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ABSTRACT

Online Statistical Inference for Federated Learning and

Nonlinear Stochastic Approximation

Xiang Li (Statistics)
Directed by: Prof. Zhihua Zhang

ABSTRACT

This dissertation investigates the implementation of popular stochastic iterative algo-
rithms in machine learning and statistics for online statistical inference.

In the first part, we focus on Federated Learning (FL), a relatively new field of distributed
machine learning that allows end devices (such as smartphones and portable devices) to col-
laboratively learn a shared model without sharing locally generated data points. We analyze
Local SGD, a multi-round estimation procedure that uses intermittent communication to im-
prove communication efficiency, and explore how to construct asymptotically valid confidence
intervals using synchronized iterates. We present two methods for constructing these intervals:
the plug-in method, which estimates the asymptotic variance matrix and constructs confidence
intervals via the established asymptotic normality, and random scaling, which uses informa-
tion from the entire Local SGD trajectory to construct an asymptotically pivotal statistic. To
support the second method, we establish a functional central limit theorem that shows the
partial-sum process of averaged Local SGD iterates weakly converges to a scaled Brownian
motion under the weakest bounded 2 + §-moment assumption on stochastic gradients. Our
results demonstrate that both methods are communication-efficient and applicable to online
data. Furthermore, once communicating at an appropriate frequency, Local SGD achieves
both statistical and communication efficiency simultaneously.

In the second part, we investigate the statistical inference of nonlinear stochastic approx-
imation algorithms using a single trajectory of Markovian data. Our approach has practical
applications in various scenarios, such as Stochastic gradient descent (SGD) on autoregres-
sive data and asynchronous Q-Learning. We estimate the target parameter using the standard
stochastic approximation (SA) framework and establish a functional central limit theorem for
its partial-sum process, denoted by ¢,. To further support this theory, we provide, on one

hand, a semi-parametric efficient asymptotic variance matrix lower bound to demonstrate the

III
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variance optimality of the process. On the other hand, we characterize the convergence rate
of weak convergence of this stochastic process under the Lévy-Prokhorov metric, quantifying
some influencing factors. The functional central limit theorem serves as the foundation for
our inference method. By selecting any continuous scale-invariant functional f, the asymp-
totic pivotal statistic f(¢;) becomes accessible, enabling us to construct an asymptotically
valid confidence interval. We propose a family of functionals f,,, indexed by m € N, and
analyze the corresponding rejection probability through theoretical and numerical means. Our

simulation results demonstrate the validity and efficiency of our method.

KEY WORDS: Federated learning, Statsitical inference, Nonlinear stochastic approximation,

Functional central limit theorem
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Chapter 1 Introduction

Chapter 1 Introduction

Statistical estimation and statistical inference are two fundamental concepts in statistics
that are used to make sense of data and draw meaningful conclusions from it!!-2]. Statistical
estimation is the process of using sample data to estimate unknown parameters of a popula-
tion, such as its mean or standard deviation. This is typically done using point estimates. On
the other hand, statistical inference is the process of using sample data to draw conclusions
about the population from which the sample was drawn. This can involve hypothesis testing,
where we test a claim about a population parameter, or constructing confidence intervals to
estimate the uncertainty around our estimates. Typically, statistical inference is more difficult
than statistical estimation because the former needs to figure out the inherent uncertainty and
variability in real-world data while the later only cares about a point estimation.

In nowadays modern statistics, both of them are facing great challenges due to the incred-
ibly large data volume generated by ubiquitous man-machine interaction®]. Browsers gather
shopping history, cellphones collect keyboard inputs, potable devices record sporting activity,
and, institutions (e.g., banks and hospitals) copy service information. In these real applications,
two difficulties arises, namely the large data volume and its online generation.

The first challenge is related to the size of the dataset, which may be too large to fit into
memory or process on a single machine. In these cases, a distributed setting must be considered
where data points are generated on different devices. Once data points are generated locally,
it would be privacy-destructive to upload these raw data points to an unauthenticated central
server (that often locates in privates companies or governmental institutes). Furthermore, it vi-
olates privacy and policies because many rigorous data protection regulations are launched to
regulate personal data usage such as EU/UK General Data Protection Regulation (GDPR)!*!,
To address this difficulty, Federated Learning (FL) has been proposed as a solution, which
allows multiple devices to collaboratively learn a shared statistical model without sharing lo-
cal datasets directly!®. In this way, FL can protect sensitive information that data contain,
such as personal identity information and state of health information, from unauthorized ac-
cess of service providers. However, limited data access, together with memory constraints,
communication budget, and computation restrictions, makes traditional statistical estimation
and inference methods inapplicable in the FL scenariol®7].

The second challenge arises when data points are generated continuously, making it phys-
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ically impossible to collect them all in one dataset pool. Selecting only a small portion of these
points can result in loss of information and statistical power. Additionally, as new data points
arrive, it becomes computationally inefficient to redo the estimation from the expanded dataset,
which can cause significant delays in real-time applications such as online recommendation
and autonomous driving. To address this challenge, we need an estimation procedure that is
adaptive to the streaming data setting, allowing us to do incremental updates when new data
points arrive without requiring a full re-estimation of the model. This is the essence of online
learning®! and reinforcement learning™!, which enable agents to make decisions in real-time

based on incoming data while adapting to changes in the underlying environment.

To handle these two challenges posed by a big volume of streaming data, efficient on-
line algorithms have been the developed for statistical estimation. For example, in federated
learning, Local SGD is proposed to improve communication efficiency by decreasing commu-

(191 More specifically, Local SGD runs stochastic gradient descent (SGD)

nication frequency
independently in parallel on different clients and averages the sequences only once in a while.
It has been shown to have superior performance in training efficiency and scalabilityl'!), and

[12-16]

converge fast in terms of communication . In reinforcement learning, Q-Learning is per-

haps the most popular model-free approach to estimate the optimal value function, which is

the optimal expected accumulated rewards of taking a given action in a given statel!”!

. In prac-
tice, one key feature of Q-learning is that its observed data is generated from a trajectory of
Markov chain. More specifically, by performing an action at the current state, only an instant
reward variable and the next state are observed, which implies only incomplete and noisy data
are available. It has been show that once assuming a bounded mixing time for the underlying

Markov chain, non-asymptotic convergence rates are still accessible!!3-211,

Despite significant progress in achieving fast and even optimal non-asymptotic conver-
gence guarantees for both FL and RL, conducting statistical inference in these contexts remains
an open problem. The main difficulty is to quantify the randomness of a proposed estimate

and further to propose an effective online procedure to construct confidence intervals.

In the case of FL, an effective statistical inference method must balance communication
efficiency (that is less communication starving), statistical heterogeneity (that is adaptive to
the different local data distributions), and statistical efficiency, with the goal of achieving the
Cramér-Rao lower bound. A classic approach is one-shot averaging or divide-and-conquer
method that performs only one communication to average the output of each devices for dis-

tributed tasks?>28). As equivalent to the single-agent setting, one-shot averaging is simple
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and easy to analyze, whose asymptotic convergence has been studied extensively in the early

29-321 Typically, one-shot averaging works well when the bias of the predictor returned

yearsl
by each client is much smaller than the variancel**). When each device has a sufficient number
of data that are generated independently from (nearly) the same distribution, a small estimation

24,341 However, the statistical heterogeneity in FL is likely

error is well guaranteed in theoryl
to render the predictor outputted by each device a larger bias and makes the one-shot average
invalid. Another approach focuses on a multi-communication procedure due to its stable per-

35-36]  An extreme example is parallel

formance and weak requirement on local dataset sizel
SGDP7! that alternates between one independent step of SGD in parallel and one synchro-
nization. However, the feature that parallel SGD (as well as its many variants) performs one
communication per round would incur huge communication costs in an online setting where
the data arrive sequentially. By contrast, Local SGD performs one communication after several
(even an increasing number of) rounds and intuitively improve the communication efficiency.
Though Local SGD and its many variants improve communication efficiency for many feder-
ated estimation tasks, no works consider to quantify the randomness of obtained estimates, let

alone perform statistical inference. To the best of our knowledge, no inference method for FL

has met the criteria mentioned early.

