→ 𝑺 = 𝔼𝜉∼𝜋 [𝑼 (𝒙⋆, 𝜉)𝑼 (𝒙⋆, 𝜉)⊤ − 𝒫 𝑼 (𝒙⋆, 𝜉)𝒫 𝑼 (𝒙⋆, 𝜉)⊤] .

Hereto, we have shown {𝒖𝑡,2}𝑡≥0 satisfies the Lindeberg-Feller conditions for martin-

gale central limit theorem. Then the martingale FCLT follows from Theorem 4.2 in[167]

(or Theorem 8.8.8 in[171], or Theorem 2.1 in[154]). Therefore, we have

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝒖𝑡,2
𝑤→ 𝑺1/2𝑾 (𝑟) and 1

√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝒖𝑡
𝑤→ 𝑺1/2𝑾 (𝑟).

Finally, by 4 in Lemma 3.2.2 and conditional Jensen’s inequality, we have

𝔼‖𝒖𝑡,1‖𝑝 ≤ 2𝑝−1 [𝔼‖𝑼 (𝒙𝑡, 𝜉𝑡) − 𝑼 (𝒙⋆, 𝜉𝑡)‖𝑝 + 2𝔼‖𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)‖𝑝]
≤ 2𝑝𝔼‖𝑼 (𝒙𝑡, 𝜉𝑡) − 𝑼 (𝒙⋆, 𝜉𝑡)‖𝑝 ≤ 2𝑝𝐿𝑝

𝑈 𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝.

As a result, we have sup𝑡≥0 𝔼‖𝒖𝑡,1‖𝑝 ≾ sup𝑡≥0 𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝 < ∞ from Assump-

tion 3.2.6. Therefore, sup𝑡≥0 𝔼‖𝒖𝑡‖𝑝 ≤ 2𝑝−1(sup𝑡≥0 𝔼‖𝒖𝑡,1‖𝑝 + sup𝑡≥0 𝔼‖𝒖𝑡,2‖𝑝) < ∞.

By now, we complete the proof of this part.

3. By (3.18) and 4 in Lemma 3.2.2, we have

‖𝝂𝑡‖ = ‖
𝜂𝑡+1
𝜂𝑡

𝒫 𝑼 (𝒙𝑡+1, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡)‖

≤ ‖𝒫 𝑼 (𝒙𝑡+1, 𝜉𝑡) − 𝒫 𝑼 (𝒙𝑡, 𝜉𝑡)‖ + ‖
𝜂𝑡+1 − 𝜂𝑡

𝜂𝑡
𝒫 𝑼 (𝒙𝑡+1, 𝜉𝑡)‖

≤ 𝐿𝑈 ‖𝒙𝑡+1 − 𝒙𝑡‖ + |
𝜂𝑡+1 − 𝜂𝑡

𝜂𝑡 | ⋅ 𝐶𝑈,𝒙𝑡+1 (B.2)

≾ 𝐿𝑈 ‖𝒙𝑡+1 − 𝒙𝑡‖ + 𝑜(𝜂𝑡) ⋅ (‖𝒙𝑡+1 − 𝒙⋆‖ + 𝜎) .
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From another hand, it follows that

𝔼‖𝒙𝑡+1 − 𝒙𝑡‖ ≤ 𝜂𝑡𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖
(𝑎)
≤ 𝜂𝑡 [𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖ + 𝐿𝐻‖𝒙𝑡 − 𝒙⋆‖]

≤ 𝜂𝑡 [
𝐿𝐻𝔼‖𝒙𝑡 − 𝒙⋆‖ + sup

𝑡≥0
𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖]

(𝑏)
≾ 𝜂𝑡,

where (𝑎) uses the following result (which mainly follows from Assumption 3.2.3),

𝔼‖𝑯(𝒙𝑡, 𝜉𝑡) − 𝑯(𝒙⋆, 𝜉𝑡)‖ = 𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝑯(𝒙⋆, 𝜉𝑡−1)‖

≤ 𝔼(𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝑯(𝒙⋆, 𝜉𝑡−1)‖𝑝)
1
𝑝

≤ 𝐿𝐻𝔼‖𝒙𝑡 − 𝒙⋆‖,

and (𝑏) uses the following two inequalities,

sup
𝑡≥0

𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖ ≤ sup
𝑡≥0

(𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝)1/𝑝 ≾ 1,

𝔼‖𝒙𝑡 − 𝒙⋆‖ ≤ sup
𝑡≥0

𝑝√𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝 ≾ 1.

Finally, we have

𝔼‖𝝂𝑡‖ ≾ 𝜂𝑡 ⟹ 1
√𝑇

𝑇∑
𝑡=0

𝔼‖𝝂𝑡‖ ≾ 1
√𝑇

𝑇∑
𝑡=0

𝜂𝑡 → 0 as 𝑇 → ∞.

B.2 Proof of Lemma 3.4.2

Proof of Lemma 3.4.2. We analyze the four separate terms sup𝑟∈[0,1] ‖𝝍𝑘(𝑟)‖(0 ≤ 𝑘 ≤ 3)
respectively.

For the partial-sum process of noises By 2 in Lemma 3.4.1, it follows that

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝒖𝑡
𝑤→ 𝑺1/2𝑾 (𝑟).

For 𝝍0 2 in Lemma B.7.1 shows 𝑨𝑛
𝑗 is uniformly bounded. As 𝑇 → ∞,

sup
𝑟∈[0,1]

‖𝝍0(𝑟)‖ = 1
√𝑇 𝜂0

sup
𝑟∈[0,1]

‖𝑨⌊𝑇 𝑟⌋
0 𝑩0𝚫0‖ ≤ 𝐶0

√𝑇 𝜂0
‖𝑩0𝚫0‖ → 0.
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For 𝝍1 Recall that 𝝍1(𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 𝑨⌊𝑇 𝑟⌋

𝑡 (𝒓𝑡 + 𝝂𝑡). Since ‖𝑨𝑛
𝑗 ‖ ≤ 𝐶0 for any 𝑛 ≥ 𝑗 ≥ 0,

it follows that as 𝑇 → ∞,

𝔼 sup
𝑟∈[0,1]

‖𝝍1(𝑟)‖ ≤ 𝐶0

√𝑇
𝔼

𝑇∑
𝑡=0

(‖𝒓𝑡‖ + ‖𝝂𝑡‖) → 0,

where the last inequality uses 1 and 3 in Lemma 3.4.1.

For𝝍2 Recall that𝝍2(𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 (𝑨𝑇

𝑡 − 𝑮−1) 𝒖𝑡 with 𝒖𝑡 amartingale difference. In the

following, we set 𝒛𝑡 = 𝝍2(𝑡/𝑇 ) (indexed by 𝑡 ∈ [𝑇 ]) for simplicity. It is clear that {𝒛𝑡, ℱ𝑡}𝑡∈[𝑇 ]

forms a square integrable martingale difference sequence. As a result {‖𝒛𝑡‖2, ℱ𝑡}𝑡∈[𝑇 ] is a

submartingale due to 𝔼[‖𝒖𝑡‖2|ℱ𝑡−1] ≥ ‖𝔼[𝒖𝑡|ℱ𝑡−1]‖2 = ‖𝒖𝑡−1‖2 from conditional Jensen’s

inequality. By Doob’s maximum inequality for submartingales (which we use to derive the

following (∗) inequality),

𝔼 sup
𝑟∈[0,1]

‖𝝍2(𝑟)‖2
2 = 𝔼 sup

𝑡∈[𝑇 ]
‖𝒛𝑡‖2

2
(∗)
≤ 4𝔼‖𝒛𝑇 ‖2

2

= 4
𝑇

𝑇∑
𝑡=0

𝔼‖ (𝑨𝑇
𝑡 − 𝑮−1) 𝒖𝑡‖2

2

≤ 4 sup
𝑡≥0

𝔼‖𝒖𝑡‖2
2 ⋅ 1

𝑇

𝑇∑
𝑡=0

‖𝑨𝑇
𝑡 − 𝑮−1‖2

2 → 0,

where we use 2 in Lemma B.7.1 and the fact ‖𝑨𝑇
𝑡 −𝑮−1‖ is uniformly bounded by𝐶0+‖𝑮−1‖.

Due to the norm equivalence in ℝ𝑑 , ‖ ⋅ ‖ is equivalent to ‖ ⋅ ‖2 up to universal constants.

For 𝝍3 Recall that 𝝍3(𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 (𝑨

⌊𝑇 𝑟⌋
𝑡 − 𝑨𝑇

𝑡 ) 𝒖𝑡 with 𝒖𝑡 a martingale difference.

Notice that for any 𝑛 ∈ [𝑇 ]
𝑛∑

𝑡=0
(𝑨𝑇

𝑡 − 𝑨𝑛
𝑡 )𝒖𝑡 =

𝑛∑
𝑡=0

𝑇∑
𝑗=𝑛+1

⎛
⎜
⎜
⎝

𝑗∏
𝑖=𝑡+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝜂𝑡𝒖𝑡 =
𝑇∑

𝑗=𝑛+1

𝑛∑
𝑡=0

⎛
⎜
⎜
⎝

𝑗∏
𝑖=𝑡+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝜂𝑡𝒖𝑡

=
𝑇∑

𝑗=𝑛+1

⎛
⎜
⎜
⎝

𝑗∏
𝑖=𝑛+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝑛∑
𝑡=1 (

𝑛∏
𝑖=𝑡+1

𝑩𝑖)
𝜂𝑡𝒖𝑡

= 1
𝜂𝑛+1

𝑨𝑇
𝑛+1𝑩𝑛+1

𝑛∑
𝑡=0 (

𝑛∏
𝑖=𝑡+1

𝑩𝑖)
𝜂𝑡𝒖𝑡.

(B.3)
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From 2 in Lemma B.7.1, ‖𝑨𝑇
𝑛+1𝑩𝑛+1‖ ≤ 𝐶0(1 + ‖𝑮‖) for any 𝑇 ≥ 𝑛 ≥ 0. Hence,

sup
𝑟∈[0,1]

‖𝝍3(𝑟)‖ = sup
𝑛∈[𝑇 ] ‖

1
√𝑇

𝑛∑
𝑡=0

(𝑨𝑛
𝑡 − 𝑨𝑇

𝑡 ) 𝒖𝑡‖
(3.22)

≾ sup
𝑛∈[𝑇 ] ‖

1
√𝑇

1
𝜂𝑛+1

𝑛∑
𝑡=0 (

𝑛∏
𝑖=𝑡+1

𝑩𝑖)
𝜂𝑡𝒖𝑡‖

= 𝑜ℙ(1), (B.4)

where the last inequality uses Lemma 3.4.3. We then complete the proof.

B.3 Proof of Lemma 3.4.3

For the proof in the part, we will consider random variables (or matrices) in the complex

field ℂ. Hence, we will introduce new notations for them. For a vector 𝒗 ∈ ℂ (or a matrix

𝑼 ∈ ℂ𝑑×𝑑), we use 𝒗H (or 𝑼H) to denote its Hermitian transpose or conjugate transpose. For

any two vectors 𝒗, 𝒖 ∈ ℂ, with a slight abuse of notation, we use ⟨𝒗, 𝒖⟩ = 𝒗H𝒖 to denote the

inner product in ℂ. For simplicity, for a complex matrix 𝑼 ∈ ℂ𝑑×𝑑 , we use ‖𝑼‖ to denote

the its operator norm introduced by the complex inner product ⟨⋅, ⋅⟩. When 𝑼 ∈ ℝ𝑑×𝑑 , ‖𝑼‖
is reduced to the spectrum norm.

Proof of Lemma 3.4.3. We provide the proof only for the asymptotic result; for the weak con-

vergence rate see Lemma D.2.2 and its proof. To simplify notation, we say a random sequence

{𝒚𝑡}𝑡≥0 is uniformly ignorable if
1

√𝑇
sup

𝑡∈[0,𝑇 ]

‖𝒚𝑡+1‖
𝜂𝑡+1

𝑝→ 0 when 𝑇 → ∞. Our target is equivalent

to show the defined {𝒚𝑡}𝑡≥0 is uniformly ignorable.

We are going to prove the lemma in two steps. In the first step, we prove a weaker version

in Lemma B.3.1 under an additional assumption that requires 𝑮 is diagonalizable. The proof

of Lemma B.3.1 is deferred in Section B.4. Then, in the second step, we remove the added

assumption via a refined analysis that relies on induction to reduce the general Hurwitz case

to the established diagonalizable case by using the Jordan decomposition of 𝑮.

Lemma B.3.1. Under the same condition of Lemma 3.4.3, if we additionally assume 𝑮 is

diagonalizable, then
1

√𝑇
sup

0≤𝑡≤𝑇

‖𝒚𝑡+1‖
𝜂𝑡+1

𝑝→ 0.

Lemma B.3.2 serves a bridge to connect the general Hurwitz case with the diagonalizable

case. Its proof is provided in Section B.6.
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LemmaB.3.2. Let {𝜂𝑡}𝑡≥0 be the step size satisfying Assumption 3.2.5 and 𝜆 ∈ ℂ be a complex

number with positive real part Re(𝜆) > 0. Let {𝜔𝑡}𝑡≥0 ⊆ ℂ be a sequence of random variables

taking value in the complex field and 1
√𝑇

sup
𝑡∈[0,𝑇 ]

|𝜔𝑡|
𝜂𝑡

𝑝→ 0 as 𝑇 → ∞. Consider the sequence

{𝑧𝑡}𝑡≥0 defined recursively as following: 𝑧0 = 0 and

𝑧𝑡+1 = 𝑧𝑡 − 𝜆𝜂𝑡𝑧𝑡 + 𝜂𝑡𝜔𝑡.

Then when 𝑇 → ∞, we have {𝑧𝑡}𝑡≥0 is also uniformly ignorable, i.e.,

1
√𝑇

sup
0≤𝑡≤𝑇

|𝑧𝑡+1|
𝜂𝑡+1

𝑝→ 0.

By viewing 𝑮 ∈ ℝ𝑑×𝑑 as a complex matrix, it has the Jordan decomposition with the

Jordan canonical form denoted by 𝑮 = 𝑽 𝑱𝑽 −1 = 𝑽 diag{𝑱 1, ⋯ ,𝑱 𝑟}𝑽 −1, where 𝑽 is the

non-singular matrix and {𝑱 𝑖}1≤𝑖≤𝑟 collects all Jordan blocks. Recall that {𝒚𝑡}𝑡≥0 is defined

in (3.24). Let 𝒚̃𝑡 = 𝑽 −1𝒚𝑡, 𝜺̃𝑡 = 𝑽 −1𝜺𝑡 be transformed vectors. Then the recursion for-

mula (3.24) becomes

𝒚̃𝑡+1 = (𝑰 − 𝜂𝑡𝑱 )𝒚̃𝑡 + 𝜂𝑡𝜺̃𝑡.

Without loss of generality, we assume that 𝑱 consists of only one Jordan block, i.e.

𝑱 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜆 1
𝜆 ⋱

⋱ 1
𝜆

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.5)

with 𝜆 ∈ ℂ and Re(𝜆) > 0.

Let (𝒚̃𝑡)𝑘 denote the 𝑘-th coordinate of the vector 𝒚̃𝑡 and so does (𝜺̃𝑡)𝑘. Then, in order to

prove that {𝒚̃𝑡}𝑡≥0 is uniformly ignorable, we only needs to prove that each of its coordinates

{(𝒚̃𝑡)𝑘}𝑡≥0(1 ≤ 𝑘 ≤ 𝑑) is uniformly ignorable. Notice that the last coordinate process evolves
as (𝒚̃𝑡+1)𝑑 = (1−𝜂𝑡𝜆)(𝒚̃𝑡)𝑑+𝜂𝑡(𝜺̃𝑡)𝑑 . LemmaB.3.1 implies that {(𝒚̃𝑡)𝑑}𝑡≥1, as a one-dimensional

process, is uniformly ignorable. We are going to finish the proof by induction. Suppose for

the coordinates 𝑘, 𝑘 + 1, ⋯ , 𝑑, we already have {(𝒚̃𝑡)𝑘}𝑡≥0 is uniformly ignorable, now we are

going to prove {(𝒚̃𝑡)𝑘−1}𝑡≥0 is also uniformly ignorable.

Using the structure of 𝑱 in (B.5), we have

(𝒚̃𝑡+1)𝑘−1 = (1 − 𝜆𝜂𝑡)(𝒚̃𝑡)𝑘−1 − 𝜂𝑡(𝒚̃𝑡)𝑘 + 𝜂𝑡(𝜺̃𝑡)𝑘−1. (B.6)
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To facilitate analysis, we construct a surrogate sequence {(𝒚̂𝑡)𝑘−1} defined by

(𝒚̂𝑡+1)𝑘−1 = (1 − 𝜆𝜂𝑡)(𝒚̂𝑡)𝑘−1 + 𝜂𝑡(𝜺̃𝑡)𝑘−1. (B.7)

Again, by Lemma B.3.1, {(𝒚̂𝑡)𝑘−1}𝑡≥0 is uniformly ignorable. Let 𝚫̃𝑡 ∶= (𝒚̃𝑡)𝑘−1 − (𝒚̂𝑡)𝑘−1 be

their difference. From (B.6) − (B.7), it follows that

𝚫̃𝑡+1 = (1 − 𝜆𝜂𝑡)𝚫̃𝑡 − 𝜂𝑡(𝒚̃𝑡)𝑘.

Thanks to Lemma B.3.2 and our hypothesis, {𝚫̃𝑡}𝑡≥0 is uniformly ignorable. Finally, putting

the pieces together, we have

1
√𝑇

sup
𝑡∈[0,𝑇 ]

|(𝒚̃𝑡+1)𝑘−1|
𝜂𝑡+1

= 1
√𝑇

sup
𝑡∈[0,𝑇 ]

|(𝒚̂𝑡+1)𝑘−1 + 𝚫̃𝑡+1|
𝜂𝑡+1

≤ 1
√𝑇

sup
𝑡∈[0,𝑇 ]

|(𝒚̂𝑡+1)𝑘−1|
𝜂𝑡+1

+ 1
√𝑇

sup
𝑡∈[0,𝑇 ]

|𝚫̃𝑡+1|
𝜂𝑡+1

𝑝⟶ 0.

B.4 Proof of Lemma B.3.1

Proof of Lemma B.3.1. The proof is divided into three steps.

Step one: Divide the time interval Given a positive integer 𝑛, we separate the time interval
[0, 𝑇 ] uniformly into 𝑛 portions with ℎ𝑘 = [

𝑘
𝑛 (𝑇 + 1)] (𝑘 = 0, 1, … , 𝑛) the 𝑘-th endpoint.

The choice of 𝑛 is independent of 𝑇 , which implies that lim𝑇 →∞ ℎ𝑘 = ∞ for any 𝑘 ≥ 1. Let
𝑐′

0 ∶= 𝑐0 exp(𝑐𝜂0) with the constants 𝑐, 𝑐0 defined in 1 in Lemma B.7.1. For any 𝜀 > 0, we
define an event 𝒜 whose complement is

𝒜 𝑐 ∶=
{

∃0 ≤ 𝑘 ≤ 𝑛 s.t.
𝑐′

0

√𝑇 ‖
𝒚ℎ𝑘

𝜂ℎ𝑘 ‖
≥ 𝜀

}
. (B.8)

We claim that lim sup
𝑇 →∞

ℙ(𝒜 𝑐) = 0. For one thing,

𝔼‖𝒚𝑡+1‖2 = 𝔼
‖
‖
‖‖

𝑡∑
𝑗=0

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

(𝑰 − 𝜂𝑖𝑮)
⎞
⎟
⎟
⎠

𝜂𝑗𝜺𝑗

‖
‖
‖‖

2

=
𝑡∑

𝑗=0
𝔼 ‖𝑿

𝑡
𝑗+1𝜂𝑗𝜺𝑗‖

2

≤ sup
𝑗≥0

𝔼‖𝜺𝑗‖2 ⋅
𝑡∑

𝑗=0
𝜂2

𝑗 exp
⎛
⎜
⎜
⎝
−𝑐

𝑡∑
𝑡=𝑗+1

𝜂𝑖
⎞
⎟
⎟
⎠

(𝑎)
≤ sup

𝑗≥0
𝔼‖𝜺𝑗‖2 ⋅ 𝑐1𝜂𝑡

(𝑏)
≤ 𝑐2𝜂𝑡,

(B.9)
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where (𝑎) follows from 4 in Lemma B.7.1 and (𝑏) follows by setting 𝑐2 = 𝑐1 ⋅ sup𝑗≥0 𝔼‖𝜺𝑗‖2.