In RL, a satisfactory statistical inference method must not only be statistically efficient
but also be able to handle trajectory Markovian data. Early works in RL often rely on the
generator assumption, which assumes independent rewards and independent next states for all
state-action pairs. However, even with this assumption of independence and completeness,
quantifying the randomness for RL algorithms in an online manner is challenging, as there is
no direct access to the curvature information for estimating the asymptotic variance. In con-
trast, in the case of stochastic gradient descent (SGD), once the Hessian matrix is available, one
can use a plug-in estimator or a batch-mean estimator for the asymptotic variance under i.i.d.
datal®®-3%1. To address this issue in RL, most existing works on statistical inference mainly
rely on bootstrap-based methods, where multiple perturbed iterates are maintained to approx-
imate the asymptotic variance matrix when the number of perturbed iterates is sufficiently

40-43] " However, this line of study has several limitations. First, most existing works

largel
focus on the off-policy evaluation (OPE) problem, where the agent evaluates the performance
of a hypothetical policy using only offline i.i.d. log data. As OPE is essentially a linear prob-
lem, it is unclear whether this approach can be extended to nonlinear problems. Second, few

works consider the Markovian data setting. One exception is[43], which, however, still focuses
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on OPEs. Lastly, bootstrap-based methods require multiple oracles that the agent is able to
evaluate the values of stochastic incremental updates at different parameters while keeping
the source of randomness unchanged. This oracle is only feasible in environments where the
agent can fully control the environment. Without complete control of the environment, there is
currently no known method to estimate the asymptotic variance in the presence of Markovian
data. To summarize, conducting statistical inference under the existence of Markovian data
and without multiple oracles remains an open research problem.

In this thesis, we are motivated to tackle the challenge of conducting statistical inference
in these two challenging settings. The contributions of the thesis related both to theoretical

and practical sides of our findings are listed in the next section along with a brief explanation.

1.1 Contributions of the Thesis

Before we give a detailed overview with precise definitions and explanations of the con-
cepts briefly introduced above, we present the list of the main contributions of the thesis from
a high-level perspective, and we cite the related publications. Detailed descriptions for each

point will be given in Sections 2.1.1 and 3.1.1 respectively.

Statistical inference for FL. In order to perform statistical inference in federated learning
(FL), an optimization algorithm must be chosen first to estimate the target parameter. Local
SGD is selected here due to its simplicity and representativeness in FL. The reason is that as
the key feature of Local SGD, local updates or intermittent communication has motivated a
lot federated algorithms to improve communication efficiency in application such as device

[12

sampling!> *4, distributed PCA*3-*¢]. non-convex optimization!!?], and minimax optimiza-

ti On[47-49]

. Local SGD is the simplest in the sense that it is the very combination of local
updates and SGD. It runs SGD independently in parallel on different devices and averages the
sequences only occasionally[s].

Chapter 2 focuses on Local SGD and establishes its asymptotic normality. We find that
local updates, or intermittent communication, introduce an interesting trade-off between statis-
tical and communication efficiency (see Section 2.3.1 in Chapter 2). By decaying the commu-
nication frequency at an appropriate rate, Local SGD can achieve both efficiency measures.
Based on the asymptotic normality, an online plug-in estimator for the asymptotic variance

is proposed. When the second-order information, such as the Hessian matrix, is not avail-

able, a non-parametric inference method is then proposed. The key idea is to construct an
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asymptotically pivotal statistic by using information along the whole Local SGD trajectory.
To support this method, a functional central limit theorem is established, which shows that
the averaged iterates of Local SGD converge weakly to a scaled Brownian motion under the
currently weakest 2 + 6§ moment condition on stochastic gradients. This method is more com-
putationally efficient and memory-friendly than the plug-in method. Numerical experiments
are conducted to illustrate both inference methods.

This contribution is based on the following publication!>"]

. Before preparing this work
in statistical inference for Local SGD, the author has already applied local updates for other
applications, such as providing the non-asymptotic convergence rate for a variant of Local
SGDPY, and proposing efficient algorithms for decentralized optimization'?! or distributed

PCA]. To maintain simplicity and relevance, these papers are not included in this thesis.
[50]

Li X, Liang J, Chang X, Zhang Z. Statistical estimation and online inference via Local
SGDI[C]// Conference on Learning Theory: vol. 178. [S.1.]: PMLR, 2022: 1613-1661.

Statistical inference for nonlinear stochastic approximation In Chapter 3, we adopt a
more general approach to study Q-Learning by examining it through the lens of nonlinear
stochastic approximation (SA). Q-Learning can be seen as a recursive stochastic procedure
that aims to find the root of a given nonlinear equation. Nonlinear stochastic approximation is

52541 Since Q-Learning is an

a class of methods that has been studied for the past two decadesl
important case of the single trajectory case, the absence of multiple oracles makes it difficult
to apply previous online bootstrap methods**). To address this issue, we propose to utilize
trajectory information to construct an asymptotically pivotal statistic that allows us to obtain
confidence intervals by inverting it. To support this theory, we establish a functional central
limit theorem for the partial-sum process of nonlinear SA methods, denoted by ¢, that shows
weak convergence to a scaled Brownian motion, even if the data is generated along a Markov
chain. To further support our findings, we provide a semiparametric efficient lower bound and
a non-asymptotic upper bound on weak convergence, measured in the Lévy-Prokhorov metric.
By selecting any continuous scale-invariant functional f, we can make the asymptotic pivotal
statistic f(¢r) accessible, which allows us to construct an asymptotically valid confidence
interval. We analyze the rejection probability of a family of functionals f,, indexed by m € N
through theoretical and numerical means, and the simulation results demonstrate the validity
and efficiency of our method.

[55]

This contribution is based on the following paper'>~'. It is a follow-up work to our previ-

ous conference publication®*'!, where we analyze (synchronous) Q-Learning under a weaker
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condition, namely the synchronous setting where a generative model produces independent

[56]

samples in every iteration'”>!. To overcome the difficulty brought by Markov data and itera-

tive algorithms, we made several technical extensions. See Section 3.1.1 for more details.
[55]

Li X, Liang J, Zhang Z. Online statistical inference for nonlinear stochastic approxima-
tion with Markovian data[J]. ArXiv preprint arXiv:2302.07690, 2023.

« 2I1i X, Yang W, Jiadong L, Zhang Z, Jordan M . A statistical analysis of Polyak-Ruppert
averaged Q-learning[C]//International Conference on Artificial Intelligence and Statistics:
vol. 206. [S.1. : s.n.], 2023.

Other paper organization In Chapter 4, we provide a brief comparison of different infer-
ence methods and highlight potential future work. To facilitate comprehension of our inference
methods, we introduce some preliminaries on weak convergence in metric spaces. These con-
cepts are essential to understanding our proposed methods. All notations will be introduced in

the corresponding chapters.

1.2 Preliminaries on Weak Convergence in Metric Spaces

We will introduce some basic knowledge of weak convergence in metric spaces. See
Section 12-15 in the book of Billingsley °7! for a detailed introduction.

A Polish space is a topological space that is separable, complete, and metrizable. Let
Dio.11.re = {¢ : cadlag function ¢(r) € R4, r e [0,1]}

collect all d-dimensional functions which are right continuous with left limits. These functions
are also known as cadlag functions. The J, Skorokhod topology equips Dy 1) ga With the
Skorokhod metric dg such that (D |, ra, ds) 1s a Polish space and & 1) ra 18 its Borel o-field
(the o-field generated by all open subsets) in the Skorokhod metric. In particular, denoting by
A the class of strictly increasing continuous mappings 4 : [0, 1] — [0, 1] with A(0) = 0 and
A(1) = 1, we have for any ¢, ¢, € Dy |1 ra>

A(t) — A(s)
t —_

In

: SUP] 1 (A1) - ¢z(t)||} - (LD

t€[0,1

d , = inf
s(¢1.9-) /%relAmax{ sup

0<s<t<1

An important closed subset of Dy ) ga is
Cio.11re *= {¢ : continuous ¢(r) € RY, r e [0,11},

which collects all d-dimensional continuous functions defined on [0, 1]. The uniform topology
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equips Cg 1) re With the uniform metric [|[@|l| := sup,o1; [I@()|| such that (C 1y ra, Ill-[I)
is a Polish space. Furthermore, we have dg(¢, ¢,) < |||¢1 - ¢2||| for any ¢, ¢, € D 1 rd>
implying the J; Skorokhod topology is weaker than the uniform topology. Unfortunately,
(Dro.17.re5 llI-ll) is not separable and we have Dy jjga & €jo.11re With € 1) ra the Borel
o-field in the uniform metric.