For another thing, by the union bound and Markov’s inequality,

ℙ(𝒜 𝑐) ≤
𝑛∑

𝑘=0
ℙ

(
𝑐′

0

√𝑇 ‖
𝒚ℎ𝑘

𝜂ℎ𝑘 ‖
≥ 𝜀

)
≤

(𝑐′
0)2

𝑇 𝜀2

𝑛∑
𝑘=0

𝔼
‖
𝒚ℎ𝑘

𝜂ℎ𝑘 ‖

2
(𝑎)
≤

𝑐2(𝑐′
0)2

𝑇 𝜀2

𝑛∑
𝑘=0

1
𝜂ℎ𝑘

(𝑏)
≤

𝑐2(𝑐′
0)2(𝑛 + 1)
𝜂𝑇 𝑇 𝜀2 .

(B.10)

Here (𝑎) uses the inequality (B.9) and (𝑏) is because 𝑡𝜂𝑡 → ∞. So, when 𝑇 → ∞, ℙ(𝒜 𝑐) → 0
due to 𝑇 𝜂𝑇 → ∞.

Using the notation in Lemma B.7.1, we denote 𝑿𝑛
𝑗 ∶=

𝑛∏
𝑖=𝑗

(𝑰 − 𝜂𝑖𝑮). Clearly 𝑿𝑛
𝑗 ’s are

exchangeable since they are polynomials of the same matrix𝑮. Hence,𝑿𝑡
𝑗+1 = (𝑿𝑇

𝑡 )−1𝑿𝑇
𝑗+1.

From (3.24), if 𝑡 ∈ [ℎ𝑘, ℎ𝑘+1) for some 𝑘 ∈ [𝑛], we then have

𝒚𝑡+1 =
𝑡∑

𝑗=0
𝑿𝑡

𝑗+1𝜂𝑗𝜺𝑗 = (𝑿𝑇
𝑡+1)−1

𝑡∑
𝑗=0

𝑿𝑇
𝑗+1𝜂𝑗𝜺𝑗

= (𝑿𝑇
𝑡+1)−1 ⎡

⎢
⎢
⎣

ℎ𝑘−1∑
𝑗=0

𝑿𝑇
𝑗+1𝜂𝑗𝜺𝑗 +

𝑡∑
𝑗=ℎ𝑘

𝑿𝑇
𝑗+1𝜂𝑗𝜺𝑗

⎤
⎥
⎥
⎦

= 𝑿𝑡
ℎ𝑘
𝒚ℎ𝑘 +

𝑡∑
𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗 .

When 𝑇 is sufficiently large (𝑇 ≥ 𝑛𝑗0 is sufficient with 𝑗0 defined in 3 of Lemma B.7.1), we

have

ℙ
(

1
√𝑇

sup
0≤𝑡≤𝑇

‖𝒚𝑡+1‖
𝜂𝑡+1

≥ 2𝜀; 𝒜
)

≤
𝑛−1∑
𝑘=0

ℙ
(

1
√𝑇

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

‖𝒚𝑡+1‖
𝜂𝑡+1

≥ 2𝜀; 𝒜
)

≤
𝑛−1∑
𝑘=0

ℙ
⎛
⎜
⎜
⎝

1
√𝑇

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

⎡
⎢
⎢
⎣
‖𝑿

𝑡
ℎ𝑘
𝒚ℎ𝑘‖ +

‖
‖
‖‖

𝑡∑
𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

⎤
⎥
⎥
⎦

≥ 2𝜀; 𝒜
⎞
⎟
⎟
⎠

≤
𝑛−1∑
𝑘=0

ℙ
(

1
√𝑇

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

𝜂ℎ𝑘

𝜂𝑡+1 ‖𝑿
𝑡
ℎ𝑘‖ ‖

𝒚ℎ𝑘

𝜂ℎ𝑘 ‖
≥ 𝜀; 𝒜

)

+
𝑛−1∑
𝑘=0

ℙ
⎛
⎜
⎜
⎝

1
√𝑇

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

≥ 𝜀; 𝒜
⎞
⎟
⎟
⎠
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(𝑎)
≤

𝑛−1∑
𝑘=0

ℙ
⎛
⎜
⎜
⎝

1
√𝑇

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

≥ 𝜀; 𝒜
⎞
⎟
⎟
⎠

≤
𝑛−1∑
𝑘=0

ℙ
⎛
⎜
⎜
⎝

1
√𝑇

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

≥ 𝜀
⎞
⎟
⎟
⎠

∶=
𝑛−1∑
𝑘=0

𝒫𝑘. (B.11)

Here (𝑎) uses the following result. When 𝑘 ≥ 1, due to ℎ𝑘 ≥ ⌈𝑘
𝑛 (𝑇 +1)⌉, ℎ𝑘 could be arbitrarily

large with increasing 𝑇 and fixed 𝑛. From 1 and 3 of Lemma B.7.1, when ℎ𝑘 ≥ 𝑗0,

𝜂ℎ𝑘

𝜂𝑡+1 ‖𝑿
𝑡
ℎ𝑘‖ ≤ exp

⎛
⎜
⎜
⎝

𝑐
2

𝑡+1∑
𝑡=ℎ𝑘

𝜂𝑡
⎞
⎟
⎟
⎠

⋅ 𝑐0 exp
⎛
⎜
⎜
⎝
−𝑐

𝑡∑
𝑡=ℎ𝑘

𝜂𝑡
⎞
⎟
⎟
⎠

≤ 𝑐0 exp(𝑐𝜂0) = 𝑐′
0,

which implies sup𝑡∈[ℎ𝑘,ℎ𝑘+1)
𝜂ℎ𝑘
𝜂𝑡+1 ‖𝑿

𝑡
ℎ𝑘‖ ≤ 𝑐′

0 for any 𝑘 ≥ 1. Notice 𝑐′
0

√𝑇 ‖
𝒚ℎ𝑘
𝜂ℎ𝑘 ‖ ≥ 𝜀 is impossi-

ble on the event 𝒜 . We then have

ℙ
(

1
√𝑇

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

𝜂ℎ𝑘

𝜂𝑡+1 ‖𝑿
𝑡
ℎ𝑘‖ ‖

𝒚ℎ𝑘

𝜂ℎ𝑘 ‖
≥ 𝜀; 𝒜

)
≤ ℙ

(
𝑐′

0

√𝑇 ‖
𝒚ℎ𝑘

𝜂ℎ𝑘 ‖
≥ 𝜀; 𝒜

)
= 0.

When 𝑘 = 0, the above probability is clearly zero since 𝒚0 = 0.

Step two: Bound each 𝒫𝑘 The proof of Lemma B.4.1 can be found in Section B.5.

Lemma B.4.1. Assume 𝑇 ≥ 𝑛. For each 𝑘 ∈ [𝑛],

𝒫𝑘 ∶= ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

≥ √𝑇 𝜀
⎞
⎟
⎟
⎠

≤ 𝑝𝑝𝐶𝑝
3 ⋅ 𝑛− 𝑝

2 𝜀−𝑝

where 𝐶3 is a positive constant depending on the step sizes, 𝑮, 𝑑 and sup𝑡≥0
𝑝√𝔼‖𝜺𝑡‖𝑝. In

short, 𝐶3 has nothing to do with 𝑝.

Step three: Put pieces together Therefore,

ℙ
(

1
√𝑇

sup
0≤𝑡≤𝑇

‖𝒚𝑡+1‖
𝜂𝑡+1

≥ 2𝜀
)

≤ ℙ
(

1
√𝑇

sup
0≤𝑡≤𝑇

‖𝒚𝑡+1‖
𝜂𝑡+1

≥ 2𝜀; 𝒜
)

+ ℙ(𝒜 𝑐)

(𝑎)
≤

𝑛−1∑
𝑘=0

𝒫𝑘 +
𝑐2(𝑐′

0)2(𝑛 + 1)
𝜂𝑇 𝑇 𝜀2

(𝑏)
≾ 𝑝𝑝𝐶𝑝

3 𝜀−𝑝𝑛− 𝑝
2 +1 + 𝑛

𝜂𝑇 𝑇 𝜀2 ,

where (𝑎) uses (B.11) and (B.10) and (𝑏) uses Lemma B.4.1. As a result, for any 𝜀 > 0,

lim sup
𝑇 →∞

ℙ
(

1
√𝑇

sup
0≤𝑡≤𝑇

‖𝒚𝑡+1‖
𝜂𝑡+1

≥ 2𝜀
)

≾ 𝑝𝑝𝐶𝑝
3 𝜀−𝑝𝑛− 𝑝

2 +1.
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Since 𝑝 > 2 and the probability of the left-hand side has nothing to do with 𝑛, letting 𝑛 → ∞
concludes the proof.

B.5 Proof of Lemma B.4.1

Proof of Lemma B.4.1. Readers should keep in mind that we only have 𝑝 > 2 in this part.

Without loss of generality, we fix 𝑘 ∈ [𝑛].

Step one: Diagonalization Since𝑮 is diagonalizable, there exist two non-singular matrices

𝑼 ,𝑫 ∈ ℂ𝑑×𝑑 that satisfy 𝑮 = 𝑼𝑫𝑼−1 and 𝑫 is a diagonal matrix with each entry the

eigenvalue of 𝑮. 1 Further, 𝑫 = diag({𝜆𝑖(𝑮)}𝑖∈[𝑑]) and Re𝜆𝑖(𝑮) > 0. Therefore, denote

𝑿̃𝑡
𝑗 ∶=

𝑡∏
𝑖=𝑗

(𝑰 − 𝜂𝑖𝑫) and thus we have

𝑼−1
𝑡∑

𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗 =

𝑡∑
𝑗=ℎ𝑘

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

(𝑰 − 𝜂𝑖𝑫)
⎞
⎟
⎟
⎠

𝜂𝑗𝑼−1𝜺𝑗 =
𝑡∑

𝑗=ℎ𝑘

𝑿̃𝑡
𝑗+1𝜂𝑗𝑼−1𝜺𝑗 .

Hence,

𝒫𝑘 = ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=ℎ𝑘

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

≥ √𝑇 𝜀
⎞
⎟
⎟
⎠

≤ ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=ℎ𝑘

𝑿̃𝑡
𝑗+1𝜂𝑗𝑼−1𝜺𝑗

‖
‖
‖‖

≥ √𝑇 𝜀
‖𝑼‖

⎞
⎟
⎟
⎠

(𝑎)
≤

𝑑∑
𝑖=1

ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

|
|
|
|

⎛
⎜
⎜
⎝

𝑡∑
𝑗=ℎ𝑘

𝑿̃𝑡
𝑗+1𝜂𝑗𝑼−1𝜺𝑗

⎞
⎟
⎟
⎠𝑖

|
|
|
|

≥ 𝜀
‖𝑼‖√

𝑇
𝑑

⎞
⎟
⎟
⎠

(𝑏)=
𝑑∑

𝑖=1
ℙ

⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

|
|
||

𝑡∑
𝑗=ℎ𝑘

(𝑿̃𝑡
𝑗+1)𝑖,𝑖𝜂𝑗 (𝑼−1𝜺𝑗)𝑖

|
|
||

≥ 𝜀
‖𝑼‖√

𝑇
𝑑

⎞
⎟
⎟
⎠

∶=
𝑑∑

𝑖=1
𝒫𝑘,𝑖,

where (𝑎) uses the notation (𝒗)𝑖 denotes the 𝑖-th coordinate of the vector 𝒗 and | ⋅ | denotes
the norm for complex numbers and (𝑏) uses the fact that 𝑮 is a diagonal matrix. The above

analysis shows we only need to focus on each coordinate thanks to diagonalization.

Step two: Establish tail probability bound for each coordinate Without loss of generality,

we fix any coordinate 𝑖 ∈ [𝑑]. Let 𝜆 ∶= 𝜆𝑖(𝑮) denotes the 𝑖-th eigenvalue for short (only in

1 In this proof, with a slight abuse of notation, we use𝑼 to denote a non-singular complexmatrix. Readers should distinguish
it from the bivariate function 𝑼 (𝒙, 𝜉) defined in Lemma 3.2.2.
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this part). With a little abuse of notation, we set 𝑋𝑡
𝑗+1 ∶= (𝑿̃𝑡

𝑗+1)𝑖,𝑖 and 𝜀𝑗 = (𝑼−1𝜺𝑗)𝑖, both

complex numbers and 𝑋𝑡
𝑗+1 =

𝑡∏
𝑖=𝑗+1

(𝑰 − 𝜂𝑖𝜆). Hence, 𝒫𝑘 ≤ ∑𝑑
𝑖=1 𝒫𝑘,𝑖 where

𝒫𝑘,𝑖 = ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

|
|
||

𝑡∑
𝑗=ℎ𝑘

𝑋𝑡
𝑗+1𝜂𝑗𝜀𝑗

|
|
||

≥ 𝜀
‖𝑼‖√

𝑇
𝑑

⎞
⎟
⎟
⎠

= ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

|
|
||
(𝑋𝑇

𝑡+1)−1
𝑡∑

𝑗=ℎ𝑘

𝑋𝑇
𝑗+1𝜂𝑗𝜀𝑗

|
|
||

≥ 𝜀
‖𝑼‖√

𝑇
𝑑

⎞
⎟
⎟
⎠

(𝑎)= ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
𝜂𝑡+1

|(𝑋𝑇
𝑡+1)−1|

|
|
||

𝑡∑
𝑗=ℎ𝑘

𝑋𝑇
𝑗+1𝜂𝑗𝜀𝑗

|
|
||

≥ 𝜀
‖𝑼‖√

𝑇
𝑑

⎞
⎟
⎟
⎠

(𝑏)= ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
|𝜂𝑡+1𝑋𝑇

𝑡+1|

|
|
||

𝑡∑
𝑗=ℎ𝑘

𝑋𝑇
𝑗+1𝜂𝑗𝜀𝑗

|
|
||

≥ 𝜀
‖𝑼‖√

𝑇
𝑑

⎞
⎟
⎟
⎠

= ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ𝑘,ℎ𝑘+1)

1
|𝜂𝑡+1𝑋𝑇

𝑡+1|
𝑝

|
|
||

𝑡∑
𝑗=ℎ𝑘

𝑋𝑇
𝑗+1𝜂𝑗𝜀𝑗

|
|
||

𝑝

≥
(

𝜀
‖𝑼‖√

𝑇
𝑑 )

𝑝⎞
⎟
⎟
⎠

, (B.12)

where (𝑎) follows from |𝑎𝑏| = |𝑎| ⋅ |𝑏| for any 𝑎, 𝑏 ∈ ℂ; and (𝑏) follows from |𝑎−1| ⋅ |𝑎| = 1
for any 𝑎 ≠ 0 ∈ ℂ.

Lemma B.5.1 (Chow’s inequality[170]). Let {𝑌𝑡}𝑡≥0 ⊆ ℝ be a sub-martingale and {𝑏𝑡}𝑡≥0 be

a non-increasing sequence. Denote 𝑌 +
𝑡 = max(0, 𝑌𝑡). Then for any 𝜀 > 0, we have

𝜀 ⋅ ℙ
(

sup
0≤𝑡≤𝑇

𝑏𝑡𝑌𝑡 ≥ 𝜀
)

≤
𝑇 −1∑
𝑡=0

(𝑏𝑡 − 𝑏𝑡+1)𝔼𝑌 +
𝑡 + 𝑏𝑇 𝔼𝑌 +

𝑇 .

Lemma B.5.2 (Burkholder’s inequalities[172]). Fix any 𝑝 ≥ 2. For ℂ-valued martingale dif-

ference 𝑋1, ⋯ , 𝑋𝑇 , each with finite 𝐿𝑝-norm, one has

𝔼
|
|
||

𝑇∑
𝑡=1

𝑋𝑡

|
|
||

𝑝

≤ 𝐵𝑝
𝑝𝔼

⎛
⎜
⎜
⎝

𝑇∑
𝑡=1

|𝑋𝑡|2
⎞
⎟
⎟
⎠

𝑝
2

where 𝐵𝑝 = max{𝑝 − 1, 1
𝑝−1} is a universal constant depending only on 𝑝. It together with

Jensen’s inequality implies

𝔼
|
|
||

𝑇∑
𝑡=1

𝑋𝑡

|
|
||

𝑝

≤ 𝐵𝑝
𝑝𝑇

𝑝
2 −1

𝑇∑
𝑡=1

𝔼|𝑋𝑡|𝑝. (B.13)

Based on (B.12), wewill use Chow’s inequality to bound each𝒫𝑘,𝑖’s. We first check (B.12)
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satisfies the conditions in Lemma B.5.1. First, 𝜂𝑡+1 |𝑋𝑇
𝑡+1| is non-decreasing for when 𝑡 is suf-

ficiently large. This is because

𝜂𝑡 |𝑋𝑇
𝑡 | = 𝜂𝑡

𝜂𝑡+1
|1 − 𝜂𝑡𝜆| ⋅ 𝜂𝑡+1 |𝑋𝑇

𝑡+1| ≤ 𝜂𝑡+1 |𝑋𝑇
𝑡+1| , (B.14)

for which we use

𝜂𝑡
𝜂𝑡+1

|1 − 𝜂𝑡𝜆| = (1+𝑜(𝜂𝑡))√(1 − 𝜂𝑡Re𝜆)2 + 𝜂2
𝑡 (Im𝜆)2 = (1+𝑜(𝜂𝑡))√1 − 2𝜂𝑡Re𝜆 + 𝑂(𝜂2

𝑡 ) ≤ 1,

when 𝜂𝑡 is sufficiently small, or equivalently, 𝑡 is sufficiently large, say larger than 𝑡′
0. Hence,

𝑏𝑡 ∶= |𝜂𝑡+1𝑋𝑇
𝑡+1|

−𝑝 is non-increasing. Second, let 𝑌𝑡 ∶= |
∑𝑡

𝑗=ℎ𝑘
𝑋𝑇

𝑗+1𝜂𝑗𝜀𝑗|
𝑝
. It is easy to

check 𝑌𝑡 is a sub-martingale satisfying 𝔼[𝑌𝑡|ℱ𝑡−1] ≥ 𝑌𝑡−1. What’s more, (B.13) implies 𝔼𝑌𝑡 is

bounded by

𝔼𝑌𝑡 ≤ 𝐵𝑝
𝑝(𝑡 − ℎ𝑘 + 1)

𝑝
2 −1

𝑡∑
𝑗=ℎ𝑘

𝔼 |𝑋
𝑇
𝑗+1𝜂𝑗𝜀𝑗|

𝑝

≤ 𝐵𝑝
𝑝 (

𝑇
𝑛 )

𝑝
2 −1 𝑡∑

𝑗=ℎ𝑘
|𝑋

𝑇
𝑗+1𝜂𝑗|

𝑝
𝔼 |𝜀𝑗|

𝑝

≤ 𝑝𝑝𝐶𝑝
3 ⋅ (

𝑇
𝑛 )

𝑝
2 −1 𝑡∑

𝑗=ℎ𝑘
|𝑋

𝑇
𝑗+1𝜂𝑗+1|

𝑝
= 𝐶𝑝

3 ⋅ (
𝑇
𝑛 )

𝑝
2 −1 𝑡∑

𝑗=ℎ𝑘

1
𝑏𝑗

, (B.15)

where 𝐶3 ∶= 2 ⋅ sup𝑡≥0,𝑖∈[𝑑]
𝑝√𝔼|𝜀𝑡|𝑝 is a constant depending only on 𝑼 and sup𝑡≥0

𝑝√𝔼‖𝜺𝑡‖𝑝.