Any random element ¢, € D ;; re introduces a probability measure on Dy, ;; g« denoted
by Z(¢,) such that (D 1) rda> Djo.11,re> Z (@) becomes a probability space. We say a se-
quence of random elements {¢,},50 € Do 11 ra weakly converges to ¢, if for any bounded,
continuous, Py 1} ga-measurable functional f : Dy j;re = R, we have Ef(¢pr) — Ef (@) as
T — oo. The condition is equivalent to that any finite-dimensional projections of ¢p;- converge

in distribution in the sense that for any given integern > 1 andany 0 < ¢; < - <t, < 1,

when T goes to infinity,

(Pr @), pr(ty), -+, dr(1,) 4 (@), P(1y), -+, (). (1.2)

We denote weak convergence by ¢ A ¢. If further ¢ € Cyy ) ra, We have ¢r it ¢ if
and only if Ef(¢y) — Ef(¢) for any bounded, continuous, & ;) ge-measurable functional

d
f  Dyo.jre = R. Therefore, if ¢pp 5 ¢ € Cyy 1 re, we then have f(¢pr) — f(¢) for any

/|- ]||-continuous functional f. The Slutsky theorem also holds here; for qb(Tl), (Tz) € Dyo1re
d

satisfying ¢ = ¢ and dg(¢. ¢i)) = 0, we have ¢ = ¢.
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Chapter 2 Statistical Estimation and Online Inference via

Local SGD

2.1 Introduction

Federated Learning (FL) is a distributed computing paradigm that allows for collaborative
training of a global model using data held by remote clients, as described by McMahan, Moore,
Ramage, Hampson, y Arcas [°!. FL ensures the protection of sensitive information contained
in local datasets by only allowing cooperation with a central server, without sharing the data.
However, limited data access, memory constraints, communication budget, and computation
restrictions make traditional statistical estimation and inference methods inapplicable in the

ol*¢71  This chapter aims to address this challenge by studying how to perform

FL scenari
statistical estimation and inference in the FL setting.

In a typical FL system, a pool of K clients each has a local dataset consisting of indepen-
dently and identically distributed (i.i.d.) data from some unknown distribution &, . The central
server faces a distributed optimization problem, where the goal is to minimize a user-specified

loss function over all clients, that is

K K
min £ =Y pefi®) 1= Y piEgo X80 2.1)

k=1 k=1

where p,, is the weight of the k-th client and f;(; &;) is the user-specified loss with &, being
the generated data point from &,. The FL scenario poses a challenge due to the decentral-
ized nature of data generation, resulting in statistical heterogeneity among local data distribu-
tions,® as well as the restrictive communication cost due to immense data volumes scattered
across remote clients. To cope with these challenges, efficient algorithms have been pro-
posed, with Local SGD being one of the simplest and most effective algorithms. Local SGD
runs SGD independently in parallel on different clients and averages the sequences only once
in a while to learn a shared global model via infrequent communication McMahan, Moore,
Ramage, Hampson, y Arcas [°]. It has been shown to have superior performance in training
efficiency and scalability!' !}, and converge fast in terms of communication!'>"'6]. The idea of

lowering communication frequency for improving communication efficiency also motivates

(D Thatis {2, }kK=l are no longer necessarily identical.
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Algorithm 1 Local SGD

Input: functions { f, },Ile, initial point x, step size #,,,, communication set 5 = {fy,?, :*-}.

Initialization: let x'(; = x, for all k.
for oundm=0toT — 1 do
for iterationt =1¢,+ 1to ¢, ; do
for each device k = 1 to K do
xk = xf_l — anfk(xf_l;cftk_l). # perform E,, =t,,, —t,, steps of local updates.

end for
end for
The central server aggregates: X, = S h_, p;x¥
: tm+] k=1 ¥k tm+l.
Synchronization: x* « x, forall k.
Tmt1 m+1

end for
ce_ 1T -
Return: X =23, %, .

algorithms for other federated learning problems, including minimax problems!’#°1 and dis-
tributed PCA*3-4¢1,

From a statistical viewpoint, it is crucial to perform statistical inference in FL in order
to infer properties of the underlying data distribution, quantify the uncertainty of the estima-
tor, and monitor the algorithm’s performance. However, it is still an open question of how to
perform statistical inference in FL and adapt to its peculiarities. This paper aims to address
statistical estimation and inference in FL via Local SGD, given its superior performance in
training efficiency and scalability and representativeness in FL. Our goal is to obtain an ef-
ficient estimate of the optimal parameter value x* = argmin, f(x) and provide asymptotic
confidence intervals for further inference, using only the Local SGD iterates {x;‘m Ymerr) ke[k1>
obtained through communication at specific iterations. Here [N] = {1,2,..., N} and xf‘ de-
notes the parameter hosted by the k-th client at iteration 7. Note that we do not have direct
access to {xf} keik) if £ & F due to intermittent communication. It makes the analysis of
asymptotic behaviors of Local SGD totally different from that of so-called parallel SGDB7],
which alternates between one independent step of SGD in parallel and one synchronization.
Clearly, the parallel SGD is equivalent to the single-machine SGD, whose asymptotic conver-

gence has been studied extensively!?%-321.

2.1.1 Contribution

The following questions emerge which we study in the following:

1. how one constructs the estimator from Local SGD iterates {xfm Y me[r) ke[k1>

10



Chapter 2 Statistical Estimation and Online Inference via Local SGD

2. how local updates (or intermittent communication) affect its asymptotic behavior;
3. how one quantifies the variability and randomness of the estimator.

For the first question, Polyak, Juditsky [*°], Ruppert %3]

introduced averaged SGD, a sim-
ple modification of SGD where iterates are averaged as the final estimator, and established
asymptotic normality via martingale central limit theorem (CLT). It is known that the averaged

SGD estimator obtains the optimal asymptotic variance under certain regularity conditions!>?!,

T K
X = l X here x, = xk
=T tw W t DXy, -

For the second question, under common assumptions, we show the proposed estimator X
exactly has the optimal asymptotic variance up to a known scale v(> 1) which is determined by
the sequence {E,, },,, where E, :=1, | —1, 1s the length of the m-th communication round.
And v barely affects the variance optimality because there exist many diverging sequences
{E,,},, satisfying E,, = o(m) and v = 1. It implies the Local SGD estimator has the optimal
asymptotic variance even though it has enlarging communication intermittency. This result

13,1516, 601, 19 cal updates (i.c.,

somewhat corresponds to the optimization study on Local SGD!
E, > 1) only slow down the L, non-asymptotic convergence rate of Local SGD slightly,
because the additionally incurred residual error is still dominated by the statistical error. In this
case, the averaged communication frequency (ACF, i.e., T/t;) converges to zero, implying we
trade almost all computation for asymptotically zero communication. Therefore, our estimator
simultaneously has statistical efficiency and communication efficiency.

For the third question of uncertainty quantification, we investigate two online inference
methods for statistical inference. One is the plug-in method!®!), which is available when we
have an explicit formula for the covariance matrix of the estimator. The other, a.k.a., random

03-641 " 1t does not

scaling!%?), borrows insights from time series regression in econometrics!
attempt to estimate the asymptotic variance but to construct an asymptotically pivotal statistic
by normalizing the estimator with its random transformation. To underpins this approach,
we establish a functional central limit theorem (FCLT) for the average of Local SGD iterates
under much milder conditions than Lee, Liao, Seo, Shin (621 © 1 particular, we pose a (2+6)
moment condition on gradient noises (see Assumption 2.3.2), while Lee, Liao, Seo, Shin [62]
requires a stronger condition: gradient noises should not only be a-mixing but also have at least

forth-order moment (see their Assumption 2).@ Our improvement comes from a specific error

(D Note that the standard single-device SGD is a special case of Local SGD by setting E,, = 1 and K = 1. Thus, our result
naturally covers the standard SGD case.
(@) The a-mixing assumption forces gradient noises to be asymptotic stationary in a fast rate.

11
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decomposition and a careful analysis on a non-asymptotic term with time-varying coefficients
(see Lemma 2.5.7). We believe that the advanced proof technique we developed beyond the
current work would be of independent interest. We conduct some numerical experiments to

1llustrate the two inference methods.

2.1.2 Chapter Organization

The remainder of this chapter is organized as follows. In Section 2.2 we formulate our
problem and introduce Local SGD. In Section 2.3 we explore the asymptotic properties for the
averaged sequence of Local SGD. In Section 2.4 we introduce two online methods, namely
the plug-in method and random scaling, to provide asymptotic confidence intervals and per-
form hypothesis tests. We provide the proof idea in Section 2.5 and review related work in
Section 2.6. We illustrate the numerical performance of our methods in synthetic data in Sec-
tion 2.7. We conclude our article in Section 2.8 with a discussion of our results and future

research directions.

2.2 Problem Formulation

In this section, we detail some preliminaries to prepare the readers for our results. We are
concerned with multi-round distributed learning methods. At iteration ¢, we use xf to denote
the parameter held by the k-th client and 5," the sample or data point it generates according
to 9. A typical example of multi-round methods is the parallel stochastic gradient descent
(P-SGD)[37] that runs x*_, = Zszlpk [xf — ntka(xf‘;chk)] for k € [K] and t > 0. Other

t+1
36, 65-66]

variants have been successively proposed! . It is easy to analyze the statistical property

of P-SGD due to its equivalence to the single-machine counterpart. The classical work provides

an analysis paradigm for P-SGD, showing it obtains an asymptotically unbiased and efficient

1301 In particular, with X, = Zle pkxf, P-SGD achieves the following asymptotic

59]

estimate

normality with the asymptotic variance satisfying the Cramér-Rao lower bound!
1 a d
VT | ;x, —x* = (0, G'SGT),

where G 1= V2 f(x*) = Z,Ile P V2 f(x*) is the Hessian at the optima x* and S = E(e(x*)e(x*)")
is the covariance matrix at it. Here e(x*) = ZkK=1 pr (Vf(x*5 &) — V fr(x™)) is the noise

of corresponding aggregated gradients.

12



Chapter 2 Statistical Estimation and Online Inference via Local SGD

2.2.1 Local SGD

An obvious drawback of P-SGD is its huge communication because it requires synchro-
nization at each iteration. By contrast, Local SGD hopes improve the communication effi-
ciency by lowering the communication frequencyl!%-11- 13- 15-16] 'Wwe now turn to Local SGD
and summarize its details. We provide the formal version in Algorithm 1. Put simple, it obtains

the solution estimate using the following recursive algorithm

X

. { XK =,V fr(xks €6 ifr+1¢.7, 2.2)

1 - .
" Sicr P [XE = n V)] ift+ 1€,

where 7, 1s the learning rate, ftk is an independent realization of &, and . denotes the set
of communication iterations. At iteration ¢, each client runs always SGD independently in
parallel x;‘_H = x;‘ -n,Vf k(xgC ; ,k). However, when r+1 € .7, the central server aggregates
local parameters Zszl pkfo and broadcasts it to all clients, which amounts to the following
update rule x| = Spe P [xE =0,V (ks b))

Different choices of # lead to different communication efficiency for Local SGD. If .¥ =
{0,1,2, -}, then Local SGD is reduced to P-SGD. A famous example in practice is constant
communication intervall®l, ie., .7 = {0, E,2E, ---} for a predefined integer E(> 1), which
reduces communication frequency from 1 to 1/E. Local SGD differs from P-SGD if .# has a
general form of {¢,7,,1,, ---} with some ¢,, —¢,,_; > 1 where t,, is the m-th communication
iteration. For example, when t,, < t < t,,,, for some m, x¥ is not likely to equal to xﬁ" for
k # k' due to data heterogeneity, while we always have xf = xﬁ‘ ' for all k, k' for P-SGD. This
difference makes theoretical analysis difficult and different from previous analysis. For seek

of simplicity, we assume #; is a constant when ¢,, <t < ¢, and denote it by #,, with a little

abuse of notation, which has been already adopted in Algorithm 1.

2.3 Statistical Estimation via Local SGD

This section provides asymptotic properties for Local SGD. We start by stating the as-

sumptions needed for the main theoretical results. These assumptions are standard and most

of them have been used previouslyl?% 61, 67-681,

Assumption 2.3.1 (Regularity of the objective). For each k € [K], we assume the objective

function f(-) is differentiable and strongly convex with parameter u > 0, i.e., for any x,y,
U
) 2 fi@) + (Vfi@) x = y) + Zllx =yl

13
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In addition, each f(-) is L-average smooth, i.e.,

VELNV S 60 = VA DI < Lilx - yl (23)

forsome L > 0. Finally, the Hessian matrix of the global f(-) exists and is Lipschitz continuous

in a neighborhood of the global optimal x*, i.e., there exist some 5, > 0 and L' > 0 such that
IV2£(x) = V2F (™) < L'llx — x*||  whenever ||x —x*|| < &,.

Assumption 2.3.1 imposes regularity conditions on the objective functions. It requires the
global function f(-) to be u-strongly convex and L-average smooth. The L-average smooth-

ness is stronger than L-smoothness because the Jensen’s inequality implies that

IVfi(x) = VAWl < \/[EgkIIka(x;fk) = Vi ElIZ < Lilx = yll.

The L-average smoothness follows if max, [Efk V2 f (X fk)ll2 < oo which holds for many
statistical learning models such as linear and logistic regression.®

Define g, (x) = V fi.(x; §,)—V fi(x) as the gradient noise at V f (x), S = [Eék(ek(x*)ek(x*)T),
and e(x) = Z/f: 1 PrEr(x). Then g, (x) (as well as £(x)) has zero mean and its distribution typ-

ically depends on x. The following assumption regularizes the behavior of each noise &,.

Assumption 2.3.2 (Regularized gradient noise). We assume the &, on different devices are
independent, though they likely have different distributions. There exists some C > 0 such
that for each k € [K],

|z ereon = 5| < € [ilx = %1+ I1x - %17 24)
Moreover, we assume there exists a constant 6, > 0 such that sup,, Elle(x)||*T% < .

Assumption 2.3.2 first requites the &, are mutually independent. Note that .S = Zle piS K
is the Hessian at the optimum x* because S = Zle pi Ee, (e,(x)e(x)T) = [Eg(e(x*)e(x*)T)
from the independence assumption. It then forces the difference between covariance matri-
ces [Eék(sk(x)ek(x)T) and S, controlled by [|x — x*||. It implies ||[E§(e(x)e(x)T) - S|| <
C’ [llx—x* |+ || x—x* ||2] . Finally, the imposed uniformly finite (2 + §,) moment of £(-) over-
all x establishes the Lindeberg-Feller condition for martingales, which is much weaker than

that used in Lee, Liao, Seo, Shin (621,

Assumption 2.3.3 (Slowly decaying effective step sizes). Define y,, = E,n,, as the effective

step size, and assume it is non-increasing in m and satisfies (i) > - _, y,%l < oo, (i)Y o | ¥m=

(D This condition is also made by!®”! to validate (2.4). See Lemma C.1 therein.

14
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oo, and (iii

i) ym—yw = o(y,,)-

In our analysis, y,, = E, 1, serves as the effective step size. Indeed, the previous analysis
of Li, Huang, Yang, Wang, Zhang [>!1 shows that the effect of E,, steps of local updates with
step-size #, is similar to one-step update with a larger step-size E,n,,. It implies that it is
the multiplication of E,, and #,,, rather than either of them alone effecting the convergence.
A typical example satisfying the assumption is y,, = ym~* with @ € (0.5, 1), which is also
frequently used in previous worksP% 1671 Because we impose restriction to { E, } latter, in
practice, we can first determine the sequence of { E, } and then set n,, = y,,/E,, to meet the

requirement of {y,,}.