Hence, by Lemma B.5.1 and (B.15), it follows that

𝒫𝑘,𝑖 ≤
(

𝜀
‖𝑼‖√

𝑇
𝑑 )

−𝑝

⋅ 𝑝𝑝𝐶𝑝
3 (

𝑇
𝑛 )

𝑝
2 −1 ⎡

⎢
⎢
⎣

ℎ𝑘+1−2∑
𝑡=ℎ𝑘

(𝑏𝑡 − 𝑏𝑡+1)
𝑡∑

𝑗=ℎ𝑘

1
𝑏𝑗

+ 𝑏ℎ𝑘+1−1

ℎ𝑘+1−1∑
𝑗=ℎ𝑘

1
𝑏𝑗

⎤
⎥
⎥
⎦

=
(

√𝑑‖𝑼‖
√𝑇 𝜀 )

𝑝

⋅ 𝑝𝑝𝐶𝑝
3 (

𝑇
𝑛 )

𝑝
2 −1 ⎡

⎢
⎢
⎣

ℎ𝑘+1−2∑
𝑗=ℎ𝑘

1
𝑏𝑗

ℎ𝑘+1−2∑
𝑡=𝑗

(𝑏𝑡 − 𝑏𝑡+1) + 𝑏ℎ𝑘+1−1

ℎ𝑘+1−1∑
𝑗=ℎ𝑘

1
𝑏𝑗

⎤
⎥
⎥
⎦

≤
(

√𝑑‖𝑼‖
√𝑇 𝜀 )

𝑝

⋅ 𝑝𝑝𝐶𝑝
3 (

𝑇
𝑛 )

𝑝
2 = 𝑝𝑝𝐶𝑝

3 (
√𝑑‖𝑼‖

√𝑛𝜀 )

𝑝

,

which implies that for any 𝑘 ≥ 1,

𝒫𝑘 ≤
∑
𝑖∈[𝑑]

𝒫𝑘,𝑖 ≤ 𝑝𝑝𝐶𝑝
3 𝑑1+ 𝑝

2 ⋅
(

‖𝑼‖
√𝑛𝜀)

𝑝

.

For 𝑘 = 0, in order to establish (B.14), we can follow the same argument of bounding each
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𝒫𝑘’s by noticing

𝒫0 = ℙ
⎛
⎜
⎜
⎝

sup
𝑡∈[ℎ0,ℎ1)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=ℎ0

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

≥ √𝑇 𝜀
⎞
⎟
⎟
⎠

≤ ℙ
⎛
⎜
⎜
⎝
sup

𝑡∈[0,𝑡′
0)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=0

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

≥ 0.5√𝑇 𝜀
⎞
⎟
⎟
⎠

+ ℙ
⎛
⎜
⎜
⎝
‖𝑿

𝑡′
0

0 ‖ sup
𝑡∈[𝑡′

0,ℎ1)

1
𝜂𝑡+1

‖
‖
‖
‖‖

𝑡∑
𝑗=𝑡′

0

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖
‖‖

≥ 0.5√𝑇 𝜀
⎞
⎟
⎟
⎠

≤ 2𝑝

𝑇
𝑝
2 𝜀𝑝

⋅ 𝔼
⎡⎢⎢⎣
sup

𝑡∈[0,𝑡′
0)

1
𝜂𝑡+1

‖
‖
‖‖

𝑡∑
𝑗=0

𝑿𝑡
𝑗+1𝜂𝑗𝜺𝑗

‖
‖
‖‖

⎤⎥⎥⎦

𝑝

+ 𝑝𝑝𝐶𝑝
3 2𝑝

‖𝑿
𝑡′
0

0 ‖
𝑝

𝑑1+ 𝑝
2 ⋅

(
‖𝑼‖
√𝑛𝜀)

𝑝

≤ 𝑝𝑝𝐶𝑝
3 𝑛− 𝑝

2 𝜀−𝑝,

where the last inequality redefines 𝐶3 by enlarging the original 𝐶3 and 𝑇 ≥ 𝑛. Note that the
moment quantity in the first term, ‖𝑿𝑡′

0
0 ‖, 𝑡′

0, ‖𝑼‖ depends on 𝑮, {𝜂𝑡}𝑡≥0. 𝐶3 is a quantity that

depends on 𝑮, 𝑑 and sup𝑡≥0
𝑝√𝔼‖𝜺𝑡‖𝑝.

B.6 Proof of Lemma B.3.2

Proof of Lemma B.3.2. By definition, we have that

𝑧𝑡+1 =
𝑡∑

𝑗=0

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

(1 − 𝜆𝜂𝑖)
⎞
⎟
⎟
⎠

𝜂𝑗𝜔𝑗 .

The last equation implies that

1
√𝑇

sup
𝑡∈[0,𝑇 ]

|𝑧𝑡+1|
𝜂𝑡

= 1
√𝑇

sup
𝑡∈[0,𝑇 ]

1
𝜂𝑡

|
|
||

𝑡∑
𝑗=0

𝑡∏
𝑖=𝑗+1

(1 − 𝜆𝜂𝑗)𝜂𝑗𝜔𝑗

|
|
||

≤ 1
√𝑇

sup
𝑡∈[0,𝑇 ]

1
𝜂𝑡

𝑡∑
𝑗=0

𝑡∏
𝑖=𝑗+1

𝜂𝑗|1 − 𝜆𝜂𝑗||𝜔𝑗|

= sup
𝑡∈[0,𝑇 ]

1
𝜂𝑡

𝑡∑
𝑗=0

𝜂2
𝑗

𝑡∏
𝑖=𝑗+1

|1 − 𝜆𝜂𝑗| ×
|𝜔𝑗|

𝜂𝑗√𝑇

≤ sup
𝑡∈[0,𝑇 ]

1
𝜂𝑡

𝑡∑
𝑗=0

𝜂2
𝑗

𝑡∏
𝑖=𝑗+1

|1 − 𝜆𝜂𝑗| × sup
𝜏∈[0,𝑡]

|𝜔𝜏|
𝜂𝜏√𝑇
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≤
⎛
⎜
⎜
⎝
sup

𝑡∈[0,𝑇 ]

1
𝜂𝑡

𝑡∑
𝑗=0

𝜂2
𝑗

𝑡∏
𝑖=𝑗+1

|1 − 𝜆𝜂𝑗|
⎞
⎟
⎟
⎠

×
(

sup
𝜏∈[0,𝑇 ]

|𝜔𝜏|
𝜂𝜏√𝑇 )

.

The fact that 𝜆 has a positive real part implies when 𝑡 is sufficiently large, we have

|1−𝜆𝜂𝑡| = √(1 − Re(𝜆)𝜂𝑡)2 + Im(𝜆)2𝜂2
𝑡 = √1 − 2Re(𝜆)𝜂𝑡 + |𝜆|2𝜂2

𝑡 ≾ 1−Re(𝜆)𝜂𝑡 ≾ exp (−Re(𝜆)𝜂𝑡) .

By 4 in Lemma B.7.1, there exists 𝑐1 > 0 such that

sup
𝑡∈[0,𝑇 ]

1
𝜂𝑡

𝑡∑
𝑗=0

𝜂2
𝑗

𝑡∏
𝑖=𝑗+1

|1 − 𝜆𝜂𝑗| ≤ 𝑐1.

As a result, we have

1
√𝑇

sup
𝑡∈[0,𝑇 ]

|𝑧𝑡+1|
𝜂𝑡

≤
⎛
⎜
⎜
⎝
sup

𝑡∈[0,𝑇 ]

1
𝜂𝑡

𝑡∑
𝑗=0

𝜂2
𝑗

𝑡∏
𝑖=𝑗+1

|1 − 𝜆𝜂𝑗|
⎞
⎟
⎟
⎠

×
(

sup
𝑡∈[0,𝑇 ]

|𝜔𝑡|
𝜂𝑡√𝑇 )

≤ 𝑐1 ×
(

sup
𝑡∈[0,𝑇 ]

|𝜔𝑡|
𝜂𝑡√𝑇 )

.

We complete the proof by using the condition that 1
√𝑇

sup
𝑡∈[0,𝑇 ]

|𝜔𝑡|
𝜂𝑡

𝑝→ 0 as 𝑇 → ∞ and 𝜂𝑡−𝜂𝑡+1 =

𝜂𝑡𝑜(𝜂𝑡).

B.7 Properties of Recursion Matrices

Lemma B.7.1. Recall that 𝑩𝑖 ∶= 𝑰 − 𝜂𝑖𝑮 and −𝑮 is Hurwitz (i.e., Re𝜆𝑖(𝑮) > 0 for all

𝑖 ∈ [𝑑]). For any 𝑛 ≥ 𝑗, define 𝑿𝑛
𝑗 and 𝑨𝑛

𝑗 as

𝑿𝑛
𝑗 ∶=

𝑛∏
𝑖=𝑗

𝑩𝑖 (B.16)

𝑨𝑛
𝑗 ∶=

𝑛∑
𝑡=𝑗

𝑿𝑡
𝑗+1𝜂𝑗 =

𝑛∑
𝑡=𝑗

⎛
⎜
⎜
⎝

𝑡∏
𝑖=𝑗+1

𝑩𝑖
⎞
⎟
⎟
⎠

𝜂𝑗 . (B.17)

When {𝜂𝑡}𝑡≥0 satisfies Assumption 3.2.5, it follows that

1. There exist constant 𝑐0, 𝑐 > 0 such that for any 𝑛 ≥ 𝑗 ≥ 0,

‖𝑿𝑛
𝑗 ‖ ≤ 𝑐0 exp

⎛
⎜
⎜
⎝
−𝑐

𝑛∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

.

2. There exist 𝐶0 such that 𝑨𝑛
𝑗 is uniformly bounded with respect to both 𝑗 and 𝑛 for
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0 ≤ 𝑗 ≤ 𝑘 (i.e., ‖𝑨𝑛
𝑗 ‖ ≤ 𝐶0 for any 𝑛 ≥ 𝑗 ≥ 0), and

1
𝑛

𝑛∑
𝑗=0

‖𝑨𝑛
𝑗 − 𝑮−1‖ → 0 as 𝑛 → ∞.

3. For the 𝑐 given in 1, there exists 𝑗0 > 0 such that any 𝑛 ≥ 𝑗 ≥ 𝑗0,

𝜂𝑗−1
𝜂𝑛

≤ exp
⎛
⎜
⎜
⎝

𝑐
2

𝑛∑
𝑡=𝑗−1

𝜂𝑡
⎞
⎟
⎟
⎠

.

4. Let 𝑐 be a positive constant, then there exists another constant 𝑐1 such that for any

𝑛 ≥ 1,
𝑛∑

𝑗=1
𝜂2

𝑗−1 exp
⎛
⎜
⎜
⎝
−𝑐

𝑛∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

≤ 𝑐1𝜂𝑛.

Proof of Lemma B.7.1. 1. The proof can be found in the proof of Lemma 3.1.1 in[173].

2. The proof can be found in the proof of Lemma 3.4.1 in[173].

3. Due to 𝜂𝑡−1−𝜂𝑡
𝜂𝑡−1

= 𝑜(𝜂𝑡−1), it follows that

𝜂𝑗−1
𝜂𝑛

=
𝑛−1∏
𝑡=𝑗

𝜂𝑡−1
𝜂𝑡

=
𝑛−1∏
𝑡=𝑗

(1 + 𝑜(1)𝜂𝑡) ≤ exp
⎛
⎜
⎜
⎝
𝑜(1)

𝑛−1∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

≤ exp
⎛
⎜
⎜
⎝
𝑜(1)

𝑛∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

,

where 𝑜(1) denotes a magnitude that tends to zero as 𝑗 → ∞ and the last inequality

follows from 𝜂𝑛 → 0. We then find 𝑗0 > 0 such that any 𝑛 ≥ 𝑗 ≥ 𝑗0, we have
𝜂𝑗−1
𝜂𝑛

≤ exp(
𝑐
2
∑𝑛

𝑡=𝑗−1 𝜂𝑡) with 𝑐 given in 1.
4. Lemma 3.3.2 in[173] implies that for any 𝑐 > 0, ∑𝑛

𝑗=1 𝜂𝑗−1 exp (−𝑐 ∑𝑛
𝑡=𝑗 𝜂𝑡) is uni-

formly bounded for 𝑛 ≥ 1. When 𝑛 → ∞, as a result of 𝑛𝜂𝑛 → ∞, we have 𝑐 ∑𝑛
𝑡=1 𝜂𝑡 +

ln 𝜂𝑛 → ∞ and thus 𝜂−1
𝑛 exp (−𝑐 ∑𝑛

𝑡=1 𝜂𝑡) → 0. Therefore, we can find 𝑛0, 𝑐3 > 0
such that any 𝑛 ≥ 𝑛0 we have

∑𝑗0
𝑗=1 𝜂2

𝑗−1 exp (−𝑐 ∑𝑛
𝑡=𝑗 𝜂𝑡) ≤ 𝑐3𝜂𝑛. Then as long as

𝑛 ≥ max{𝑗0, 𝑛0}, it follows that
𝑛∑

𝑗=1
𝜂2

𝑗−1 exp
⎛
⎜
⎜
⎝
−𝑐

𝑛∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

=
𝑗0∑

𝑗=1
𝜂2

𝑗−1 exp
⎛
⎜
⎜
⎝
−𝑐

𝑛∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

+
𝑛∑

𝑗=𝑗0

𝜂2
𝑗−1 exp

⎛
⎜
⎜
⎝
−𝑐

𝑛∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

= 𝑐3𝜂𝑛 + 𝜂𝑛

𝑛∑
𝑗=𝑗0

𝜂𝑗−1 exp
⎛
⎜
⎜
⎝
−𝑐

2

𝑛∑
𝑡=𝑗

𝜂𝑡
⎞
⎟
⎟
⎠

≤ 𝑐1𝜂𝑛.

For 𝑛 < max{𝑗0, 𝑛0}, since there is only a finite number of cases, we can enlarge 𝑐1 in

order to cover all 𝑛 ≥ 1.
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Appendix C Omitted Proofs for Theorem 3.3.2

C.1 Proof of Lemma 3.4.5

Proof of Lemma 3.4.5. • Under Assumption 3.2.5, we have 𝜂𝑡 ↓ 0 and 𝑡𝜂𝑡 ↑ ∞ as 𝑡 → ∞.

Hence, for any fixed 𝑚 > 0, we have 𝑡𝜂𝑡 ≥ 𝑚 for sufficiently large 𝑡. Then,

𝑎𝑡 = ⌈log𝜌
𝜂𝑡
𝜎𝜅 ⌉ = ⌈log 1

𝜌

𝜎𝜅
𝜂𝑡

⌉ ≤ ⌈log 1
𝜌

𝜎𝜅𝑡
𝑚 ⌉ ⟹ 𝑎𝑡 = 𝒪(log 𝑡).

• Since 𝑎𝑡 = 𝒪(log 𝑡), for sufficiently large 𝑡, there exists 𝜇 > 0 such that 𝑎𝑡 ≤ 𝜇 log 𝑡 and
thus

𝑎𝑡𝜂𝑡−𝑎𝑡 log 𝑡 ≤ 𝜇 log2 𝑡 ⋅ 𝜂𝑡−𝜇 log 𝑡 = 𝜇 log2 𝑡
log2(𝑡 − 𝜇 log 𝑡)

⋅ 𝜂𝑡−𝜇 log 𝑡 log2(𝑡 − 𝜇 log 𝑡) = 𝑜(1),

where we use 𝜂𝑡 log2 𝑡 = 𝑜(1) when 𝑡 goes to infinity due to Assumption 3.2.5.
• It follows that

𝜂𝑡−𝑎𝑡

𝜂𝑡
=

𝑡−1∏
𝜏=𝑡−𝑎𝑡

𝜂𝜏
𝜂𝜏+1

=
𝑡−1∏

𝜏=𝑡−𝑎𝑡

(1 + 𝑜(𝜂𝑡)) ≤ exp
⎛
⎜
⎜
⎝
𝑜(1)

𝑡−1∑
𝜏=𝑡−𝑎𝑡

𝜂𝜏
⎞
⎟
⎟
⎠

≤ exp(𝑜(1)𝑎𝑡𝜂𝑡−𝑎𝑡) = 𝒪(1).

• By 𝜂𝑡+1 = 𝜂𝑡(1 + 𝑜(𝜂𝑡)), it follow that

log 1
𝜌

𝜎𝜅
𝜂𝑡+1

= log 1
𝜌

𝜎𝜅(1 + 𝑜(𝜂𝑡))
𝜂𝑡

= log 1
𝜌

𝜎𝜅
𝜂𝑡

+ log 1
𝜌
(1 + 𝑜(𝜂𝑡)) = log 1

𝜌

𝜎𝜅
𝜂𝑡

+ 𝑜(𝜂𝑡).

For sufficiently large 𝑡, we will have 𝑜(𝜂𝑡) ≤ 0.5 and thus

𝑎𝑡+1 = ⌈log 1
𝜌

𝜎𝜅
𝜂𝑡+1 ⌉ ≤ ⌈log 1

𝜌

𝜎𝜅
𝜂𝑡 ⌉ + 1 = 𝑎𝑡 + 1.

It is clearly that we have 𝑎𝑡 ≤ 𝑎𝑡+1 due to 𝜂𝑡 ↓ 0.

C.2 Proof of Lemma 3.4.6

Proof of Lemma 3.4.6. The conclusion is obvious if 𝑎𝑡 = 0. Without loss of generality, we

assume 𝜌 > 0 and 𝑎𝑡 ≥ 1. Recall that the update rule is 𝒙𝑡+1 = 𝒙𝑡 − 𝜂𝑡𝑯(𝒙𝑡, 𝜉𝑡). Hence, under
Assumption 3.3.2,

|‖𝒙𝑡+1‖ − ‖𝒙𝑡‖| ≤ ‖𝒙𝑡+1 − 𝒙𝑡‖ = 𝜂𝑡‖𝑯(𝒙𝑡, 𝜉𝑡)‖ ≤ 𝑀𝜂𝑡(‖𝒙𝑡‖ + 𝑔(𝜉𝑡)),
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which implies that

‖𝒙𝑡+1‖ ≤ (1 + 𝑀𝜂𝑡)‖𝒙𝑡‖ + 𝑀𝜂𝑡𝑔(𝜉𝑡).

For simplicity, we denote 𝜂𝑠,𝑡 ∶=
∑𝑡

𝑙=𝑠 𝜂𝑙 is 𝑠 ≤ 𝑡 otherwise 𝜂𝑠,𝑡 ∶= 0 for 𝑠 > 𝑡. Iterating the
last inequality yields for any 𝑡 − 𝑎𝑡 − 1 ≤ 𝜏 ≤ 𝑡 − 1 with 𝑡 ≥ 𝐾 ,

‖𝒙𝜏+1‖ ≤
𝜏∏

𝑠=𝑡−𝑎𝑡

(1 + 𝑀𝜂𝑠)‖𝒙𝑡−𝑎𝑡‖ + 𝑀
𝜏∑

𝑠=𝑡−𝑎𝑡

𝜂𝑠𝑔(𝜉𝑠)
𝜏∏

𝑙=𝑠+1
(1 + 𝑀𝜂𝑙)

≤ exp(𝑀𝜂𝑡−𝑎𝑡,𝜏) ‖𝒙𝑡−𝑎𝑡‖ + 𝑀
𝜏∑

𝑠=𝑡−𝑎𝑡

𝜂𝑠𝑔(𝜉𝑠) exp (𝑀𝜂𝑠+1,𝜏)

(𝑎)
≤ exp(𝑀𝑎𝑡𝜂𝑡−𝑎𝑡)

⎡⎢⎢⎣
‖𝒙𝑡−𝑎𝑡‖ + 𝑀

𝜏∑
𝑠=𝑡−𝑎𝑡

𝜂𝑠𝑔(𝜉𝑠)
⎤⎥⎥⎦

(𝑏)
≤ 2 (‖𝒙𝑡−𝑎𝑡‖ + 𝑀𝑎𝑡𝜂𝑡−𝑎𝑡𝑔𝑡−1) ,

where (𝑎) uses 𝜂𝑡−𝑎𝑡,𝜏 ≤ 𝑎𝑡𝜂𝑡−𝑎𝑡 by definition and (𝑏) uses Lemma 3.4.5 and the definition of
𝑔𝑡−1 in (3.36).