Assumption 2.3.4 (Slowly increasing communication intervals). The sequence { E,,} satisfies

(1) {E,,} is either uniformly bounded or non-decreasing'

(ii) There exists some 63 > 0 such that lim sup = (Zm 0 E1+53)(Z o E
T—

(iii) Th_r)r;o ﬁ(zm=o Em)(zmzo E;DH=v(v>1);

146
(+3))<oo,

T
. . Vi Vi -
(iv) Jim - <mz=o 7’") O and i, 37 = O where tr = 3 B

Assumption 2.3.4 restricts the growth of { E,,}. Intuitively, if E, increases too fast, each
k

x; might converge to their local minimizer x,’: rapidly before the next communication. There-
fore, their average X, is asymptotically biased for x* with the bias Zf=1 pkxz — x*, which is

T-1
unlikely zero in FL. Because ) y,, > o, we have \/t7/T = sz;(l) E, /T — 0 from (iv).
m=0

This, combined with (iii), implies Z;zo E, I' & 0. It forbids {E,,} from growing too fast.
In practice, we can choose E,, ~ Inm, E, ~ Inlnm or E, ~ m” with § € (0, 1), all of them
satisfying (ii) and (iii). If y,, ~ m™* with @ € (0.5, 1), all the choices of E,, above satisfy (iv).

The following proposition provides another way to check (i1) and (iii) in Assumption 2.3.4

via investigating the relative difference of E,, and E,,_,

Proposition 2.3.1. Assume {E,,} is non-decreasing. If limsup m(1 — M) < 1, then (ii) in

m—oo
Assumption 2.3.4 holds for some 65 > 0. Furthermore, lf llm m(1 — 1) exists (denoted p),

once p < 1, then (iii) in Assumption 2.3.4 holds with v = 1__1,)2'

Proofs of Proposition 2.3.1. To prove the proposition, we make two additional lemmas.

15



Peking University PhD Thesis

T
Lemma 2.3.1. For any positive sequences {a,} and {b,} with ) b, — oo, we have
n=1
T a a
limsup =2=1" < Jim sup —. (2.5)

T—oo Zn:l bn T—oo bT

Proof of Lemma 2.3.1. Without loss of generality, we assume the right hand side is finite,
otherwise (2.5) follows obviously. We denote that lim sup Z—T = A for simplicity. Based on
T-co T

the definition of limit superior, for any € > 0, there exists N, subject to a, < (4 + €)b, for

Vn > N,. As aresult,

T N, T N, T
Zan=2an+ Z anSZan+(/1+e) Z b,,
n=1 n=1 n=N_+1 n=1 n=N_+1

which implies
N, T
ZnTzl ay < Zn:l a, + (4 +¢) Zn=N£+l bn

T = T
anl bn anl b n
T zT a
Taking limit superior on both sides and noting that »_ b, — oo, we have =4=1" < 1 + 2¢.
n=1 n=1%
By the arbitrariness of €, (2.5) follows. [

Lemma 2.3.2. For any non-decreasing sequence { E, } satisfying limsup T(1 — %) < 1,
T—oo T

we can find 6 > 0 such that

Proof Lemma 2.3.2. In fact, we can choose any 6 < 1— lim sup T(l—%). In this way, for
T—o0 T

sufficiently large T', we have

1 1+6 1 1+6
(%) ~o-0(zo)
E; Er_
1+6 1+6
E
-(z=) (r(F) -re
Er_, Ep
1+6 _ s\ 146
>7 (-t (1—Q) 1+,
E;r_ T T

To lower bound the right hand side, we consider the auxiliary function A(x) = (1 — (1 —

8)x)'*° + x where x € (0,1). We claim that A(x) > 1 for any x € (0,1). We check it by
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investigating the derivative of A(.),
hx)=—-1+8)1-1=8)x)""P0=8+1>-1+86)1=-8)+1=6>>0.

Therefore, by mean value theorem, A(x) > h(0) = 1 which proves the claim. O]

Now we are well prepared to prove the proposition. It follows that

E 1+6
limsupT |1 — < T_1>
T—-oo ET

. (1+8)@rEr + (1 = 0r)Er_)’(Er = Er_y)
= h;n—ilip T T
T
0rEr +(1—0)Er_;\°
()

07 Er +(1 —67)Ep_\°
ET

E;—E
limsup T T L

T—o0 T

< (14 6)limsup

T—-o0

< +4+6)1—6)limsup

T—-

<1-62

where the first equality uses mean value theorem with some 6 € [0, 1].

Therefore,

(et EnC (VE)'™)
lim sup
T—o T?

(a) . E71—~+6 Zizl(l/Em)H-é + (Z;:l E,},l+6)/(ET)1+5
< limsup
T—- 2T — 1

. Zi:l(l/Em)H-(S
lim sup +

1
T-w (2T —1VE; 2
. Zzzl(l/Em)H—é
< limsup
Toeo  T(1/Ep)I#3
(b) (1/Ep)'e

< limsu
T_,oop T(l/ET)1+5 —(T - l)(l/ET_1)1+5

< limsup !

146
T-o0 Er_4
1—T[1—<—ET ) ]
E 1+6 -1
< 1 —limsupT 1—< ;—1) <672 < oo,
T—-o0 T

where (a) uses Lemma 2.3.1 and (b) uses Lemma 2.3.1 and 2.3.2 together.

Furthermore, if the sequence { E,,} satisfies ]1im T (1 - %

—00 T

IA

) = p < 1, then by the
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Stolz—Cesaro theorem (Lemma A.2.3), we have

& EN UE,)
lim
T— T2

C ErCF  VE)+ O ENES
B T—o0 2T -1

1 . ZZ:l lVE, . le E,
= 5 lim ———— + lim ——

T—-o0 T/ET T—- TET

lim + 1
T—oo T/ET - (T - 1)/ET—1

1/E; , E;
1m
T—o0 TET - (T - 1)ET—1

D= =

. Er_ 1 ) 1
lim X + lim

_for 1
2\ 1-p 1+4p 1 —p?

which completes the proof. O

2.3.1 Asymptotic Results

According to the aforementioned regularity assumptions, the following asymptotic nor-
mality property of the averaged iterates generated by Local SGD is investigated in Theo-
rem 2.3.1.

Theorem 2.3.1 (Asymptotic Normality). Let Assumptions 2.3.1, 2.3.2 and 2.3.3 hold. Then
X, converges 10 x™ not only almost surely but also in L, convergence sense with rate Ellx; —
x*)? < Ym- Moreover, if Assumption 2.3.4 holds additionally, the following asymptotic nor-
mality follows

T
Vir |7 3%, - |5 (0.067567T),
m=1

where tp = Zi;(l) E, x = Z,Ile pkxfm, G = Zle i V2 [ (x*) is the Hessian matrix at

the optima x*, and S is the covariance matrix of aggregated gradient noise.

Theorem 2.3.1 shows that the averaged sequence generated by Local SGD has an asymp-
totic normal distribution with the asymptotic variance depending on how communication hap-
pens (i.e., the sequence { E,,}) and the problem parameters (i.e., S and G). For one thing,
the effect of data heterogeneity doesn’t show up in the asymptotic normality. The asymptotic
variance as well as L, convergence rate is the same with that of P-SGD. Technically speak-

ing, this is because the residual error caused by data heterogeneity typically has relatively low
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Case E, (> 1) Yo N v(> 1) ACF
Base 1 ym™* 1 1
1 E — ym */E 1 E!
2 any E,, < E " e ym °/E,, 1 [E~L, 1]
3 Eln’m (B> 0) 05,1y | rmIE In? m) 1 E'ln™fT
4 | Elflnm @B > 0) " ym(EWP Inm) |1 E''InPInT
5 | EmP(pe(,1) ym~@tP)E 1_17 (1+BE-'TF

Table 2.1 Statistical efficiency and communication efficiency under different choices of E,, y,, and #,,.

The statistical efficiency is measured by v, while the communication efficiency is measured by averaged
communication frequency (ACF), i.e., T/Z;;(l) E,.

order than the statistical error incurred by stochastic gradients!!>1®). With the choice of Yimo
the residual error vanishes much faster and then seems to disappear. More intuitively, since
we set y,, = E,n,, sufficiently small, the effect of E,, steps of local updates using step-size 7,,,
is similar to one-step update with step-szie y,,. Hence, Local SGD with step-size ,, actually
approximates P-SGD with step-size y,,. The latter case, as equivalent to single-machine SGD,

is unaffected by the statistical heterogeneity and so is Local SGD.

For another thing, it is quite interesting that the whole optimization process affects the
asymptotic variance. At the worst case, the way how communication frequency is determined
only enlarges the asymptotic variance by a known scale v(> 1). If E,, = 1 for all m (which im-
plies no local update is called), v = 1 and the result is identical to the typical single-machine
central limit theorem (CLT) for SGDP%. When E,, varies, it is still possible to get com-
munication saved and the asymptotic variance unchanged (i.e., v = 1) simultaneously (see
Table 2.1). If E,, is uniformly bounded or grows in a rate slower than E In’ m(p > 0), we
maintain v = 1 and obtain a smaller average communication frequency (ACF). In the lat-
ter case, the ACF is asymptotic zero, which implies that we trade almost all computation for
nearly zero communication without any sacrifice for statistical efficiency. However, if E,,
grows like Em”? (B € (0, 1)), though its ACF decays much more rapidly than that of E In? m,
the asymptotic variance is increased by a factor of v = (1 — g2)~!. It depicts a trade-off be-
tween communication efficiency and statistical efficiency when E,, grows too fast. Finally,
E,, could not grows like E mP (B > 1) or even exponentially fast, because this will violate the

requirement Z,Tn;(l) E,;l — oo that is inherent from Assumption 2.3.4.
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2.4 Statistical Inference via Local SGD

We now conduct statistical inference via Local SGD in the FL setting. As argued in the
introduction, the central server only has access to {x;‘ Yreix) when 1 € 7. In terms of the
established CLT (Theorem 2.3.1), the average of {X, } [y achieves an asymptotic normal-
ity. Thus it is natural to use {X; Ymerr) as the main iterate to construct asymptotically valid
confidence intervals. We will refer to {X; },.c(r) as the path of Local SGD.

In this section, we assume the data are generated locally in a fully online fashion be-
cause it not only can be reduced to the finite-sample setting via bootstrapping, but also covers
many realistic FL settings where data are generated sequentially, typical examples including
the records of web search, online shopping, and bank credits. In particular, we propose two
inference methods depending on whether the second order information of the loss function is
available. One is the plug-in method that uses the Hessian information directly and the other

is the random scaling method that uses only the information among the path of Local SGD.

2.4.1 The plug-in Method

The plug-in method first estimates G and .S by G and S, respectively, and obtains the
. . . e Al o —T . . . .
estimator of the covariance matrix with G ~SG . The key is to obtain consistent estimators
G and S. An intuitive way to construct G and S is to use the sample estimate as follows

T

K
2 1 20 % gk
Or=72 ;pkv AR

T

K K
> eV EO| D p VA ED|
k=1 k=1

] =

e 1
Sr ==

3
Il

as long as each v? f k(’_‘tm§ ft]j,, ) is available. Though GT and S r are not unbiased for G and S,
their bias will converge to zero in probability due to X; — x* almost surely. It is worth noting
that with X, ,as well as each local Hessian and gradient evaluated at it, communicated to the
central server, we can update G,,_, to G, and §,_; to S, . Therefore, they can be computed

in an online manner without the need of storing all the data.

Assumption 2.4.1. There are some constants L" > 0 such that for any k € [K],

Ee IV f1(x: &) — V215 )N < L [|x — x* .

[61]

Following'™"!, we make Assumption 2.4.1, which slightly strengthens the Hessian smooth-

ness assumption in Assumption 2.3.1. Accordingly, we establish the consistency of the sample
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estimate G and S in the following theorem.

Theorem 2.4.1. Under Assumptions 2.3.1, 2.3.2, 2.3.3 and 2.4.1, GT and ST converge to G
and S in probability as T — oo. As a result of Slutsky s theorem, G;IS TG;T is conmsistent to
G 'SG".

Proof of Theorem 2.4.1. For simplicity, we denote

K K
VIGE) =Y p V&) and V2 F(x:8) = > p V2 fi(x: &),

where &, = {ft }rerky- We decompose G — G into the following terms:

A

T
1 ]
Gr-G= Z‘Tvzf(x,m;g,m) -G
m=

T T
1 1
= [? ; sz(x*;ftm) - :| ? Z [V2 (xt ’ét ) - sz(x ét )] (26)

m=1
The first term in (2.6) is asymptotically zero due to the strong law of large number. With

Theorem 2.3.1, we have known that under the condition, [E||5ctm —x*|| < \ /[Ellic,m —-x*||?2 <
\/7m- Then the second term in (2.6) can be bounded via Assumption 3.2.3:

E %mé V25, 6, - Vrate,)]| < %mzi:[E [V 5,56, - Viress, )|

IA

1
T
L"
TZ[E x, —
m=1
T
> VIn—
m=1

as T — oo. Hence, GT converges to G in probability.

N
N~

For S, note that
Vf("—ctm;étm) = vf(x*;ftm) + [Vf("—ctm;étm) - Vf(x*;é:tm)] = Cm + Dm‘

We decompose S — S into the following terms:
1 . 1 . 1 . 1 .
= TZC,,,C],—,—S +TZC,,,D;,+TZD,”C;,+TZD,"DT
m=1 m=1 m=1 m=1
Because {C,,},, are i.i.d. and EC,,C, = S, the first term is asymptotically zero due to the
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strong law of large number. Note that [E||Cm||2 E|C,, CT|| <u(EC,, CT) = tr(S') and

2
K
END,I17 = E{| oy (Vi :60) = VG eb) )
k=1
k
<> nE |V, ) - Vet
k:
< L’E|I%, —x*|1> S V-
Then, the second and third terms can be bounded via
1 T
=2 CuDpl < —Z[Enc D,
m=1
\/[Enc IPEID,, 1
m_
1
ST Z Vm = 0.
m=1
Finally, for the last term, we have that
1 T T
T
TleD S—ZE”D Zlym—>0.

m= m=

Hence, S‘T converges to S in probability.

O

Theorem 2.4.1 implies that (G~ 1SG‘T) can be estimated by 6 aT = (G;IS‘ TG;T) ij

for the construction of confidence intervals. Denoting y; = %Z;zl x, and yr ; its j-th

coordinate, we have the following corollary which shows that y ;. +za 4 / L6 . constructs an
T,j 3 ir T,j

asymptotic exact confidence interval for the j-th coordinate of x*. Here ¥ is any sequence

converging to v.

Corollary 2.4.1. Under the assumption of Theorem 2.4.1,

P(y T o <x* <7 T4 1
Yrj—ze4/ 701, <X; S yr;tzeqf/or; ) > 1—-a
2 tT J 2 tT

where Vp — v and zg is (1 — a/2)-quantile of the standard normal distribution.

We remark that using an estimate vy instead of the true value v for inference is for the

purpose of practice. We find in experiments that directly using the true value v often results
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in an unstable confidence interval due to slow convergence of (iii) in Assumption 2.3.4. As a
remedy, we use an estimate UV = %(Z£=1 Em)(zz=1 E; ") which performs better and more
stable.

The plug-in method typically works well in practice due to its simplicity and well-established
theoretical guarantees. However, it has some drawbacks. The most obvious one is the require-
ment of the Hessian information, which is not always accessible. Besides, the formulation
and sharing of each v? f k(a‘ctm;étl; ) requires at least O(dz) memory and communication cost.
Furthermore, it may be computationally expensive when d is large because it involves ma-
trix inversion with computation complexity O(d>). Finally, the inverse operation is unstable
empirically. In practice, we need to set the round T sufficiently large to avoid singularity
and ensure stable estimation. The estimator introduced in the next subsection provides a fully

online approach, which is cheap in memory, computation, and communication.