As a result,

‖𝒙𝑡 − 𝒙𝑡−𝑎𝑡‖ ≤
𝑡−1∑

𝜏=𝑡−𝑎𝑡

‖𝒙𝜏+1 − 𝒙𝜏‖ ≤
𝑡−1∑

𝜏=𝑡−𝑎𝑡

𝑀𝜂𝜏(‖𝒙𝜏‖ + 𝑔(𝜉𝜏))

≤
𝑡−1∑

𝜏=𝑡−𝑎𝑡

𝑀𝜂𝜏(2‖𝒙𝑡−𝑎𝑡‖ + 2𝑀𝑎𝑡𝜂𝑡−𝑎𝑡𝑔𝑡−1) + 𝑀𝜂𝑡−𝑎𝑡,𝑡−1𝑔𝑡−1

≤ 2𝑀𝜂𝑡−𝑎𝑡,𝑡−1(‖𝒙𝑡−𝑎𝑡‖ + 𝑔𝑡−1) ≤ 2𝑀𝑎𝑡𝜂𝑡−𝑎𝑡(‖𝒙𝑡−𝑎𝑡‖ + 𝑔𝑡−1),

where the last inequality uses Lemma 3.4.5 and 𝑀𝑎𝑡𝜂𝑡−𝑎𝑡 ≤ log 2 ≤ 1
2 .

Therefore, using log 2 ≤ 1
3 , we have

‖𝒙𝑡−𝒙𝑡−𝑎𝑡‖ ≤ 2𝑀𝑎𝑡𝜂𝑡−𝑎𝑡(‖𝒙𝑡−𝑎𝑡 −𝒙𝑡‖+‖𝒙𝑡‖+𝑔𝑡−1) ≤ 2
3‖𝒙𝑡−𝑎𝑡 −𝒙𝑡‖+2𝑀𝑎𝑡𝜂𝑡−𝑎𝑡(‖𝒙𝑡‖+𝑔𝑡−1),

which implies

‖𝒙𝑡 − 𝒙𝑡−𝑎𝑡‖ ≤ 6𝑀𝑎𝑡𝜂𝑡−𝑎𝑡(‖𝒙𝑡‖ + 𝑔𝑡−1) ≤ 2(‖𝒙𝑡‖ + 𝑔𝑡−1).

158



Appendix C Omitted Proofs for Theorem 3.3.2

C.3 Proof of Lemma 3.4.7

Proof of Lemma 3.4.7. Our target is to prove

𝔼 sup
𝑡−𝑎𝑡≤𝜏≤𝑡−1

|𝑔(𝜉𝜏)| ≤
(

𝔼 sup
𝑡−𝑎𝑡≤𝜏≤𝑡−1

|𝑔(𝜉𝜏)|
𝑝
2
)

2
𝑝

= 𝒪(𝑎𝑡).

The left inequality follows from Jensen’s inequality. We then focus on the right equality.

The fact 𝑝 > 2 implies 2
𝑝 < 1. Then (𝑥 + 𝑦)

2
𝑝 ≤ 𝑥

2
𝑝 + 𝑦

2
𝑝 for any 𝑥, 𝑦 ≥ 0. Therefore,

(
𝔼 sup

𝑡−𝑎𝑡≤𝜏≤𝑡−1
|𝑔(𝜉𝜏)|

𝑝
2
)

2
𝑝

≤
⎛
⎜
⎜
⎝
𝔼

∑
𝑡−𝑎𝑡≤𝜏≤𝑡−1

|𝑔(𝜉𝜏)|
𝑝
2
⎞
⎟
⎟
⎠

2
𝑝

≤
∑

𝑡−𝑎𝑡≤𝜏≤𝑡−1
(𝔼|𝑔(𝜉𝜏)|

𝑝
2 )

2
𝑝 ≤ 𝑎𝑡 ⋅ sup

𝑡≥0 (𝔼|𝑔(𝜉𝑡)|
𝑝
2 )

2
𝑝 ≾ 𝑎𝑡.

C.4 Proof of Lemma 3.4.8

Proof of Lemma 3.4.8. By homogeneity, we only need to prove for the case of 𝐴 = 1.
• When 𝛼 ∈ (0, 1], we let 𝑓(𝑥) = 1 + (1 + 𝛼)𝑥 + |𝑥|1+𝛼 − (1 + 𝑥)1+𝛼 and its derivative

is 𝑓 ′(𝑥) = (1 + 𝛼) (1 + |𝑥|𝛼sign(𝑥) − (1 + 𝑥)𝛼). When 1 ≥ 𝛼 > 0, we have (1 + 𝑥)𝛼 ≤
𝑥𝛼 + 1 for 𝑥 ≥ 0 and 1 ≤ (1 − 𝑥)𝛼 + 𝑥𝛼 for 𝑥 ∈ [0, 1]. It implies that 𝑓 ′(𝑥) ≥ 0 for

𝑥 ≥ 0 and 𝑓 ′(𝑥) < 0 for −1 ≤ 𝑥 < 0. Hence, 𝑓(𝑥) ≥ 𝑓(0) = 0 for any 𝑥 ≥ −1.
• When 𝛼 ∈ [1, ∞), we let 𝑓(𝑥) = 1 + (1 + 𝛼)𝑥 + 𝑐𝛼(1+𝛼)

2 𝑥2 + 𝑐𝛼|𝑥|1+𝛼 − (1 + 𝑥)1+𝛼

and its derivative is 𝑓 ′(𝑥) = (1 + 𝛼) [1 + 𝑐𝛼(𝑥 + |𝑥|𝛼sign(𝑥)) − (1 + 𝑥)𝛼]. Similarly,
we are going to show 𝑓 ′(𝑥) ≥ 0 for 𝑥 ≥ 0 and 𝑓 ′(𝑥) < 0 for −1 ≤ 𝑥 < 0. These two
conditions is equivalent to

𝑐𝛼 ≥
{

(1+𝑥)𝛼−1
𝑥+𝑥𝛼 if 0 ≤ 𝑥 < ∞;

1−(1−𝑥)𝛼

𝑥+𝑥𝛼 if 0 ≤ 𝑥 ≤ 1.

The last inequality is satisfied when we set

𝑐𝛼 ∶= sup
𝑥≥0

(1 + 𝑥)𝛼 − 1
𝑥 + 𝑥𝛼 .

We explain the reason in the following. Since (1−𝑥)𝑟 ≥ 1−𝑟𝑥 for any 𝑥 ∈ [0, 1] and 𝑟 ≥
1, we have sup𝑥∈[0,1]

1−(1−𝑥)𝛼

𝑥+𝑥𝛼 ≤ 𝑐𝛼 ≤ sup𝑥∈[0,1]
𝑥𝛼

𝑥+𝑥𝛼 = 𝑐𝛼 ≤ sup𝑥∈[0,1]
𝛼

1+𝑥𝛼−1 = 𝛼. Let
ℎ(𝑥) = (1+𝑥)𝛼−1

𝑥+𝑥𝛼 , then 𝑐𝛼 = sup𝑥∈[0,∞) ℎ(𝑥). One can easily show that, on the interval
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(0, ∞), ℎ(𝑥) is a continuous function with lim𝑥→0+ ℎ(𝑥) = 𝛼 andmin𝑥→∞ ℎ(𝑥) = 1. As
a result, we know that sup𝑥∈[0,∞) ℎ(𝑥) is finite and no smaller than ℎ(0) ∶= 𝛼.
We complete the proof by showing 𝑐𝛼 ≤𝛼 in the following. If 𝑥 ≥ 1, we have

(
(1 + 𝑥)𝛼 − 1

𝑥 + 𝑥𝛼 )

1
𝛼

≤ (
(1 + 𝑥)𝛼

𝑥𝛼 )

1
𝛼

≤ 1 + 𝑥
𝑥 ≤ 2.

If 0 ≤ 𝑥 ≤ 1, using (1 + 𝑥)𝛼 − 1 ≤ 𝛼𝑥(1 + 𝑥)𝛼−1, we have that for any 𝛼 ≥ 1,

(
(1 + 𝑥)𝛼 − 1

𝑥 + 𝑥𝛼 )

1
𝛼

≤ (
𝛼(1 + 𝑥)𝛼−1

1 + 𝑥𝛼−1 )

1
𝛼

≤ (𝛼2𝛼−1)
1
𝛼 ≤ 3.

C.5 Proof of Lemma 3.4.9

Proof of Lemma 3.4.9. The main idea is to decompose 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼𝛿𝑡 into three terms and

then bound each term respectively. It follows that

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼𝛿𝑡 = 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼⟨∇𝑀(𝒙𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩

+ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼⟨∇𝑀(𝒙𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩

− ( ̄𝑝 − 1)𝜆𝜂𝑡
2 ⋅ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼‖𝑯(𝒙𝑡, 𝜉𝑡)‖2

̄𝑝.

(C.1)

For the first term From (3.30) and (3.31), it follows that

⟨∇𝑀(𝒙𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩ ≥ 𝐴3𝑀(𝒙𝑡 − 𝒙⋆). (C.2)

For the second term Similar to (3.33), we have

|𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼⟨∇𝑀(𝒙𝑡 − 𝒙⋆)), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩|

≤ |𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼⟨∇𝑀(𝒙𝑡 − 𝒙⋆)) − ∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩|

+ |𝔼𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)𝛼⟨∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)), 𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉𝑡−𝑎𝑡−1)⟩|

+ |𝔼 (𝑀(𝒙𝑡 − 𝒙⋆)𝛼 − 𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)𝛼
) ⟨∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩|

∶= 𝑇1 + 𝑇2 + 𝑇3.

We are going to analyze the three terms separately. By (3.37), we have

|⟨∇𝑀(𝒙𝑡 − 𝒙⋆) − ∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩|
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≤ 6𝜎𝑀( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅ 𝑎𝑡𝜂𝑡−𝑎𝑡 ((

1 + 𝜆
𝑙2

̄𝑝 )
𝑀(𝒙𝑡 − 𝒙⋆) + ‖𝒙⋆‖ + 𝑔𝑡−1 + 1

)
,

which implies the first term 𝑇1 satisfies

𝑇1 ≾ 𝑎𝑡𝜂𝑡−𝑎𝑡(𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼(1 + 𝑔𝑡−1))
(𝑎)
≾ 𝑎𝑡𝜂𝑡−𝑎𝑡(𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + (1 + (𝔼𝑔

𝑝
2
𝑡−1)

2
𝑝 )(𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼
1+𝛼 )

(𝑏)
≾ 𝑎𝑡𝜂𝑡−𝑎𝑡(𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + 𝑎𝑡 ⋅ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼
1+𝛼 ),

where (𝑎) uses Holder’s inequality and 2(1+𝛼) = 𝑝 for simplicity and (𝑏) uses (𝔼ℎ
𝑝
2
𝑡−1)

2
𝑝 ≾ log 𝑡

due to Lemma 3.4.7. By (𝑎) in (3.38), we have

|⟨∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑎𝑡+1𝑯(𝒙⋆, 𝜉𝑡−𝑎𝑡−1)⟩|

≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅ ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖

≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅

‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖2 + 1
2

≤ 𝜂𝑡( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅

((
1 + 𝜆

𝑙2
̄𝑝 )

𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆) + 1
)

,

which implies the second term 𝑇2 satisfies

𝑇2 ≾ 𝜂𝑡(𝔼𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)1+𝛼 + 𝔼𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)𝛼)

≾ 𝜂𝑡(𝔼𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)1+𝛼 + (𝔼𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)1+𝛼)
𝛼

1+𝛼 ).

Finally, as for the third term 𝑇3, by a similar argument of the last inequality, we have

|⟨∇𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩| ≤ 𝜎( ̄𝑝 − 1)𝑢2
̄𝑝𝜆 ⋅ ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖.

On the other hand, noticing that |‖𝒙‖2𝛼
𝑀 − ‖𝒚‖2𝛼

𝑀 | ≤ 2𝛼‖𝒙 − 𝒚‖𝑀 ⋅ max{‖𝒙‖𝑀 , ‖𝒚‖𝑀}2𝛼−1,

we have

|𝑀(𝒙𝑡 − 𝒙⋆)𝛼 − 𝑀(𝒙𝑡−𝑎𝑡 − 𝒙⋆)𝛼| ≤ 𝛼
2𝛼−1 ‖𝒙𝑡 − 𝒙𝑡−𝑎𝑡‖𝑀 ⋅ max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2𝛼−1.

As a result, we have

𝑇3 ≾ 𝔼‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖‖𝒙𝑡 − 𝒙𝑡−𝑎𝑡‖𝑀 ⋅ max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2𝛼−1

≾ 𝔼‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀‖𝒙𝑡 − 𝒙𝑡−𝑎𝑡‖ ⋅ max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2𝛼−1

≾ 𝑎𝑡𝜂𝑡−𝑎𝑡𝔼(‖𝒙𝑡‖ + 𝑔𝑡−1)‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀 ⋅ max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2𝛼−1

≾ 𝑎𝑡𝜂𝑡−𝑎𝑡𝔼(‖𝒙𝑡‖𝑀 + 𝑔𝑡−1) ⋅ max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2𝛼
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≾ 𝑎𝑡𝜂𝑡−𝑎𝑡𝔼(max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀} + 𝑔𝑡−1) ⋅ max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2𝛼

≾ 𝑎𝑡𝜂𝑡−𝑎𝑡𝔼(max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2 + 𝑔𝑡−1 + 1) ⋅ max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}2𝛼

(𝑎)
≾ 𝑎𝑡𝜂𝑡−𝑎𝑡𝔼(𝑏2

𝑡 + 𝑔𝑡−1 + 1) ⋅ 𝑏2𝛼
𝑡 ≾ 𝑎𝑡𝜂𝑡−𝑎𝑡 [𝔼𝑏2(1+𝛼)

𝑡 + 𝔼(𝑔𝑡−1 + 1)𝑏2𝛼
𝑡 ]

(𝑏)
≾ 𝑎𝑡𝜂𝑡−𝑎𝑡 [𝔼𝑏2(1+𝛼)

𝑡 + (1 + (𝔼𝑔
𝑝
2
𝑡−1)

2
𝑝 )(𝔼𝑏2(1+𝛼)

𝑡 )
𝛼

1+𝛼 ]
(𝑐)
≾ 𝑎𝑡𝜂𝑡−𝑎𝑡 (𝔼𝑏2(1+𝛼)

𝑡 + 𝑎𝑡 ⋅ (𝔼𝑏2(1+𝛼)
𝑡 )

𝛼
1+𝛼 )

(𝑑)
≾ 𝑎𝑡𝜂𝑡−𝑎𝑡 (𝑑𝑡 + 𝑎𝑡 ⋅ 𝑑

𝛼
1+𝛼
𝑡 ) ,

where (𝑎) follows the notation 𝑏𝑡 = max{‖𝒙𝑡 − 𝒙⋆‖𝑀 , ‖𝒙𝑡−𝑎𝑡 − 𝒙⋆‖𝑀}, (𝑏) uses Holder’s

inequality and 2(1 + 𝛼) = 𝑝, (𝑐) uses (𝔼ℎ
𝑝
2
𝑡−1)

2
𝑝 ≾ 𝑎𝑡 due to Lemma 3.4.7, and (𝑑) uses the

notation 𝑑𝑡 ∶= max𝑡−𝑎𝑡≤𝜏≤𝑡 𝔼𝑀(𝒙𝜏 − 𝒙⋆)1+𝛼 and 𝑑𝑡 ≥ 𝔼𝑏2(1+𝛼)
𝑡 by definition.

Combing the bounds for 𝑇1, 𝑇2 and 𝑇3, we have

|𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼⟨∇𝑀(𝒙𝑡 − 𝒙⋆)), 𝒫 𝑯(𝒙⋆, 𝜉𝑡−1)⟩| ≾ 𝑎𝑡𝜂𝑡−𝑎𝑡 (𝑑𝑡 + 𝑎𝑡 ⋅ 𝑑
𝛼

1+𝛼
𝑡 ) . (C.3)

For the last term Finally, we analyze the last term of (C.1). It follows from Hölder’s in-

equality that

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼‖𝑯(𝒙𝑡, 𝜉𝑡)‖2
̄𝑝 ≤ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼
1+𝛼 (𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖

2(1+𝛼)
̄𝑝 )

1
1+𝛼

≾ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)
𝛼

1+𝛼 (𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖2(1+𝛼))
1

1+𝛼

≾ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)
𝛼

1+𝛼 (𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1)‖𝑝)
1

1+𝛼 .

By Assumption 3.2.3 and 3.2.2, we have

𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1)‖𝑝 ≾ 𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝑯(𝒙⋆, 𝜉𝑡−1)‖𝑝 + 𝔼𝒫 ‖𝑯(𝒙⋆, 𝜉𝑡−1)‖𝑝

≾ 𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝑯(𝒙⋆, 𝜉𝑡−1)‖𝑝 + sup
𝑡≥0

𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝

≾ 𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝 + 1 ≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + 1. (C.4)

Using (𝑥 + 1)
1

1+𝛼 ≤ 𝑥
1

1+𝛼 + 1 for 𝑥 ≥ 0, we have

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼‖𝑯(𝒙𝑡, 𝜉𝑡)‖2
̄𝑝 ≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼
1+𝛼 . (C.5)

Plugging (C.2), (C.3) and (C.5) into (C.1), we complete the proof.
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C.6 Proof of Lemma 3.4.10

Proof of Lemma 3.4.10. By the definition of 𝛿𝑡, it follows that

𝔼|𝛿𝑡|1+𝛼 ≾ 𝔼|⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩|1+𝛼 + 𝜂1+𝛼
𝑡 𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖

2(1+𝛼)
̄𝑝

For one thing, by Hölder’s inequality, we have

𝔼|⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩|1+𝛼 ≤ 𝔼‖∇𝑀(𝒙𝑡 − 𝒙⋆)‖1+𝛼
̄𝑞 ⋅ ‖𝑯(𝒙𝑡, 𝜉𝑡)‖1+𝛼

̄𝑝

≾ 𝔼‖∇𝑀(𝒙𝑡 − 𝒙⋆)‖2(1+𝛼)
̄𝑞 + 𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖

2(1+𝛼)
̄𝑝 .

Since 𝑀(𝒙) is smooth w.r.t. the norm ‖ ⋅ ‖ ̄𝑝 (due to 1 in Lemma 3.4.4) and ∇𝑀(0) = 0, we
have

𝔼‖∇𝑀(𝒙𝑡−𝒙⋆)‖2(1+𝛼)
̄𝑞 = 𝔼‖∇𝑀(𝒙𝑡−𝒙⋆)‖𝑝

̄𝑞 ≾ 𝔼‖𝒙𝑡−𝒙⋆‖𝑝
̄𝑝 ≾ 𝔼‖𝒙𝑡−𝒙⋆‖𝑝 ≾ 𝔼𝑀(𝒙𝑡−𝒙⋆)1+𝛼,

where the last inequality uses the fact ‖ ⋅ ‖ is equivalent to ‖ ⋅ ‖𝑀 up to constant factors and

𝑀(𝒙) = 1
2‖𝒙‖2

𝑀 . For another thing,

𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖
2(1+𝛼)

̄𝑝 ≾ 𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖2(1+𝛼) = 𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1)‖𝑝

≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + 1,

where the last inequality follows from (C.4).

Putting two pieces together, we have

𝔼|𝛿𝑡|1+𝛼 ≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + 𝜂1+𝛼
𝑡 .