2.4.2 Random Scaling

Random scaling does not attempt to estimate the asymptotic variance, but studentize y =
% Z£=1 X with a matrix constructed using iterates along the Local SGD path. In this way, an
asymptotically pivotal statistic, though not asymptotically normal, can be obtained. To clarify
the method, we should first figure out the asymptotic behavior of the whole Local SGD path
rather than its simple average y;. In particular, we have the following functional central limit
theorem that shows the standardized partial-sum process converges in distribution to a rescaled

Brownian motion.
Theorem 2.4.2 (Functional CLT). Let Assumptions 2.3.1, 2.3.2, 2.3.3 and 2.3.4 hold, and
define

T n
h(r,T) =max{n € Z,n> 0‘ mEZ: EL mzz:l £ for any fractionr € (0,1].  (2.7)

As T — oo, the following random function weakly converges to a scaled Brownian motion,

ie.,
h(r T)

dr(r) 1= Z ( *) = \VGISPW (),

where ty = Z;;(l) E, x, = Zszl pkXX . and W (-) is the d-dim standard Brownian motion.

Theorem 2.4.2 has many implications. First, the result is stronger than Theorem 2.3.1

though under the same assumptions. By applying the continuous mapping theorem to Theo-
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rem 2.4.2 withy : Dyg ;3 re = w(1), we directly prove Theorem 2.3.1. Second, the sequence
{ E,,} makes a difference via the time scale h(r, T'), which extends previous FCLT results on

SGD. For example, if E,, = E, thenv = 1,¢; = ET and h(r,T) = |rT |, the result turning to

be
L (x, —x*) =1/ =G S W ().
Y= E

When E = 1, itreduces to the single-machine result that is recently obtained by Lee, Liao, Seo,
Shin (621, It is worth mentioning that our result requires a much weaker moment condition on
gradient noises (i.e., bounded 2 + §(6 > 0) moments in Assumption 2.3.2) than previous Lee,
Liao, Seo, Shin (2], The latter requires that the gradient noises should not only be a-mixing
but also have at least forth-order moment (see their Assumption 2). The improvement comes
from a specific error decomposition and a careful analysis on a non-asymptotic term with
time-varying coefficients (see Lemma 2.5.7). See Section 2.5 for a sketch of proof ideas.
Once E > 1, an interesting observation is that local updates reduce the scale of the Brown
motion. As an extreme case, the scale vanishes and the Brown motion degenerates when
E = oo. It makes sense because when E = oo, xfm = x} and X, = Zle pkxfm, the process
degenerates. Beyond constant E,, = E, Theorem 2.4.2 also embraces mildly increasing { E,, }
(see Table 2.1). Finally, there are some other FCLTs proved via a SDE argument on general

[69] [70]

stochastic process'””! or SGD with constant learning rates'’™!. By contrast, we consider the

particular Local SGD with decaying learning rates in the distributed context and the proof
technique in Section 2.5 is from a discrete perspective.

With Theorem 2.4.2, we are ready to describe the inference method. Define ry = 0 and

Soet & . .
P = ST i i for m > 1. The choice of r,, satisfies that ¢(r,) = @ Zle()'c,n - x¥).
n=1 E,
t — —
Note that ¢ (1) = @Zle(xtn —x*) = \/ty(yr — x*). Hence, 7 (r,) — Zdr(1) =
t

R

n=1(X; — myr) cancels the dependence on x*. To remove the dependence on the un-

1S1/2

known scale G~ , we studentize ¢ (1) via

T
-
m m
e =3 (¢r0w) = b)) (10 = 2o D) = 1o
m=
Corollary 2.4.2. Under the same assumptions of Theorem 2.4.2 and assuming g(r,,) < % for

some continuous function g on [0, 1], we have that
1 -1
¢r (DT pr (1) LwayT [ /0 (W (r)—g(rW (1)) (W (r)—g(rnW(1)T dr] w().
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This corollary follows immediately from Theorem 2.4.2 and the continuous mapping the-
orem. It implies ¢ (7 H}lg‘bT (1) is asymptotically pivotal and thus can be used to construct
valid asymptotic confidence intervals. Up to a constant factor, studentizing ¢ (1) via Il is

equivalent to studentizing y; = % Zﬂ:l X, via V ; where
T 1 m T
e o (S ) (Sa )

I7T can be updated in an online manner. To state its online updating rule, recall that y,, =

% Zle X, and note that

T
5 1 m? - _ _\T
Vi= 125 On=9r) Gu—51)
T Zm—lE_mmzl m
1 T2 r 2 L r 2
m-_ _T m-_ _7T m-_ _T m-_ _T
= T 1 Z_ymym_Z_yTYm_Z_ymyT+Z_YT}’T]
TZZm—lE_ m=1 Em m=1_m m=1 Em m=1 Em

Hence, to update ¥, _; to ¥V, when a new observation X, s available, we only need to keep

2
the following quantities, namely s,,_; = Z;":_ll Ei, Aol = D e b Ym—1= L > ! X

n=1 E,’ m—1 n=1
m—1 n2 - m—1 n2
Am—l = E_nynyn and bm—l = Z E_nyn’
n=1 n=1
all of which can be updated in online. In this way, V', = ! (Am — ¥,,b) — b, ) + 4, 51,1)

2
m=s,

The formal formulation is presented in Algorithm 2.
Once y; and VT are obtained, it is straightforward to carry out inference. For example,

we construct the (1—a) asymptotic confidence interval for the j-th element x;‘ of x* as follows
Corollary 2.4.3. Under the same conditions of Corollary 2.4.2, we have that

[Ij) (lyT’j _q%,g\/ IA/T,‘]‘] S x; S yT,] +qg’g\/ VT,le> d 1 —(X,

where qs g is (1 — al2)-quantile of the following random variable

12

1
wm/ ( / W (r) - g(r)W(l))zdr> 2.8)
0
with W () a one-dimensional standard Brownian motion.

If we only care about uncertainty of each coordinate x;, for random scaling, we only need

to store the diagonal entries of V4 from Corollary 2.4.3. Both the storage and computation
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Algorithm 2 Online Inference with Local SGD via Random Scaling

Input: functions { f} } initial point x,), step size #;, communication set & = {#, 1, - }.

n
k=1
(k)

Initialization: set X,

form=1toT do
Obtain the synchronized variable from Local SGD: X, = Zszl pkxf .

m

=x0 forallk,letA():OandbO=0ands0=q0=().

- m—1 - 1 -
Ym = 2 Ym1 ¥ 5 %,

2
Am = Am—l + Z_mymy;;'

Sm = Sm—l + E_m
2
dm = dmu—1 + Z_m
Obtain ¥, by
A 1 - T T =T
Vm = D) (Am - ymbm - bmym + mem)’m) .
m?s,,

Return: y, and V.
end for

cost are merely O(d). However, for the plug-in method, the storage cost is ©(d?) and the
computation cost is @(d*>), since we need to compute and store G and S and calculate the
. . r—lo, AT
diagonal entries of G S1+G1 .
The remaining issue is about the specific form of g and the computation of g, ,. g actually
1-p
depends on the growth of { E,,}. Direct computation reveals that r,, < (%) if E, < mP

and r,, < % if E, = Inf(m). Hence, we are motivated to consider the following family of

g gp(r) = rﬁ indexed by g € [0, 1). With this gp(+), we denote the random variable given
in (2.8) by t* () and the corresponding critical value by Qg p -=min{t : PE*(p) <1t) > l—a}.
The limiting distribution *(f) is mixed normal and symmetric around zero. For easy reference,
critical values of t*(f) are computed via simulations and listed in Table 2.2. In particular, the
Brownian motion W (:) is approximated by normalized sums of i.i.d. #(0, 1) pseudo random
deviates using 1,000 steps and 50,000 replications. We then smooth the 50,000 realizations by
standard Gaussian-kernels techniques with the bandwidth selected according to Scott’s rulel”!].
Kernel density estimation is a way to estimate the probability density function of a random
variable in a non-parametric way. Because we smooth the data, our critical values of the case
B = 0 are slightly different from previous computations by Kiefer, Vogelsang, Bunzel %3], In

particular, when 1 — a = 97.5% and f = 0, our critical value 6.753 is smaller than previous