C.7 Proof of Lemma 3.4.11

Proof of Lemma 3.4.11. By definition of 𝛿𝑡 in (3.41), it follows that

|𝛿𝑡|2 ≤ 2|⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩|2 +
( ̄𝑝 − 1)2𝜆2𝜂2

𝑡
2 ‖𝑯(𝒙𝑡, 𝜉𝑡)‖4

̄𝑝,

by which, 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1|𝛿𝑡|2 can be further divided into two terms

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1|𝛿𝑡|2 ≤ 2𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1|⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩|2

+
( ̄𝑝 − 1)2𝜆2𝜂2

𝑡
2 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1‖𝑯(𝒙𝑡, 𝜉𝑡)‖4

̄𝑝.
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For the first term We first note that by a similar argument of (𝑎) in (3.38), we have

|⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩| ≤ ( ̄𝑝 − 1)𝑢2
̄𝑝𝜆‖𝒙𝑡 − 𝒙⋆‖ ⋅ ‖𝑯(𝒙𝑡, 𝜉𝑡)‖.

Second, we have

𝔼[‖𝑯(𝒙𝑡, 𝜉𝑡)‖2|ℱ𝑡−1] = 𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1)‖2

≤ 2 [𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1) − 𝑯(𝒙⋆, 𝜉𝑡−1)‖2 + 𝒫 ‖𝑯(𝒙⋆, 𝜉𝑡−1)‖2]
(𝑎)
≤ 2𝐿2

𝐻‖𝒙𝑡 − 𝒙⋆‖2 + 2𝒫 ‖𝑯(𝒙⋆, 𝜉𝑡−1)‖2

(𝑏)
≤ 2𝐿2

𝐻‖𝒙𝑡 − 𝒙⋆‖2 + 4𝑀2(‖𝒙⋆‖2 + 𝒫 𝑔2(𝜉𝑡−1)),

where (𝑎) uses Assumption 3.2.3 and (𝑏) uses Assumption 3.3.2. As a result

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1|⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩|2

≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1 [‖𝒙𝑡 − 𝒙⋆‖2 ⋅ ‖𝑯(𝒙𝑡, 𝜉𝑡)‖2]
= 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1‖𝒙𝑡 − 𝒙⋆‖2 ⋅ 𝔼[‖𝑯(𝒙𝑡, 𝜉𝑡)‖2|ℱ𝑡−1]

≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1‖𝒙𝑡 − 𝒙⋆‖2 ⋅ [‖𝒙𝑡 − 𝒙⋆‖2 + ‖𝒙⋆‖2 + 𝒫 𝑔2(𝜉𝑡−1)]
(𝑎)
≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼+1 + 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼 + 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼𝑔2(𝜉𝑡)
(𝑏)
≤ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼+1 + 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼 + (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼
𝛼+1 ,

where (𝑎) uses 2 in Lemma 3.4.4 and (𝑏) uses the following inequality (proved by Hölder’s

inequality) and 𝑝 = 2(1 + 𝛼),

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼𝑔2(𝜉𝑡) ≤ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼 𝑝
𝑝−2 )

1− 2
𝑝 (𝔼|𝑔(𝜉𝑡)|𝑝)

2
𝑝 ≾ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼
𝛼+1 .

Therefore,

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1|⟨∇𝑀(𝒙𝑡 − 𝒙⋆),𝑯(𝒙𝑡, 𝜉𝑡)⟩|2

≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼+1 + 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼 + (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)
𝛼

𝛼+1

≤ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼+1 + (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)
𝛼

𝛼+1 .

For the second term It follows from Hölder’s inequality that

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼−1‖𝑯(𝒙𝑡, 𝜉𝑡)‖4
̄𝑝 ≤ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼−1
1+𝛼 (𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖

2(1+𝛼)
̄𝑝 )

2
1+𝛼

≾ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)
𝛼−1
1+𝛼 (𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖2(1+𝛼))

2
1+𝛼
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≾ (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)
𝛼−1
1+𝛼 (𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1)‖𝑝)

2
1+𝛼 .

By (C.4), we have 𝔼𝒫 ‖𝑯(𝒙𝑡, 𝜉𝑡−1)‖𝑝 ≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + 1. Using (𝑥 + 1)
1

1+𝛼 ≤ 𝑥
1

1+𝛼 + 1
for 𝑥 ≥ 0, we again have

𝔼𝑀(𝒙𝑡 − 𝒙⋆)𝛼‖𝑯(𝒙𝑡, 𝜉𝑡)‖2
̄𝑝 ≾ 𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼 + (𝔼𝑀(𝒙𝑡 − 𝒙⋆)1+𝛼)

𝛼−1
𝛼+1 . (C.5)

Combing these two parts, we complete the proof.
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Appendix D Omitted Proofs for Theorem 3.3.5

D.1 Proof of Corollary 3.3.3

Proof of Corollary 3.3.3. We proceed with the proof by discussing two scenarios.

Linear SA with i.i.d. data We first consider a simple case that is linear SA with i.i.d. data.

In this case, 𝑡mix = 0 and 𝑐𝑟 = 0 so that the second term in (3.14) disappear and the bound (3.14)

becomes
̃𝒪 (𝑇 −𝐽1(𝛼) + 𝑇 −(1−𝛼)[

𝛿
3+2𝛿 ∧ 1

3 ] + 𝑡
1
6
mix𝑇 − 1

6 ) = ̃𝒪 (𝑇 −ℎ1(𝛼)) ,

where 𝐽1(⋅) is defined in (3.60) and

ℎ1(𝛼) = min{𝐽1(𝛼), (1 − 𝛼) [
𝛿

3 + 2𝛿 ∧ 1
3]} . (D.1)

In the following, we maximize (D.1) by considering different values of 𝛿. To ensure the
optimal 𝛼∗ is achievable, we consider 𝛼 ∈ [0.5 + 𝜀, 1) for a very small 𝜀 > 0. Note that 𝐽1(𝛼)
strictly increases in 𝛼 and has a unique intersection point with the straight line 𝛿(1−𝛼)

3+2𝛿 on the

interval [0, 1].
1. If 𝛿 ∈ (0, 1−2𝜀

1+2𝜀], we then have 0.5 + 𝜀 ≤ 1
1+𝛿 . (D.1) becomes min{

𝛿(1−𝛼)
3+2𝛿 , 𝛼(1+𝛿)

3+2𝛿 }.
One can show that, 𝛼(1+𝛿)

3+2𝛿 intersect with 𝛿(1−𝛼)
3+2𝛿 at 𝛼1 ∶= 𝛿

2𝛿+1 which doesn’t lie in the

interval we consider. Hence, max
𝛼∈[0.5+𝜀,1)

ℎ1(𝛼) = max
𝛼∈[0.5+𝜀,1)

𝛿(1−𝛼)
3+2𝛿 = 𝛿(1−2𝜀)

6+4𝛿 .

2. If 𝛿 ∈ [
1−2𝜀
1+2𝜀 , 3], we then have 1

1+𝛿 ≤ 0.5 + 𝜀. (D.1) becomes min{
𝛿(1−𝛼)
3+2𝛿 , 𝛼

2+𝛼 }.
Denote the intersection point between 𝛿(1−𝛼)

3+2𝛿 and 𝛼
2+𝛼 by 𝛼2. Direct calculation yields

𝛼2 = √9(1+𝛿)2+8𝛿2−3(1+𝛿)
2𝛿 and 𝛼2 < 0.5 for all 𝛿 ≤ 3. It implies the two segments doesn’t

intersect at the given interval. Hence, max
𝛼∈[0.5+𝜀,1)

ℎ1(𝛼) = max
𝛼∈[0.5+𝜀,1)

𝛿(1−𝛼)
3+2𝛿 = 𝛿(1−2𝜀)

6+4𝛿 .

3. If 𝛿 ∈ [3, ∞),(D.1) becomes min{
1−𝛼

3 , 𝛼
2+𝛼 }. Denote the intersection point between

1−𝛼
3 and 𝛼

2+𝛼 by 𝛼3. Direct calculation yields 𝛼3 = √6 − 2 < 0.5. It implies the two
curves doesn’t intersect at the given interval. So, max

𝛼∈[0.5+𝜀,1)
ℎ1(𝛼) = max

𝛼∈[0.5+𝜀,1)
1−𝛼

3 =
1−2𝜀

6 .

Putting pieces together, we have

min
𝛼∈[0.5+𝜀,1)

𝑑P𝑃 (𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) = ̃𝒪 (𝑇 −𝑓1(𝛿)) ,
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where

𝑓1(𝛿) = [
𝛿

6 + 4𝛿 ∧ 1
6] (1 − 2𝜀). (D.2)

Other cases One can show that 𝐽1(𝛼) ≥ 𝐽2(𝛼) for any 𝛼 ∈ (0.5, 1). Once 𝑡mix > 0 or 𝑐𝑟 > 0,
the bound (3.14) becomes

̃𝒪 ((𝑐𝑟 + 𝑡mix)
𝑝

2+𝑝 ⋅ 𝑇 −𝐽2(𝛼) + 𝑇 −(1−𝛼)[
𝛿

3+2𝛿 ∧ 1
3 ] + 𝑡

1
6
mix𝑇 − 1

6 ) .

where 𝐽2(⋅) is defined in (3.61) and

ℎ2(𝛼) = min{𝐽2(𝛼), (1 − 𝛼) [
𝛿

3 + 2𝛿 ∧ 1
3]} . (D.3)

One can find that 𝐽2(𝛼) and 𝛿(1−𝛼)
3+2𝛿 intersect at a unique point. Denote a polynomial function

ℓ by ℓ(𝛿) ∶= 4𝛿3 + 7𝛿2 − 2𝛿 − 3. One can find that (i) ℓ(𝛿) strictly increases in 𝛿 ∈ (0.5, ∞)
and (ii) there exists a unique 𝛿0 ∈ (0.5, 1) such that ℓ(𝛿0) = 0.

In the following, we maximize (D.3) by considering different values of 𝛿.
1. If 𝛿 ∈ (0, 𝛿0], denote the solution of 𝛿(1−𝛼)

3+2𝛿 = (𝛼 − 0.5)1+𝛿
2+𝛿 by 𝛼1. Direct calculation

yields 𝛼1 = 4𝛿2+9𝛿+3
6𝛿2+14𝛿+6 . One can show that 0.5 < 𝛼1 ≤ 1

1+𝛿 . The right-hand side

inequality is equivalent to ℓ(𝛿) ∶= 4𝛿3 + 7𝛿2 − 2𝛿 − 3 ≤ 0, which is true because

𝛿 ≤ 𝛿0. Hence, max
𝛼∈(0.5,1)

ℎ2(𝛼) = 𝛿(2𝛿2+5𝛿+3)
2(3+2𝛿)(3𝛿2+7𝛿+3) = 𝛿(𝛿+1)

2(3𝛿2+7𝛿+3) .

2. If 𝛿 ∈ [𝛿0, 3], denote the solution of 𝛿(1−𝛼)
3+2𝛿 = 𝛼−0.5

𝛼+1 by 𝛼2. Direct calculation yields

𝛼2 = √(3+2𝛿)2+2𝛿(3+4𝛿)−(3+2𝛿)
2𝛿 > 0.5. Once can show that 𝛼2 ≥ 1

𝛿+1 . This is because

the inequality is equivalent to ℓ(𝛿) ∶= 4𝛿3 + 7𝛿2 − 2𝛿 − 3 ≥ 0 which is true because

𝛿 ≥ 𝛿0. Hence, max
𝛼∈(0.5,1)

ℎ2(𝛼) = 3+4𝛿−√(3+2𝛿)2+2𝛿(3+4𝛿)
2(3+2𝛿) .

3. If 𝛿 ∈ [3, ∞), denote the solution of 1−𝛼
3 = 𝛼−0.5

𝛼+1 by 𝛼3. Direct calculation yields

𝛼3 = √19−3
2 and 1 > 𝛼3 > 0.5 > 1

1+𝛿 . Hence, max
𝛼∈(0.5,1)

ℎ2(𝛼) = 5−√19
6

Putting pieces together, we have

min
𝛼∈(0.5,1)

𝑑P (𝜽⊤𝝓𝑇 ,𝜽⊤𝝍) = 𝒪 ([(𝑐𝑟 + 𝑡mix)
𝑝

2+𝑝 + 1] ⋅ 𝑇 −𝑓2(𝛿)
) ,

where

𝑓2(𝛿) =
⎧⎪
⎪
⎨
⎪
⎪⎩

𝛿(2𝛿2+5𝛿+3)
2(3+2𝛿)(3𝛿2+7𝛿+3) if 𝛿 ∈ (0, 𝛿0],
3+4𝛿−√(3+2𝛿)2+2𝛿(3+4𝛿)

2(3+2𝛿) if 𝛿 ∈ [𝛿0, 3],
5−√19

6 if 𝛿 ∈ [3, ∞).

(D.4)
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D.2 Proof of Lemma 3.4.13

Proof of Lemma 3.4.13. We will analyze each term in (3.50) respectively. For simplicity, we

define

𝐶𝑈,𝒙𝑡 = 𝜅𝑡mix ⋅ (2𝐿𝐻‖𝒙𝑡 − 𝒙⋆‖ + 𝜎).

For 𝝓𝑇 − 𝝓̃𝑇 Recall 𝑝 = 2(1 + 𝛿) and let 𝑚 ∈ [0, 2𝛿 + 1] such that 1 ≤ 1 + 𝑚 ≤ 𝑝. It follows
that

𝑑P (𝜽⊤𝝓𝑇 ,𝜽⊤𝝓̃𝑇 )
(𝑎)
≤ 𝑑P (𝝓𝑇 , 𝝓̃𝑇 )

(𝑏)
≤ ̃𝑑

⎛
⎜
⎜
⎝

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝜂𝑡𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)
⎞
⎟
⎟
⎠

(𝑐)
≤

⎛
⎜
⎜
⎝
𝔼 sup

𝑟∈[0,1]

‖
‖
‖‖

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝜂𝑡𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)
‖
‖
‖‖

𝑚+1⎞
⎟
⎟
⎠

1
𝑚+2

(𝑑)
≤

⎛
⎜
⎜
⎝
𝑇

𝑚+1
2 𝔼

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂𝑡𝐶𝑈,𝒙𝑡

⎞
⎟
⎟
⎠

1+𝑚⎞
⎟
⎟
⎠

1
𝑚+2

(𝑒)
≾

⎛
⎜
⎜
⎝
𝑇

𝑚+1
2 𝑡𝑚+1

mix ⋅ 1
𝑇

𝑇∑
𝑡=0

𝜂𝑚+1
𝑡 (𝔼‖𝒙𝑡 − 𝒙⋆‖𝑚+1 + 𝜎𝑚+1)

⎞
⎟
⎟
⎠

1
𝑚+2

(𝑓 )
≾ 𝒪

⎛
⎜
⎜
⎜
⎝

𝑇
𝑚+1
𝑚+2 ⋅ 𝑡

𝑚+1
𝑚+2
mix ⋅

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂𝑚+1
𝑡

⎞
⎟
⎟
⎠

1
𝑚+2 ⎞

⎟
⎟
⎟
⎠

,

where (𝑎) uses Proposition 3.4.2, (𝑏) follows from 𝝓̃𝑇 (𝑟) = 𝝓𝑇 (𝑟) − 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 𝜂𝑡𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)

and Proposition 3.4.1, (𝑐) follows fromProposition 3.4.3, (𝑑) uses the fact that ‖𝒫 𝑼 (𝒙𝑡, 𝜉𝑡−1)‖ ≤
𝐶𝑈,𝒙𝑡 from Lemma 3.2.2, (𝑒) uses Jensen’s inequality, and (𝑓 ) uses Assumption 3.2.6 .

For 𝝍0 From Lemma B.7.1, we know that 𝑨𝑛
𝑗 is uniformly bounded. Hence, as 𝑇 → ∞,

|||𝝍0||| = sup
𝑟∈[0,1]

‖𝝍0(𝑟)‖ = 1
√𝑇 𝜂0

sup
𝑟∈[0,1]

‖𝑨⌊𝑇 𝑟⌋
0 𝑩0𝚫0‖ = 𝒪

(
1

√𝑇 )
.

Because 𝝍0(⋅) is a deterministic process (given ℱ0), it’s easy to show that ̃𝑑(𝝍0) = 𝒪(𝑇 −1/2)
(by letting 𝑝 → ∞ in Proposition 3.4.3).
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For 𝝍1,1 Notice that 𝝍1,1(𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 𝑨⌊𝑇 𝑟⌋

𝑡 𝒓𝑡. From the proof of Lemma 3.4.1, we

know there exists 𝑐𝑟 ∶= max{𝐿𝐺, 𝐿𝐻 +‖𝑮‖
𝛿𝐺 } such that

‖𝒓𝑡‖ ≤ 𝑐𝑟‖𝒙𝑡 − 𝒙⋆‖2 + 𝜂𝑡𝐶𝑈,𝒙𝑡

≤ (𝑐𝑟 + 𝜅𝑡mix)‖𝒙𝑡 − 𝒙⋆‖2 + 𝜂𝑡𝜅𝑡mix(𝜎 + 𝐿2
𝐻 )

∶= ̃𝑐𝑟‖𝒙𝑡 − 𝒙⋆‖2 + 𝜂𝑡𝐶𝑈 .

Lemma B.7.1 implies that 𝑨𝑛
𝑗 is uniformly bounded by a universal constant 𝐶0 in the sense

that ‖𝑨𝑛
𝑗 ‖ ≤ 𝐶0 for all 𝑗 ≤ 𝑛. Let 𝜆 denote any positive number satisfying 0 ≤ 𝜆 ≤ 𝛿. By the

(𝐿𝑝, (1 + log 𝑡)√𝜂𝑡)-consistency assumption with 𝑝 = 2 + 2𝛿, we upper bound the (1 + 𝜆)-th
moment of ‖𝝍1‖∞ by Jensen’s inequality as following

𝔼|||𝝍1,1|||
1+𝜆 = 𝔼 sup

0≤𝑟≤1
‖𝝍1,1(𝑟)‖1+𝜆 = 𝔼 sup

0≤𝑟≤1

‖
‖
‖‖

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑨⌊𝑇 𝑟⌋
𝑡 𝒓𝑡

‖
‖
‖‖

1+𝜆

≤ 𝔼
⎛
⎜
⎜
⎝

1
√𝑇

𝑇∑
𝑡=0

𝐶0‖𝒓𝑡‖
⎞
⎟
⎟
⎠

1+𝜆

≤ 𝑇
1+𝜆

2 𝐶1+𝜆
0 𝔼

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

‖𝒓𝑡‖
⎞
⎟
⎟
⎠

1+𝜆

≤ 𝑇
1+𝜆

2 𝐶1+𝜆
0 2𝜆

⎡
⎢
⎢
⎣

̃𝑐1+𝜆
𝑟 𝔼

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

‖𝒙𝑡 − 𝒙⋆‖2
⎞
⎟
⎟
⎠

1+𝜆

+ 𝐶1+𝜆
𝑈

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂𝑡
⎞
⎟
⎟
⎠

1+𝜆⎤
⎥
⎥
⎦

≤ 𝑇
1+𝜆

2 𝐶1+𝜆
0 2𝜆 ⎡⎢⎢⎣

̃𝑐1+𝜆
𝑟

1
𝑇

𝑇∑
𝑡=0

𝔼‖𝒙𝑡 − 𝒙⋆‖2(1+𝜆) + 𝐶1+𝜆
𝑈

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝜆
𝑡

⎤⎥⎥⎦

≤ 𝑇
1+𝜆

2 𝐶1+𝜆
0 2𝜆 ⎡⎢⎢⎣

̃𝑐1+𝜆
𝑟

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝜆
𝑡 𝐶𝑝 log𝑝 𝑇 + 𝐶1+𝜆

𝑈
1
𝑇

𝑇∑
𝑡=0

𝜂1+𝜆
𝑡

⎤⎥⎥⎦
.

As a result of Proposition 3.4.3 with 𝑝 = 1 + 𝜆, we get

̃𝑑(𝝍1,1) ≤ (𝔼|||𝝍1,1|||
1+𝜆)

1
2+𝜆 = ̃𝒪

⎛
⎜
⎜
⎜
⎝
( ̃𝑐𝑟 + 𝐶𝑈 )

1+𝜆
2+𝜆 ⋅ 𝑇

1+𝜆
2(2+𝜆) ⋅

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝜆
𝑡

⎞
⎟
⎟
⎠

1
2+𝜆 ⎞

⎟
⎟
⎟
⎠

= ̃𝒪
⎛
⎜
⎜
⎜
⎝
(𝑐𝑟 + 𝑡mix)

1+𝜆
2+𝜆 ⋅ 𝑇

1+𝜆
2(2+𝜆) ⋅

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝜆
𝑡

⎞
⎟
⎟
⎠

1
2+𝜆 ⎞

⎟
⎟
⎟
⎠

.
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For 𝝍1,2 Recall that 𝝍1,2(𝑟) = 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 𝑨⌊𝑇 𝑟⌋

𝑡 𝝂𝑡. Note that
𝜂𝑡−𝜂𝑡+1

𝜂𝑡
= 1 − (1 − 1

𝑡+1)
𝛼

≤
1 − exp(−𝛼

𝑡 ) ≤ 𝛼
𝑡 ≤ 𝛼𝜂𝑡. By the definition of 𝝂𝑡 in (3.18) and the inequality (B.2), we have

‖𝝂𝑡‖ ≤ 𝐿𝑈 ‖𝒙𝑡+1 − 𝒙𝑡‖ + |
𝜂𝑡+1 − 𝜂𝑡

𝜂𝑡 | ⋅ 𝐶𝑈,𝒙𝑡+1

≤ 𝐿𝑈 ‖𝒙𝑡+1 − 𝒙𝑡‖ + 𝛼𝜅𝑡mix𝜂𝑡 ⋅ (2𝐿𝐻‖𝒙𝑡+1 − 𝒙⋆‖ + 𝜎)

≤ (𝐿𝑈 + 𝛼𝜅𝑡mix) (‖𝒙𝑡+1 − 𝒙𝑡‖ + 𝜂𝑡‖𝒙𝑡+1 − 𝒙⋆‖) + 𝜂𝑡 ⋅ 𝛼𝜅𝜎𝑡mix (D.5)

where 𝐿𝑈 = 𝒪(𝐿𝐻 (1 + 𝜅𝑡mix)) is given in Lemma 3.2.2. Let 0 ≤ 𝑚 ≤ 2𝛿 + 1 be any real

number.

We assert that there exists a positive constant 𝐶1,2 > 0 so that

𝔼 (‖𝒙𝑡+1 − 𝒙𝑡‖ + 𝜂𝑡‖𝒙𝑡+1 − 𝒙⋆‖)
1+𝑚 ≾ 𝐶1+𝑚

1,2 𝜂1+𝑚
𝑡 . (D.6)

We prove this statement in the following. First, from Assumption 3.3.3, 𝒙𝑡 −𝒙⋆ has uniformly

bounded 𝑝-th order moments and thus sup𝑡≥0(𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝)
1
𝑝 < ∞. Second, it follows that

𝔼‖𝒙𝑡+1 − 𝒙𝑡‖1+𝑚 = 𝜂1+𝑚
𝑡 𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖1+𝑚 and

𝔼‖𝑯(𝒙𝑡, 𝜉𝑡)‖1+𝑚 ≤ 2𝑚 [𝔼‖𝑯(𝒙𝑡, 𝜉𝑡) − 𝑯(𝒙⋆, 𝜉𝑡)‖1+𝑚 + 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖1+𝑚]
(𝑎)
≤ 2𝑚

[𝐿1+𝑚
𝐻 𝔼‖𝒙𝑡 − 𝒙⋆‖1+𝑚 + 𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖1+𝑚

]

(𝑏)
≤ 2𝑚

⎡
⎢
⎢
⎣
𝐿1+𝑚

𝐻 (
sup
𝑡≥0

𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝
)

1+𝑚
𝑝

+ sup
𝑡≥0

(𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝)
1+𝑚

𝑝
⎤
⎥
⎥
⎦

.

where (𝑎) uses Assumption 3.2.3, (𝑏) uses Jensen’s inequality, and (𝑐) uses Assumption 3.2.2.
Combing the last two points, we know that (D.6) with 𝐶1,2 depending on universal constants

as well as sup𝑡≥0 (𝔼‖𝑯(𝒙⋆, 𝜉𝑡)‖𝑝)
1
𝑝 , sup𝑡≥0 (𝔼‖𝒙𝑡 − 𝒙⋆‖𝑝)

1
𝑝 , and 𝐿𝐻 .

Therefore,

𝔼‖𝝂𝑡‖1+𝑚 ≤ 21+𝑚(𝐿𝑈 + 𝛼𝜅𝑡mix)1+𝑚𝐶1+𝑚
1,2 𝜂1+𝑚

𝑡 + (2𝛼𝜅𝜎𝑡mix ⋅ 𝜂𝑡)
1+𝑚

≤ (2𝐶1,2(𝐿𝑈 + 𝛼𝜅𝑡mix) + 2𝛼𝜅𝜎𝑡mix)1+𝑚𝜂1+𝑚
𝑡

≤ (𝑡mix + 1)1+𝑚𝐶1+𝑚
1,3 𝜂1+𝑚

𝑡

where the first inequality follows from applying Jensen’s inequality to (D.5) and plugging (D.6)

into it and the last inequality enlarges 𝐶1,2 to 𝐶1,3 to simplify notation. Using the last inequal-
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ity, we have

𝔼|||𝝍1,2|||
1+𝑚 = 𝔼 sup

0≤𝑟≤1
‖𝝍1,2(𝑟)‖1+𝑚 = 𝔼 sup

0≤𝑟≤1

‖
‖
‖‖

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑨⌊𝑇 𝑟⌋
𝑡 𝝂𝑡

‖
‖
‖‖

1+𝑚

≤ 𝔼
⎛
⎜
⎜
⎝

1
√𝑇

𝑇∑
𝑡=0

𝐶0‖𝝂𝑡‖
⎞
⎟
⎟
⎠

1+𝑚

≤ 𝑇
1+𝑚

2 𝐶1+𝑚
0 𝔼

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

‖𝝂𝑡‖
⎞
⎟
⎟
⎠

1+𝑚

≤ 𝑇
1+𝑚

2 𝐶1+𝑚
0

1
𝑇

𝑇∑
𝑡=0

𝔼‖𝝂𝑡‖1+𝑚

≾ 𝑇
1+𝑚

2 (1 + 𝑡mix)1+𝑚 ⋅ 1
𝑇

𝑇∑
𝑡=0

𝜂1+𝑚
𝑡 .

As a result of Proposition 3.4.3 with 𝑝 = 1 + 𝑚, we get

̃𝑑(𝝍1,2) ≤ (𝔼‖𝝍1,2‖1+𝑚
∞ )

1
2+𝑚 = ̃𝒪

⎛
⎜
⎜
⎜
⎝
(1 + 𝑡mix)

1+𝑚
2+𝑚 ⋅ 𝑇

1+𝑚
2(2+𝑚) ⋅

⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂1+𝑚
𝑡

⎞
⎟
⎟
⎠

1
2+𝑚 ⎞

⎟
⎟
⎟
⎠

.

For 𝝍2 Notice that
∑

𝑡 = 0𝑘(𝑨𝑇
𝑡 −𝑮−1)𝒖𝑡 is a martingale with the natural filtration ℱ𝑘. By

Doob’s inequality,

𝔼 sup
𝑟∈[0,1]

‖𝝍2(𝑟)‖2
2 ≤ 4

𝑇

𝑇∑
𝑡=0

𝔼‖(𝑨𝑇
𝑡 − 𝑮−1)𝒖𝑡‖2

2

≤ 4 sup
𝑡≥0

𝔼‖𝒖𝑡‖2
2 ⋅ 1

𝑇

𝑇∑
𝑡=0

‖𝑨𝑇
𝑡 − 𝑮−1‖2

2.

We then need to analyze the order of ‖𝑨𝑇
𝑡 −𝑮−1‖2. To that end, we introduce another quantity

𝑫𝑛
𝑡 ∶=

𝑛∑
𝑗=𝑡

𝜂𝑗+1

𝑗∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮). (D.7)

Lemma D.2.1. There exists two constants 𝑐, 𝑐0 > 0 such that for all 𝑛 ≥ 𝑡 ≥ 0,

‖𝑫𝑛
𝑡 − 𝑮−1‖2 ≤ 𝜂𝑡 + 𝑐0 exp

⎧⎪
⎨
⎪⎩

−𝑐
𝑛+1∑
𝑖=𝑡

𝜂𝑖
⎫⎪
⎬
⎪⎭

‖𝑮−1‖2 and ‖𝑨𝑛
𝑡−1 − 𝑫𝑛

𝑡 ‖2 = 𝒪(𝑡𝛼−1)

where we hide dependence 𝛼 and other universal constant factors.
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The proof of Lemma D.2.1 is provided in Section D.3. By Lemma D.2.1 and triangular

inequality, we have

‖𝑨𝑛
𝑡 − 𝑮−1‖2 = 𝒪

⎛
⎜
⎜
⎝
𝑡𝛼−1 + exp

⎧⎪
⎨
⎪⎩

−𝑐
𝑛+1∑
𝑖=𝑡

𝜂𝑖
⎫⎪
⎬
⎪⎭

⎞
⎟
⎟
⎠

Therefore,

1
𝑇

𝑇∑
𝑡=0

‖𝑨𝑇
𝑡 − 𝑮−1‖2

2 = 𝒪(1)
𝑇

𝑇∑
𝑡=0

⎛
⎜
⎜
⎝
𝑡2𝛼−2 + exp

⎧⎪
⎨
⎪⎩

−2𝑐
𝑇 +1∑
𝑖=𝑡

𝜂𝑖
⎫⎪
⎬
⎪⎭

⎞
⎟
⎟
⎠

= 𝒪
⎛
⎜
⎜
⎝
𝑇 2𝛼−2 + 1

𝑇 𝜂𝑇
⋅ 𝜂𝑇

𝑇∑
𝑡=1

exp
⎧⎪
⎨
⎪⎩

−2𝑐
𝑇∑

𝑖=𝑡
𝜂𝑖

⎫⎪
⎬
⎪⎭

⎞
⎟
⎟
⎠

= 𝒪 (𝑇 2𝛼−2 + 1
𝑇 𝜂𝑇 ) = 𝒪(𝑇 𝛼−1),

where the last equation holds by the fact 𝜂𝑇
∑𝑇

𝑡=1 exp{−2𝑐
∑𝑇

𝑖=𝑡+1 𝜂𝑖} → 1 as 𝑇 → ∞ and

thus is uniformly bounded. One can prove it by using Stolz–Cesàro theorem. Thus, by setting

𝑝 = 2 in Proposition 3.4.3, we know that

̃𝑑(𝝍2) ≤ (𝔼|||𝝍2|||
2)1/3 ≾ (𝔼 sup

𝑟∈[0,1]
‖𝝍2(𝑟)‖2

2)1/3 = 𝒪 (𝑇
𝛼−1

3 ) .

For 𝝍3 In our previous asymptotic result, we establish Lemma B.3.1 to analyze the term

𝝍3. In order to provide an quantitative result, we need to capture the exact convergence rate

in Lemma B.3.1, which is equivalent to analyze the moments of decomposed errors therein.

Thanks to our technique developed therein, it is possible to do that. In the following, we

will use the same notation in the proof of Lemma B.3.1 for the sake of consistency and quick

understanding.

Lemma D.2.2. Assume the same assumptions in Lemma 3.4.3 and let {𝒚𝑡}𝑡≥0 be defined

in (3.24). If we set 𝜂𝑡 = 𝑡−𝛼, then for any 0 ≤ 𝑙 ≤ 𝛿 where 𝑝 = 2 + 2𝛿, we have

̃𝑑 (𝒚̄𝑇 ) = 𝒪 ((1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)
3+2𝑙 ) where 𝒚̄𝑇 (𝑟) =

𝒚⌊(𝑇 +1)𝑟⌋

√𝑇 𝜂⌊(𝑇 +1)𝑟⌋
for 𝑟 ∈ [0, 1]. (3.26)

The proof of Lemma D.2.2 can be found in Section D.4. With Lemma D.2.2, we are ready

to bound ̃𝑑(𝝍3). By (3.22), we have

|||𝝍3||| = sup
𝑟∈[0,1]

‖𝝍3(𝑟)‖ ≾ sup
𝑛∈[𝑇 ] ‖

1
√𝑇

1
𝜂𝑛+1

𝑛∑
𝑡=0 (

𝑛∏
𝑖=𝑡+1

𝑩𝑖)
𝜂𝑡𝒖𝑡‖

∶= sup
𝑟∈[0,1]

‖𝒚̄𝑇 (𝑟)‖ = |||𝒚̄𝑇 |||,
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where we define 𝒚̄𝑇 (𝑟) = 𝒚⌊(𝑇 +1)𝑟⌋
√𝑇 𝜂⌊(𝑇 +1)𝑟⌋

and 𝒚𝑛+1 =
∑𝑛

𝑡=0 (
∏𝑛

𝑖=𝑡+1 𝑩𝑖) 𝜂𝑡𝒖𝑡 in the last inequality.

By the definition of ̃𝑑(⋅) and Lemma D.2.2,

̃𝑑(𝝍3) = inf
𝜀

𝜀 ∨ ℙ(|||𝝍3||| > 𝜀) ≾ inf
𝜀

𝜀 ∨ ℙ(|||𝒚̄𝑇 ||| > 𝜀) = ̃𝑑(𝒚̄𝑇 ) = ̃𝒪 ((1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)
3+2𝑙 ) .

For 𝝍4,1 Let 𝑘 by any real number satisfying 1 ≤ 𝑘 ≤ 2 + 2𝛿. By Burkholder-Davis-Gundy
inequality, it follows that

𝔼 sup
0≤𝑡≤𝑇

‖
‖
‖‖

1
√𝑇

𝑡∑
𝑗=0

𝒖𝑗,1

‖
‖
‖‖

𝑘

≤ (𝑐3𝑘)𝑘/2

𝑇 𝑘/2 𝔼
⎛
⎜
⎜
⎝

𝑇∑
𝑡=1

𝔼 [𝒖
2
𝑡,1|ℱ𝑡−1]

⎞
⎟
⎟
⎠

𝑘/2

(𝑎)
≾ (𝑐3𝑘)𝑘/2

𝑇 𝑘/2 𝔼
⎛
⎜
⎜
⎝

𝑇∑
𝑡=1

‖𝒙𝑡 − 𝒙⋆‖2
⎞
⎟
⎟
⎠

𝑘/2

(𝑏)
≾ (𝑐3𝑘)𝑘/2

𝑇 𝔼
𝑇∑

𝑡=1
‖𝒙⋆

𝑡 − 𝒙⋆‖𝑘

(𝑐)
≾

(𝑐3𝑘)𝑘/2𝐶𝑘
𝑘

𝑇

𝑇∑
𝑡=1

𝜂𝑘/2
𝑡 log𝑘 𝑇 ,

where (𝑎) holds because 𝔼 [𝒖
2
𝑡,1|ℱ𝑡−1] ≾ 𝔼‖𝒙𝑡 − 𝒙⋆‖2 as a result of Assumption 3.2.3, (𝑏)

follows from Jensen’s inequality, (𝑐) holds owing to the (𝐿𝑝, (1 + log 𝑡)√𝜂𝑡)-consistency that
implies 𝔼‖𝒙⋆

𝑡 − 𝒙⋆‖𝑘 ≤ 𝐶𝑘
𝑘 𝜂𝑘/2

𝑡 log𝑘 𝑇 . The last inequality together with Proposition 3.4.3

implies that

̃𝑑(𝝍4,1) ≤
⎛
⎜
⎜
⎝
𝔼 sup

0≤𝑡≤𝑇

‖
‖
‖‖

1
√𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝑮−1𝒖𝑡,1

‖
‖
‖‖

𝑘⎞
⎟
⎟
⎠

1
𝑘+1

= ̃𝒪
⎛
⎜
⎜
⎜
⎝

√𝑘𝐶𝑘 ⋅
⎛
⎜
⎜
⎝

1
𝑇

𝑇∑
𝑡=0

𝜂𝑘/2
𝑡

⎞
⎟
⎟
⎠

1
1+𝑘 ⎞

⎟
⎟
⎟
⎠

.

For𝝍4,2 Recall that𝝍4,2(𝑟) ∶= 1
√𝑇

∑⌊𝑇 𝑟⌋
𝑡=0 𝜽⊤𝑮−1𝒖𝑡,2 with 𝒖𝑡,2 = 𝑼 (𝒙⋆, 𝜉𝑡)−𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)

and 𝝍(𝑟) ∶= 𝜽⊤𝑮−1𝑺1/2𝑾 (𝑟). We will apply Theorem 3.4.1 to bound the Lévy-Prokhorov

distance between them. Since Theorem 3.4.1 holds only for 0 < 𝛿 < 3/2, we denote 𝛿′ =
𝛿 ∧ (3

2 − 𝑜(1)) for very sufficiently small 𝑜(1). 1

First, the quadratic variation process of 𝝍4,2 is given by

⟨𝝍4,2(⋅)⟩𝑟 = 1
𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝔼[(𝜽⊤𝑮−1𝒖𝑡,2)2|ℱ𝑡−1] = 1
𝑇

⌊𝑇 𝑟⌋∑
𝑡=0

𝜽⊤𝑮−1𝔼[𝒖𝑡,2𝒖⊤
𝑡,2|ℱ𝑡−1]𝑮−⊤𝜽. (D.8)

1 We can always set the term 𝑜(1) as small as expected, which is the reason we denote it by an infinitesimal 𝑜(1).
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Second, note that the partial-sum process𝝍4,2 is càdlàg (that is right continuouswith left limits)

with all discontinuous points given by {𝑡/𝑇 }𝑡∈[𝑇 ]. Hence, its corresponding dual predictable

projection is the point measure in [0, 1] × ℝ (similar to the definition of the Poisson point

process) and thus we can compute the following integral and obtain

𝔼 ∫
1

0 ∫ℝ
|𝑥|2+2𝛿′Π𝑛(𝑑𝑠, 𝑑𝑥) = 𝔼

𝑇∑
𝑡=0

1
𝑇 1+𝛿′ |𝜽⊤𝑮−1𝒖𝑡,2|

2+2𝛿′
≤ 𝐶2+2𝛿′

4,2 𝑇 −𝛿′ , (D.9)

where 𝐶4,2 = ‖𝑮−1‖ ⋅ sup𝑡≥0(𝔼‖𝒖𝑡,2‖𝑝)
1
𝑝 < ∞ due to Assumption 3.2.2.

By Theorem 3.4.1, it follows that

𝑑P(𝜽⊤𝝍4,2,𝜽⊤𝝍) = ̃𝒪
⎛
⎜
⎜
⎝
𝑇 − 𝛿′

3+2𝛿′ +
[

𝔼 sup
𝑟∈[0,1]

|⟨𝝍4,2(⋅)⟩𝑟 − ⟨𝝍(⋅)⟩𝑟|]

1
3 ⎞
⎟
⎟
⎠

. (D.10)

The second term in (D.10) is the expected supreme absolute difference between the quadratic

variation processes of 𝝍4,2 and 𝝍 over the fraction 𝑟 ∈ [0, 1]. We analyze that term in

Lemma D.2.3 whose proof is deferred in Section D.5.

Lemma D.2.3. Rewriting 𝑝 = 2 + 2𝛿 with 𝑝 given in Assumption 3.2.2. For simplicity, we

denote by

𝑞(𝜉𝑡−1) ∶= 𝔼 [(𝜽⊤𝑮−1𝒖𝑡,2)2|ℱ𝑡−1] with 𝒖𝑡,2 = 𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1).

Under Assumption 3.3.3, 𝔼𝑞(𝜉𝑡) = 𝜽⊤𝑮−1𝑺𝑮−𝑇𝜽 for all 𝑡 ≥ 0. Then

𝔼 sup
𝑡≤𝑇

|
|
||

𝑡∑
𝑖=0

{𝑞(𝜉𝑖) − 𝔼𝜉𝑖𝑞(𝜉𝑖)}
|
|
||

= 𝒪 (√𝑇 𝑡mix)

where 𝒪(⋅) hides factors depending on ‖𝑮−1‖, 𝐶𝑈 , 𝜅 and sup𝜉∈Ξ 𝒫 ‖𝑯(𝒙⋆, 𝜉)‖2.

Using the notation in Lemma D.2.3, we denote 𝑞(𝜉𝑡−1) ∶= 𝔼 [(𝜽⊤𝑮−1𝒖𝑡,2)2|ℱ𝑡−1]. Then
the quadratic variation of 𝝍4,2 can be expressed in terms of 𝑞(𝜉𝑡−1)’s as what follows

⟨𝝍4,2(⋅)⟩𝑟 =
⟨

1
√𝑇

⌊𝑇 ⋅⌋∑
𝑡=0

𝜽⊤𝑮−1𝒖𝑡,2⟩
𝑟

= 1
𝑇

⌊𝑇 𝑟⌋∑
𝑡=1

𝑞(𝜉𝑡−1).

By Lemma D.2.3, we have 𝔼𝑞(𝜉𝑡−1) = 𝜽⊤𝑮−1𝑺𝑮−𝑇𝜽 for all 𝑡 ≥ 1. Therefore,

𝔼 sup
𝑟∈[0,1]

|⟨𝝍4,2(⋅)⟩𝑟 − ⟨𝝍(⋅)⟩𝑟| ≤ 𝔼 sup
𝑛∈[𝑇 ]

1
𝑇 |

𝑛∑
𝑡=1

{𝑞(𝜉𝑡−1) − 𝔼𝑞(𝜉𝑡−1)}|
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+ sup
𝑟∈[0,1] |(

⌊𝑇 𝑟⌋
𝑇 − 𝑟)𝜽⊤𝑮−1𝑺𝑮−𝑇𝜽|

= 𝒪
(√

𝑡mix
𝑇 )

.

D.3 Proof of Lemma D.2.1

Proof of Lemma D.2.1. For the first part, it follows that

𝑮𝑫𝑛
𝑡 +

𝑛+1∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮) =
𝑛∑

𝑗=𝑡
𝜂𝑗+1

𝑗∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮) +
𝑛+1∏
𝑖=𝑡

(𝑰 − 𝜂𝑗𝑮)

=
𝑛−1∑
𝑗=𝑡

𝜂𝑗+1

𝑗∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮) + (𝑰 − 𝜂𝑛+1𝑮 + 𝜂𝑛+1𝑮)
𝑛∏

𝑖=𝑡
(𝑰 − 𝜂𝑗𝑮)

=
𝑛−1∑
𝑗=𝑡

𝜂𝑗+1

𝑗∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮) +
𝑛∏

𝑖=𝑡
(𝑰 − 𝜂𝑗𝑮)

= 𝑮𝑫𝑛−1
𝑡 +

𝑛∏
𝑖=𝑡

(𝑰 − 𝜂𝑗𝑮)

= 𝜂𝑡+1𝑮(𝑰 − 𝜂𝑡+1𝑮) + (𝑰 − 𝜂𝑡𝑮)(𝑰 − 𝜂𝑡+1𝑮)

= 𝑰 − 𝜂𝑡𝑮.

Rearranging the last equation gives

𝑫𝑛
𝑡 − 𝑮−1 = −𝜂𝑡𝑰 − 𝑮−1

𝑛+1∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮).

It follows from 1 in LemmaB.7.1 that there exist two constant 𝑐0, 𝑐 > 0 so that
‖

𝑛+1∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮)
‖2

≤

𝑐0 exp{
−𝑐

𝑛+1∑
𝑖=𝑡

𝜂𝑖}
for all 𝑛 ≥ 𝑡 > 0. We then complete the proof by triangular inequality.

For the second part, we bound the difference between 𝑨𝑛
𝑡−1 and 𝑫

𝑛
𝑡 as following

‖𝑨𝑛
𝑡−1 − 𝑫𝑛

𝑡 ‖2 =
‖
‖
‖‖

𝜂𝑡−1𝑰 +
𝑛∑

𝑗=𝑡
(𝜂𝑡−1 − 𝜂𝑗+1)

𝑗∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮)
‖
‖
‖‖2

≤ 𝜂𝑡−1 +
𝑛∑

𝑗=𝑡

𝑗+1∑
𝑖=𝑡

(𝜂𝑖−1 − 𝜂𝑖)
‖
‖
‖‖

𝑗∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮)
‖
‖
‖‖2
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(𝑎)
≤ 𝜂𝑡−1 + 2𝛼

𝑡

𝑛∑
𝑗=𝑡

𝑗∑
𝑖=𝑡

𝜂𝑖
‖
‖
‖‖

𝑗∏
𝑖=𝑡

(𝑰 − 𝜂𝑖𝑮)
‖
‖
‖‖2

(𝑏)
≤ 𝜂𝑡−1 + 2𝑐0𝛼

𝑡1−𝛼

𝑛∑
𝑗=𝑡

𝜂𝑗+1

𝑗∑
𝑖=𝑡

𝜂𝑗 exp
⎧⎪
⎨
⎪⎩

−𝑐
𝑗∑

𝑖=𝑡
𝜂𝑖

⎫⎪
⎬
⎪⎭

(𝑐)= 𝒪 (𝜂𝑡−1 + 𝑡𝛼−1) = 𝒪(𝑡𝛼−1)

where (𝑎) uses 𝜂𝑖−1−𝜂𝑖 ≤ 𝛼
𝑖−1 ⋅𝜂𝑖−1 ≤ 2𝛼𝜂𝑖−1

1
𝑡 for 𝜂𝑖 = 𝑖−𝛼 and 𝑖 ≥ 𝑡, (𝑏) uses

‖
𝑗∏

𝑖=𝑡
(𝑰 − 𝜂𝑖𝑮)

‖2
≤

𝑐0 exp{
−𝑐

𝑗∑
𝑖=𝑡

𝜂𝑖}
and 𝜂𝑗+1 ≥ 𝜂𝑡 for 𝑗 +1 ≥ 𝑡, and (𝑐) uses

𝑛∑
𝑗=𝑡

𝜂𝑗+1
𝑗∑

𝑖=𝑡
𝜂𝑗 exp{

−𝑐
𝑗∑

𝑖=𝑡
𝜂𝑖}

≾

∫∞
0 𝑚 exp(−𝑐𝑚)𝑑𝑚 < ∞.

Finally, we comment that here we use polynomial step sizes that 𝑡−𝛼 with 1
2 < 𝛼 < 1 for

simplicity. It is possible to extend to general step sizes using a similar but more complicate

argument.

D.4 Proof of Lemma D.2.2

Proof of Lemma D.2.2. The proof can be viewed as a quantitative version of that of LemmaB.3.1.

We suggest readers should be familiar with the notation and proof idea therein before diving

into the details of this proof. At the beginning, we choose any 𝑝0 ∈ [2, 𝑝].
We first assume𝑮 is further diagonalizable. Recall the definition of 𝒜 𝑐 in (B.8). Similar

to (B.9), one can show that 𝔼‖𝒚ℎ𝑘‖𝑝0 ≤ 𝑝0
𝑝0𝑐𝑝0

4 ⋅ 𝜂
𝑝0
2

ℎ,𝑘. By Markov’s inequality, it follows that

ℙ(𝒜 𝑐) ≤
𝑛∑

𝑘=0
ℙ

(
𝑐′

0

√𝑇 ‖
𝒚ℎ𝑘

𝜂ℎ𝑘 ‖
≥ 𝜀

)
≤

(𝑐′
0)𝑝0

𝑇 𝑝0/2𝜀𝑝0

𝑛∑
𝑘=0

𝔼
‖
𝒚ℎ𝑘

𝜂ℎ𝑘 ‖

𝑝0

≤ 1
𝑇 𝑝0/2𝜀𝑝0

𝑛∑
𝑘=0

𝑝0
𝑝0𝐶𝑝0

3,1

𝜂𝑝0/2
ℎ𝑘

≤
𝑝0

𝑝0𝐶𝑝0
3,1𝑛

(𝑇 𝜂𝑇 )𝑝0/2𝜀𝑝0
.

where 𝐶3,1 ∶= 𝑐′
0 ⋅ 𝑐4 for short. On the other hand, by Lemma B.4.1, we know that for any

𝑘 ∈ [𝑛] or 𝑘 = 0,

𝒫𝑘 ≤
𝑝0

𝑝0𝐶𝑝0
3

𝑛𝑝0/2𝜀𝑝0
≤

𝑝0
𝑝0𝐶𝑝0

3,2
𝑛𝑝0/2𝜀𝑝0

, (D.11)

where𝐶3,2 ∶= max{𝐶3,1, 𝐶3} and𝐶3 is defined in Lemma B.4.1. We comment that though the

bound in Lemma B.4.1 depends on 𝑝 rather than 𝑝0, one can repeat the proof therein to derive

the inequality (D.11). A shortcut argument can be used is to assume the noise defined therein
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has 𝑝0-th order moments rather than 𝑝-th ones. Then (D.11) directly follows by replacing 𝑝
with 𝑝0 in Lemma B.4.1.

Putting these bounds together, we have that for any 𝜀 > 0,

̃𝑑 (𝒚̄𝑇 ) ≤ ℙ
(

sup
0≤𝑡≤𝑇

‖𝒚𝑡‖
√𝑇 𝜂𝑡

> 2𝜀
)

∨ 2𝜀

≤ 2𝜀 ∨
{

ℙ
(

sup
0≤𝑡≤𝑇

‖𝒚𝑡‖
√𝑇 𝜂𝑡

> 2𝜀; 𝒜
)

+ ℙ(𝒜 𝑐)
}

≤ 2𝜀 ∨
⎧⎪
⎨
⎪⎩

𝑛−1∑
𝑘=0

𝒫𝑘 + ℙ(𝒜 𝑐)
⎫⎪
⎬
⎪⎭

≾ 𝜀 ∨
[

𝑛𝑝0
𝑝0𝐶𝑝0

3,2
𝜀𝑝0

⋅ (
1

𝑛𝑝0/2 + 1
(𝑇 𝜂𝑇 )𝑝0/2 )]

.

Since the last inequality holds for any 𝑛 and 𝜀, we will carefully set 𝑛 and 𝜀 to make the bound
as small as possible. First, we set 𝑛 = 𝑇 1−𝛼 so that 1

𝑛𝑝0/2 = 1
(𝑇 𝜂𝑇 )𝑝0/2 as a result of 𝜂𝑇 = 𝑇 −𝛼.

Therefore,

̃𝑑 (𝒚̄𝑇 ) ≾ 𝜀 ∨
𝑝0

𝑝0𝐶𝑝0
3,2

𝑇 (1−𝛼)(𝑝0/2−1)𝜀𝑝0
.

Then, we let 𝜀 = 𝑝0𝐶3,2 ⋅ 𝑇 − (𝑝0/2−1)(1−𝛼)
1+𝑝0 which ensures that 𝜀 = 𝐶𝑝0+1

3,2 𝑝0
𝑝0+1

𝑇 (1−𝛼)(𝑝0/2−1)𝜀𝑝0 . As a result,

̃𝑑 (𝒚̄𝑇 ) ≾ 𝑝0𝐶3,2 ⋅ 𝑇 − (𝑝0/2−1)(1−𝛼)
1+𝑝0 ≾ (1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)

3+2𝑙 ,

where the last inequality is because we rewrite 𝑝0 = 2(1 + 𝑙) with 0 ≤ 𝑙 ≤ 𝛿 and 𝑝 = 2 + 2𝛿.

We then consider the case where 𝑮 is not diagonalizable. The idea is similar to what we

did in Section B.3. Let its Jordan decomposition be 𝑮 = 𝑽 𝑱𝑽 −1 = 𝑽 diag{𝑱 1, ⋯ ,𝑱 𝑟}𝑽 −1,

where𝑽 is the non-singular matrix and {𝑱 𝑖}1≤𝑖≤𝑟 collects all Jordan blocks. Recall that {𝒚𝑡}𝑡≥0

is defined in (3.24). Let 𝒚̃𝑡 = 𝑽 −1𝒚𝑡, 𝜺̃𝑡 = 𝑽 −1𝜺𝑡 be transformed vectors. Then the recursion

formula (3.24) becomes

𝒚̃𝑡+1 = (𝑰 − 𝜂𝑡𝑱 )𝒚̃𝑡 + 𝜂𝑡𝜺̃𝑡.

Let (𝒚̃𝑡)𝑘 denote the 𝑘-th coordinate of the vector 𝒚̃𝑡 and so does (𝜺̃𝑡)𝑘. The associated process

is denoted by

( ̄𝒚̃𝑇 )𝑘(𝑟) =
(𝒚̃⌊(𝑇 +1)𝑟⌋)𝑘

√𝑇 𝜂⌊(𝑇 +1)𝑟⌋
for 𝑟 ∈ [0, 1].
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Then it follows that

|||𝒚̄𝑇 ||| = sup
0≤𝑡≤𝑇

‖𝒚𝑡+1‖
√𝑇 𝜂𝑡+1

≾ sup
0≤𝑡≤𝑇

‖𝒚̃𝑡+1‖
√𝑇 𝜂𝑡+1

≤
𝑑∑

𝑘=1
sup

0≤𝑡≤𝑇

|(𝒚̃𝑡+1)𝑘|
√𝑇 𝜂𝑡+1

=
𝑑∑

𝑘=1
|||( ̄𝒚̃𝑇 )𝑘|||,

which implies

̃𝑑(𝒚̄𝑇 ) = 𝜀 ∨ ℙ(|||𝒚̄𝑇 ||| ≥ 𝜀) ≾ 𝜀 ∨
𝑑∑

𝑘=1
ℙ (|||( ̄𝒚̃𝑇 )𝑘||| ≥ 𝜀

𝑑 ) ≤ 𝑑 ⋅
𝑑∑

𝑘=1

̃𝑑(( ̄𝒚̃𝑇 )𝑘).

In the following, we will focus on each coordinate supreme |||( ̄𝒚̃𝑇 )𝑘|||. Without loss of gener-

ality, we assume𝑮 is a matrix of Jordan canonical form, that is, 𝑱 consists of only one Jordan

block (B.5).

Note that the last coordinate process evolves as (𝒚̃𝑡+1)𝑑 = (1−𝜂𝑡𝜆)(𝒚̃𝑡)𝑑 +𝜂𝑡(𝜺̃𝑡)𝑑 . By what

has been established early in this subsection, we have ̃𝑑(( ̄𝒚̃𝑇 )𝑑) ≾ (1+𝑙)⋅𝑇 − 𝑙(1−𝛼)
3+2𝑙 . We are going

to finish the proof by induction. Suppose that we already have ̃𝑑(( ̄𝒚̃𝑇 )𝑖) ≾ (1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)
3+2𝑙 for

the coordinates 𝑖 = 𝑘, 𝑘 + 1, ⋯ , 𝑑, we will show ̃𝑑(( ̄𝒚̃𝑇 )𝑘−1) is also bounded by that quantity.
Using the structure of 𝑱 in (B.5), we have

(𝒚̃𝑡+1)𝑘−1 = (1 − 𝜆𝜂𝑡)(𝒚̃𝑡)𝑘−1 − 𝜂𝑡(𝒚̃𝑡)𝑘 + 𝜂𝑡(𝜺̃𝑡)𝑘−1. (B.6)

To facilitate analysis, we construct a surrogate sequence {(𝒚̂𝑡)𝑘−1} defined by 𝒚̂0 = 0 and

(𝒚̂𝑡+1)𝑘−1 = (1 − 𝜆𝜂𝑡)(𝒚̂𝑡)𝑘−1 + 𝜂𝑡(𝜺̃𝑡)𝑘−1. (B.7)

Again, we have

̃𝑑(( ̄𝒚̂𝑇 )𝑘−1) ≾ (1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)
3+2𝑙 with ( ̄𝒚̂𝑇 )𝑘(𝑟) =

(𝒚̂⌊(𝑇 +1)𝑟⌋)𝑘

√𝑇 𝜂⌊(𝑇 +1)𝑟⌋
for 𝑟 ∈ [0, 1].

Let 𝚫̃𝑡 ∶= (𝒚̃𝑡)𝑘−1−(𝒚̂𝑡)𝑘−1
𝜂𝑡

be their normalized difference. From (B.6) − (B.7), it follows that

𝚫̃𝑡+1 = (1 − 𝜆𝜂𝑡)𝜂𝑡
𝜂𝑡+1

𝚫̃𝑡 −
𝜂2

𝑡
𝜂𝑡+1

⋅ (𝒚̃𝑡)𝑘
𝜂𝑡

There exists an 𝑡0 such that |
(1−𝜆𝜂𝑡)𝜂𝑡

𝜂𝑡+1 | ≤ 1 − 0.5𝜆𝜂𝑡 for any 𝑡 ≥ 𝑡0. In this case, for any 𝑡 ≥ 𝑡0,

|𝚫̃𝑡+1| ≤ (1 − 0.5𝜆𝜂𝑡) ⋅ |𝚫̃𝑡| + 2𝜂𝑡 |
(𝒚̃𝑡)𝑘

𝜂𝑡 | ,

by which one can show the following inequality by induction

sup
𝑡0≤𝑡≤𝑇

|𝚫̃𝑡+1| ≤ 4
𝜆 ⋅ max

{
|𝚫̃𝑡0|, sup

𝑡0≤𝑡≤𝑇 |
(𝒚̃𝑡)𝑘

𝜂𝑡 |}
.
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One can also show that there exists a constant 𝐶3,3 > 0 depending on 𝑡0, 𝜆 and {𝜂𝑡}0≤𝑡≤𝑡0 such

that

sup
0≤𝑡≤𝑡0

|𝚫̃𝑡+1| ≤ 𝐶3,3 ⋅ sup
0≤𝑡≤𝑡0

|
(𝒚̃𝑡)𝑘

𝜂𝑡 | .

As a result, we know that

1
√𝑇

sup
0≤𝑡≤𝑇

|𝚫̃𝑡+1| ≾ 1
√𝑇

sup
0≤𝑡≤𝑇 |

(𝒚̃𝑡)𝑘
𝜂𝑡 | .

which implies

̃𝑑( ̄𝚫̃𝑇 ) ≾ ̃𝑑(( ̄𝒚̂𝑇 )𝑘) ≾ (1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)
3+2𝑙 with ( ̄𝚫̃𝑇 )(𝑟) =

𝚫̃⌊(𝑇 +1)𝑟⌋

√𝑇
for 𝑟 ∈ [0, 1].

Finally, we complete the induction by noting

̃𝑑(( ̄𝒚̃𝑇 )𝑘−1) ≤ 2( ̃𝑑(( ̄𝒚̂𝑇 )𝑘−1) + ̃𝑑( ̄𝚫̂𝑇 )) ≾ (1 + 𝑙) ⋅ 𝑇 − 𝑙(1−𝛼)
3+2𝑙 .

D.5 Proof of Lemma D.2.3

Proof of Lemma D.2.3. Let 𝑀 = sup𝜉∈Ξ √𝒫 ‖𝑯(𝒙⋆, 𝜉)‖2. From Assumption 3.3.3, we have

𝑀 < ∞. By Lemma 3.2.2, it follows that

𝑼 (𝒙⋆, 𝜉) = 𝑯(𝒙⋆, 𝜉) + 𝒫 𝑼 (𝒙⋆, 𝜉) and sup
𝜉∈Ξ

‖𝒫 𝑼 (𝒙⋆, 𝜉)‖ ≤ 𝐶𝑈 .

Therefore, we have

sup
𝜉∈Ξ

𝒫 ‖𝑼 (𝒙⋆, 𝜉)‖2 ≤ sup
𝜉∈Ξ

2 [𝒫 ‖𝑯(𝒙⋆, 𝜉)‖2 + ‖𝒫 𝑼 (𝒙⋆, 𝜉)‖2] ≤ 2(𝑀2 + 𝐶2
𝑈 ).

The last equation implies

𝔼[‖𝒖𝑡,2‖2|ℱ𝑡−1] = 𝔼[‖𝑼 (𝒙⋆, 𝜉𝑡) − 𝒫 𝑼 (𝒙⋆, 𝜉𝑡−1)‖2|ℱ𝑡−1]

≤ 𝔼[‖𝑼 (𝒙⋆, 𝜉𝑡)‖2|ℱ𝑡−1] = 𝒫 ‖𝑼 (𝒙⋆, 𝜉𝑡−1)‖2 ≤ 2(𝑀2 + 𝐶2
𝑈 )

is uniformly bounded. As a result,

𝑞(𝜉𝑡−1) ∶= 𝔼 [(𝜽⊤𝑮−1𝒖𝑡,2)2|ℱ𝑡−1] ≤ 2‖𝜽‖2
∗‖𝑮−1‖2(𝑀2 + 𝐶2

𝑈 ) (D.12)

is uniformly bounded and thus has any 𝑙-th order moment where 𝑙 > 0. For simplicity, we set
𝑋𝑡 ∶= 𝑞(𝜉𝑡). From (D.12), we know that the sequence {𝑋𝑡 − 𝔼𝑋𝑡}𝑡≥0 has uniform bounded
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1 + 𝑙-th order moments for any 𝑙 ≥ 0. We denote its centralized 𝐿1+𝑙-norm by

𝑀1+𝑙 ∶= sup
𝑡≥0

(𝔼|𝑋𝑡 − 𝔼𝑋𝑡|1+𝑙)
1

1+𝑙 = sup
𝑡≥0

(𝔼|𝑞(𝜉𝑡) − 𝔼𝑞(𝜉𝑡)|1+𝑙)
1

1+𝑙 .

On the other hand, since we assume 𝜉0 ∼ 𝜋, then 𝜉𝑡 ∼ 𝜋 and thus

𝔼𝑞(𝜉𝑡) = 𝔼𝜉∼𝜋,𝜉′∼𝑃 (𝜉,⋅)[(𝜽⊤𝑮−1(𝑼 (𝒙⋆, 𝜉′) − 𝒫 𝑼 (𝒙⋆, 𝜉))2] = 𝜽⊤𝑮−1𝑺𝑮−⊤𝜽.

For simplicity, we denote 𝑞⋆ = 𝜽⊤𝑮−1𝑺𝑮−⊤𝜽. Our target quanitity is

𝔼 sup
𝑡≤𝑇

|
|
||

𝑡∑
𝑖=0

{𝑞(𝜉𝑖) − 𝔼𝑞(𝜉𝑖)}
|
|
||

= 𝔼 sup
𝑡≤𝑇

|
|
||

𝑡∑
𝑖=0

(𝑋𝑖 − 𝔼𝑋𝑖)
|
|
||
,

where the expectation 𝔼(⋅) is taken with respect to all randomness. To that end, we will make
use of moment inequalities for fast mixing random variables in Lemma D.5.1. Before starting

the analysis, we first introduce additional notations and preliminaries. We denote a given one-

dimensional random variable 𝑋 ∈ ℝ by 𝑄𝑋(⋅) as the quantile function of |𝑋|. It is the inverse
of the function 𝑥 → ℙ(|𝑋| > 𝑥), defined by 𝑄𝑋(𝑢) = inf{𝑥 ∶ ℙ(|𝑋| > 𝑥) ≤ 𝑢}. We present

a useful tail bound for 𝑄(𝑢) ∶= sup𝑡≥0 𝑄𝑋𝑡−𝔼𝑋𝑡(𝑢) which mainly follows from the Markov

inequality.

𝑄(𝑢) ≤
(

1
𝑢sup𝑡≥0

𝔼|𝑞(𝜉𝑡) − 𝔼𝑞(𝜉𝑡)|1+𝑙
)

1
1+𝑙

= 𝑀1+𝑙𝑢
− 1

1+𝑙 for any 𝑙 ≥ 0. (D.13)

For a sequence of real numbers {𝛼𝑡}𝑡≥0, we define by the function 𝛼−1(𝑢) the counting function
on the indexes 𝑡’s on which 𝛼𝑡 is larger then a given input 𝑢, that is, 𝛼−1(𝑢) ∶=

∑∞
𝑡=0 1𝑢<𝛼𝑡 .

Definition D.5.1 (𝛼-mixing coefficients). Given two 𝜎-field 𝒜 and ℬ, the strong mixing co-

efficient between them is defined by

𝛼(𝒜 , ℬ) ∶= 2 sup{Cov(1𝐴, 1𝐵) ∶ 𝐴 ∈ 𝒜, 𝐵 ∈ ℬ}

where 1𝐴 is the indicator function of the event 𝐴 and similar is 1𝐵.

Definition D.5.2 (Strong mixing coefficients[174]). Let {𝑋𝑡}𝑡>0 be a sequence of real-valued

random variables. Set ℱ l
𝑘 = 𝜎({𝑋𝑡}𝑡≤𝑘) and ℱ u

𝑙 = 𝜎({𝑋𝑡}𝑡≥𝑙). The strong mixing coefficients
of {𝑋𝑡}𝑡>0 are denoted by {𝛼𝑡}𝑡≥0 with definition as what follows

𝛼0 = 1/2 and 𝛼𝑡 = sup
𝑘∈ℕ

𝛼(ℱ l
𝑘, ℱ u

𝑘+𝑡) for any 𝑡 ≥ 1.

Lemma D.5.1 (Theorem 6.3 in Rio [175]). Let {𝑋𝑡}𝑡>0 be a sequence of real-valued and cen-
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tered random variables and {𝛼𝑡}𝑡≥0 be the corresponding strong mixing coefficients. Suppose

that, for some 𝑝 ≥ 2, sup𝑡>0 𝔼|𝑋𝑡|𝑝 < ∞. Then with 𝑆𝑘 =
∑𝑘

𝑡=1 𝑋𝑡, we have

𝔼
(

sup
1≤𝑘≤𝑛

|𝑆𝑘|𝑝
)

≤ 𝑎𝑝
⎛
⎜
⎜
⎝

𝑛∑
𝑖=1

𝑛∑
𝑗=1

|Cov (𝑋𝑖, 𝑋𝑗)|
⎞
⎟
⎟
⎠

𝑝
2

+ 𝑛𝑏𝑝 ∫
1

0
[𝛼−1(𝑢) ∧ 𝑛]

𝑝−1 𝑄𝑝(𝑢)𝑑𝑢,

where

𝑄 ∶= sup
𝑡>0

𝑄𝑋𝑡 , 𝑎𝑝 = 𝑝4𝑝+1(𝑝 + 1)𝑝/2 and 𝑏𝑝 = 𝑝
𝑝 − 14𝑝+1(𝑝 + 1)𝑝−1.

Lemma D.5.1 replies on the concept of strong mixing coefficients which we introduce in

Definition D.5.2. By Lemma D.5.2, we know that the the strong mixing coefficients of {𝜉𝑡}𝑡≥0

is mixing exponentially fast. With this result, we can compute the bounds in Lemma D.5.1 as

follows.

LemmaD.5.2 (Fast mixing). Under Assumption 3.2.4, the strongmixing coefficients of {𝜉𝑡}𝑡≥0

vanishes exponentially fast, that is, 𝛼𝑡 ≤ 𝜅𝜌𝑡 with 𝜅 > 0 and 𝜌 ∈ [0, 1) given in Assump-

tion 3.2.4.

We first compute that for any 𝑖 < 𝑗,

Cov(𝑋𝑖, 𝑋𝑗) = 𝔼(𝑋𝑖 − 𝔼𝑋𝑖)(𝑋𝑗 − 𝔼𝑋𝑗)
(𝑎)= 𝔼 [(𝑋𝑖 − 𝔼𝑋𝑖)𝔼[𝑋𝑗 − 𝔼𝑋𝑗|ℱ𝑖]]
(𝑏)= 𝔼(𝑋𝑖 − 𝔼𝑋𝑖)(𝒫 𝑗−𝑖𝑋𝑖 − 𝔼𝑋𝑗)

= 𝔼[(𝑋𝑖 − 𝔼𝑋𝑖)(𝒫 𝑗−𝑖𝑋𝑖 − 𝑞⋆)]
(𝑐)
≤ 𝔼|𝑋𝑖 − 𝔼𝑋𝑖| ⋅ 𝜅𝜌𝑗−𝑖 sup

𝜉
|𝑞(𝜉) − 𝑞⋆|

≤ 𝜅𝑀1𝑀∞𝜌𝑗−𝑖,

where (𝑎) uses the law of total expectation and the notation ℱ𝑖 = 𝜎({𝜉𝑡}𝑡≤𝑖), (𝑏) uses the
equality 𝔼[𝑋𝑗|ℱ𝑖] = 𝒫 𝑗−𝑖𝑋𝑖 due to the Markov property, and (𝑐) follows from Lemma 3.2.1.

Therefore,

𝑇∑
𝑖=1

𝑇∑
𝑗=1

|Cov(𝑋𝑖, 𝑋𝑗)| =
𝑇∑

𝑖=1
𝔼|𝑋𝑖 − 𝔼𝑋𝑖|2 + 2

∑
1≤𝑖<𝑗≤𝑛

|Cov(𝑋𝑖, 𝑋𝑗)|

≾ 𝑇 𝑀2
2 + 2𝜌𝜅𝑀1𝑀∞

∑
1≤𝑖<𝑗≤𝑇

𝜌𝑗−𝑖
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= 𝑇 𝑀2
2 + 2𝜌𝜅𝑀1𝑀∞

𝑇 −1∑
𝑖=1

𝑇 −𝑖−1∑
𝑘=0

𝜌𝑘

≤ 𝑇 (𝑀2
2 + 2𝜌𝜅𝑀1𝑀∞

1 − 𝜌 ) ≤ 𝑇 (𝑀2
2 + 2𝜅𝑀1𝑀∞𝑡mix) . (D.14)

Now, we apply Lemma D.5.1 with 𝑝 = 2 and obtain

𝔼 sup
𝑡≤𝑇

|
|
||

𝑡∑
𝑖=0

{𝑋𝑖 − 𝔼𝑋𝑖}
|
|
||

≤
⎧⎪
⎨
⎪⎩

𝔼 sup
𝑡≤𝑇

|
|
||

𝑡∑
𝑖=0

{𝑋𝑖 − 𝔼𝑋𝑖}
|
|
||

2⎫⎪
⎬
⎪⎭

1
2

≾
⎧⎪
⎨
⎪⎩

𝑇∑
𝑖=1

𝑇∑
𝑗=1

|Cov(𝑋𝑖, 𝑋𝑗)| + 𝑇 ∫
1

0
𝛼−1(𝑢)𝑄(𝑢)2𝑑𝑢

⎫⎪
⎬
⎪⎭

1
2

(𝑎)
≤

⎧⎪
⎨
⎪⎩

𝑇 (𝑀2
2 + 2𝜅𝑀1𝑀∞𝑡mix) + 𝑇 ∫

1

0

⎛
⎜
⎜
⎝

∞∑
𝑗=0

1𝑢<𝛼𝑗

⎞
⎟
⎟
⎠

𝑄(𝑢)2𝑑𝑢
⎫⎪
⎬
⎪⎭

1
2

=
⎧⎪
⎨
⎪⎩

𝑇 (𝑀2
2 + 2𝜅𝑀1𝑡mix) + 𝑇

∞∑
𝑗=0

∫
𝛼𝑗

0
𝑄(𝑢)2𝑑𝑢

⎫⎪
⎬
⎪⎭

1
2

(𝑏)
≤

⎧⎪
⎨
⎪⎩

𝑇 (𝑀2
2 + 2𝜅𝑀1𝑀∞𝑡mix) + 1 + 𝑙

𝑙 − 1𝑀2
1+𝑙𝑇

∞∑
𝑗=0

𝛼
𝑙−1
1+𝑙
𝑗

⎫⎪
⎬
⎪⎭

1
2

(𝑐)
≤

{
𝑇 (𝑀2

2 + 2𝜅𝑀1𝑀∞𝑡mix) + 𝜅
𝑙−1
1+𝑙

1 − 𝜌𝑀2
1+𝑙 (

1 + 𝑙
𝑙 − 1)

2
𝑇

}

1
2

≾ 𝑇
1
2 {𝑀2

2 + 𝑡mix (𝜅𝑀1𝑀∞ + 𝜅
𝑙−1
1+𝑙 𝑀2

1+𝑙 (
1 + 𝑙
𝑙 − 1)

2

)}

1
2

(𝑑)
≾ √𝑇 (𝑀2

2 + 𝜅𝑡mix (𝑀1𝑀∞ + 𝑀2
∞)) ≾ √𝑇 (1 + 𝑡mix)

(𝑒)
≤ √𝑇 𝑡mix,

where (𝑎) holds due to the bound (D.14) for the sum of covariance, and (𝑏) holds due to the

inequality (D.13), and (𝑐) uses Lemma D.5.2 and the inequality that (1 − 𝜌
𝛿−1
𝛿+1 )

−1
≤ 1

1−𝜌
𝛿+1
𝛿−1 ,

(𝑑) follows by setting 𝑙 → ∞, and (𝑒) uses the fact that 𝑡mix ≥ 1 when 𝑡mix > 0.

In the end, we provide the proof for Lemma D.5.2.

Proof of Lemma D.5.2. From Section 3 in[176], we know that if {𝜉𝑡}𝑡>0 is a (not necessarily

stationary) Markov chain, then by the Markov property and an elementary argument,

𝛼𝑡 = sup
𝑘∈ℕ

𝛼(𝜎(𝜉𝑘), 𝜎(𝜉𝑘+𝑡)).
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By Definition D.5.1, it follows that

𝛼(𝜎(𝜉𝑘), 𝜎(𝜉𝑘+𝑡)) = 2 sup{Cov(1𝜉𝑘∈𝐴, 1𝜉𝑘+𝑡∈𝐵) ∶ both 𝐴, 𝐵 measurable} .

In the following, we fix 𝑘 ∈ ℕ and two measurable sets 𝐴, 𝐵. For simplicity, we denote

ℎ1(𝜉𝑘) = 1𝜉𝑘∈𝐴 − ℙ(𝜉𝑘 ∈ 𝐴) and ℎ2(𝜉𝑘+𝑡) = 1𝜉𝑘+𝑡∈𝐵 − ℙ(𝜉𝑘+𝑡 ∈ 𝐵). It then follows that

Cov(1𝜉𝑘∈𝐴, 1𝜉𝑘+𝑡∈𝐵) = 𝔼ℎ1(𝜉𝑘)ℎ2(𝜉𝑘+𝑡) = 𝔼[ℎ1(𝜉𝑘)𝔼[ℎ2(𝜉𝑘+𝑡)|ℱ𝑘]]

= 𝔼[ℎ1(𝜉𝑘)𝒫 𝑡ℎ2(𝜉𝑘)]

= 𝔼[ℎ1(𝜉𝑘)(𝒫 𝑡ℎ2(𝜉𝑘) − 𝔼𝜉∼𝜋ℎ2(𝜉))] + 𝔼ℎ1(𝜉𝑘) ⋅ 𝔼𝜉∼𝜋ℎ2(𝜉)
(𝑎)= 𝔼[ℎ1(𝜉𝑘)(𝒫 𝑡ℎ2(𝜉𝑘) − 𝔼𝜉∼𝜋ℎ2(𝜉))]

≤ 𝔼|ℎ1(𝜉𝑘)| ⋅ |𝒫 𝑡ℎ2(𝜉𝑘) − 𝔼𝜉∼𝜋ℎ2(𝜉)|
(𝑏)
≤ 𝔼|ℎ1(𝜉𝑘)| ⋅ 𝜅𝜌𝑡 ≤ 𝜅𝜌𝑡,

where (𝑎) uses 𝔼ℎ1(𝜉𝑘) = 0 and (𝑏) uses Lemma 3.2.1 and the fact that both ℎ1(⋅) and ℎ2(⋅)
are uniformly bounded by 1. Taking maximum over all 𝑘 ∈ ℕ and measurable sets 𝐴, 𝐵, we

conclude that 𝛼𝑡 ≤ 𝜅𝜌𝑡.

D.6 Additional Experimental Details

Further details for Table 3.2 Each timewe initialize𝒙0 as a zero vector, set 𝜂𝑡 = 𝑑−0.5𝑡−0.505,

and always abandon the first 5% iterates for a warm up. We set 𝑑 = 10 and 𝜌𝜀 = 0.9 in all

experiments. The bootstrap method discards the first 400 samples as a warm up. According

to Ramprasad, Li, Yang, Wang, Sun, Cheng [43], we set the step size as 𝜂𝑡 = 0.75 ⋅ 𝑡−0.75 and

use 𝐵 ∈ {10, 100, 200}.

Details bout Figure 3.3 The randomMDP is generated in a similar way as[21]. In particular,

for each (𝑠, 𝑎) pair, the random reward 𝑅(𝑠, 𝑎) ∼ 𝒩 (𝑟(𝑠, 𝑎), 1) is normally distributed with the
mean 𝑟(𝑠, 𝑎) sampled from [0, 1] uniformly initially and the transition probability 𝑃 (𝑠′|𝑠, 𝑎) =
𝑢(𝑠′)/

∑
𝑠 𝑢(𝑠), where 𝑢(𝑠) 𝑖.𝑖.𝑑.∼ 𝒰(0, 1). We choose the MDP size to be |𝒮 | = |𝒜| = 5 and

𝛾 = 0.6. More iterations are required to conduct statistical inference in larger MDPs with

larger 𝛾 . We choose a zero initial Q-value function. We abandon the first 4000 iterates as a

warm up and use the following 50000 iterates to conduct statistical inference. We repeat the

process for 200 times and use the polynomial step size 𝜂𝑡 = (𝑡 + 1)−0.51 and zero initial point

each time.
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Details bout Figure 3.4 We abandon the first 3000 iterates as a warm-up and use the fol-

lowing 40000 iterates to conduct statistical inference. Here we set 𝑑 = 5. Both 𝒂0 and 𝒙0

are initialized as zero vectors. Larger 𝑑 requires more iterations and more carefully parameter

tuning to produce comparable performance. We set the step size as 𝜂𝑡 = 𝑡−0.501 for all the

experiments in this figure. The target parameter is 𝜽⊤𝒙⋆ where 𝜽 = (1, ⋯ , 1)⊤/√𝑑 ∈ ℝ𝑑 and

𝒙⋆’s coordinates evenly spread in the interval [0, 1].

Details bout Figure 3.5 The problem dimension is 𝑑 = 5where both𝒂0 and𝒙0 are initialized

as zero vectors. The target parameter is 𝜽⊤𝒙⋆ where 𝜽 = (1, ⋯ , 1)⊤/√𝑑 ∈ ℝ𝑑 and 𝒙⋆’s

coordinates evenly spread in the interval [0, 1]. For experiments in the first row, we abandon
the first 3000 iterates as a warm-up and use the following 50000 iterates to conduct statistical

inference. The step size 𝜂𝑡 = 𝑡−𝛼. For experiments in the second row, we again abandon

the first 3000 iterates as a warm-up and use the following 50000 iterates to conduct statistical

inference. The step size 𝜂𝑡 = 𝜂𝑡−0.501. For experiments in the last row, we again abandon

the first 𝑁 iterates as a warm-up and use the following 50000 iterates to conduct statistical

inference. The step size 𝜂𝑡 = 𝑡−0.501.
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