6.811, which shrinks the length of our confidence intervals. Our critical value 6.753 is also
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; I=al g 25 5% 10%  50%  90%  95% 97.5%  99%
0 8.634 6753 5324 3877 0000 3877 5324 6753 8.634
13 80945 -6339 -5.048 -3.712 0.000 3712 5.048 6339 8.0945
12 7386 5851 -4.621 -3.446 0.000 3.446 4.621 5851 7.386
213 6292 4993 -4.012 -3.027 0.000 3.027 4012 4993 6292

Table 2.2 Asymptotic critic values g, , of t*(f) defined by 4,5 = min{z : PE ) <t)>1—a}.

close to 6.747 computed in Abadir, Paruolo 7?1,

2.5 Proof Sketch of Theorem 2.4.2

We provide a short proof sketch for Theorem 2.4.2 to illustrate our proof technique in
this section. As argued, Theorem 2.3.1 can be easily derived from Theorem 2.4.2 by the
continuous mapping theorem. We follows the perturbed iterate framework that is derived
by Mania, Pan, Papailiopoulos, Recht, Ramchandran, Jordan (731 and is widely used in recent

worksH % 13-16. 51,741 "Then we define a virtual sequence X, in the following way:

K
- § k
xt = pkxt .
k=1

Fixam > 0 and consider #,, <t < t,_;. Local SGD yields that for any device k € [K],

k _ k k. gk
xt+1 - xt - rlmvfk(xt ’ 5[ )9
K
ko Z k _ k . gk
xtm+1 - pk <xtm+l_l anfk(xtm+l_l’ étm+1_l)> ’
k=1

which implies that we always have

K

X1 =% — 1,8, where & =Y pVfi(xiEh). (2.9)
k=1
Define s, = X; — x* and recall that E,, = t,,,; — 1,, and y,, = n,,E,,. Iterating (2.9) from
t=t,tot, 1 —1gives

11 I

sm+1 = s nm Z gt - S Ymvm Where m EL Z (210)
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We further decompose v,, into four terms.
U =G, + (VI (&) = Gs,, ) + (hy = VI (%)) + @ = hy)
:=Gs, +r,+¢,+6, (2.11)

where G = V2 f(x*) is the Hessian at the optimum x* which is non-singular from our as-

sumption, and

m+l_l K
£ Z ZPkak(xz 1. (2.12)
m t=t,,

Note that h,, is almost identical to v,, except that all the stochastic gradients in h,, are evaluated
at x, while those in v, are evaluated at local variables xf’s.
Making use of (2.10) and (2.11), we have

Sm4+1 = (I - ymG)sm - ym(rm t+é€,+ 6m) L= Bmsm - mem’ (213)

where B,, :=1 -y,Gand U,, :=r, +¢,, + 8,, for short. Recurring (2.13) gives

m m m
Swet =11 B;|s0=D_| I Bi|7U; (2.14)
j=0

j=0 \i=j+1
m
Here we use the convention that [[ B; = I forany m > 0.
i=m+1

Forany r € [0,1] and T > 1, define

Ll e
m=1"Mm m=1""M
From Assumption 2.3.4, we know that Z — — o asT — oo, which implies A(r,T) - o

meanwhile. Summing (2.14) from m = 0 to h(r, T) gives

7 h(r,T) 7 h(r, [ m m m
SEDSPNEE ol 1 1 B o{§ Y e
| \/j=0

j=0 \i=j+1

7 h(r,T)( m 7 h(r,T) h(r,T) m
\/_T Z HBj S0 — \/_T Z Z H B, (r,U;. (2.16)
j=0

j=0 m=j \i=j+1
Lemma 2.5.1 (Lemma 1 inP*%)). Recall that B, := 1 — y,G and G is non-singular. For any
n > j, define A;? as

n /
=> | [I B\ (2.17)

I1=j \i=j+1
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Under Assumption 2.3.3, there exists some universal constant Cy > 0 such that for any n >

j >0, ||A”|| < Cy. Furthermore, it follows that hm ‘Z, -0 ||A” G '|=o0.

Using the notation of A;‘ , we can further simplify (2.16) as

h(r.T) h(r.T)
t t
YT § Spap = V! Ah(’T)BO Sp— —— § AleDy
SinceU,, =r, + ¢, + 5,, then

T hr.T) T h(r.T) h(r,T)
\/7 Z $pap + L \/—T Z G ¢ \/_Ah(r,T) \/_ Z Ah(rT)(r +5,)

Bys —
T]/O 0

where for simplicity we denote

h(r,T) ’ A(r,T)
IJy=—A Bys,, 9, = E A +46,),
0 T?/O 0 020 1 T ot m ( m m)
h(r,T) h(r,T)
It Vir
T -1 h(r,T) T
T, = - 2 (A, -G e, T= - m§_: (A, — A,

With the last equation, we are ready to prove the main theorem which illustrates the partial-

sum asymptotic behavior of \/_ Zh(r X Sm+1- The main idea 1s that we first figure out the

partial-sum asymptotic behav10r of ~— \/_ Zh(r pleat g, and then show that their difference is
uniformly small, i.e.,

T h(rT) — h(r.T)
\/7 > m+1+\/7 > o,

sup
rel0,1]

= op(1).

For the second step, it suffices to show that the four separate terms: sup,<(g 17 [[Zll> sup,epo.17 17711l
sup,eo.11 17211, and sup,¢(g 17 | 74| are op(1), respectively. With this idea, our following proof
is naturally divided into fives parts.

The establishment of almost sure and L, convergence in Lemma 2.5.2 will ease our proof.

The following lemma proves the first statement of Theorem 2.3.1. The second statement of
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Theorem 2.3.1 follows directly from Theorem 3.3.1 which we are going to prove via an argu-

ment of the continuous mapping theorem.

Lemma 2.5.2 (Almost surely and L, convergence). Under Assumptions 2.3.1, 3.2.2, and 2.3.3,
X, - x* almost surely when m goes to infinity. In addition, there exists some Cy > 0 such
that

— 2 =~
Ellx, —x*II% < Cotp.

Proof of Lemma 2.5.2. The proof can be found in Appendix A.1. [

Step one: Partial-sum asymptotic behavior of \/_ Eh(r D G- £,

Lemma 2.5.3. Under Assumptions 2.3.1, 3.2.2, 2.3.3 and 2.3.4, the functional martingale CLT
holds, namely, for any r € [0, 1],

h(r,T)
t
\/_T Z G e, > \VGT'SPW (),
where h(r,T) is defined in (2.15) and W (r) is the d-dimensional standard Brownian motion.

Proof of Lemma 2.5.3. The proof can be found in Appendix A.2. [

Step two: Uniform negligibility of 7; Lemma 2.5.1 characterizes the asymptotic behavior

of A;?. It is uniformly bounded. It implies

Vi h(r,T) Vir
sup [|Tpll = 7— sup [|A;"" "Boysoll < —C0||B0s0|| -0,
rel0,1] Ty, rE[O 1]

as a result of@ — OwhenT — .

Step three: Uniform negligibility of 7; The uniform boundedness of A;’ implies

\/I_ h(@,T)
sup || 7] = sup = Z AMDG 1+05,)
ref0,1] ref0,1] 0
Ir h(r,T)
< sup —— Z CoUllr,ll + 118,11
rel0,1]

Vit o
= > Collir,ll + 18,1,
m=0
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where the last inequality uses the fact that 4(r, T') increases in r and (1, T) = T. The following
two lemmas together imply that sup,¢o 1 [| 711 = op(D).

Lemma 2.5.4. Under Assumptions 2.3.1, 3.2.2 and 2.3.3, we have that
Vir <
- D 7l = op(D).
=0
Proof of Lemma 2.5.4. The proof can be found in Appendix A.4. [
Lemma 2.5.5. Under Assumptions 2.3.1, 3.2.2 and 2.3.3, we have that
ViT
- > I8l = o (D).

Proof of Lemma 2.5.5. The proof can be found in Appendix A.5. [

Step four: Uniform negligibility of 7, By Doob’s maximum inequality, it follows that

2

h(r,T)
T -
E sup |%I°=F sup — || > (A, -G e,
rel0,1] refo) T= || ~—=7

2

T
LZE|Y (Al -G e,
m=0

T
t
— > Al -6,
m=0

T
t _1n2 2
< S AL -G E e
m=0

Because €,, = h,, = Vf(X; ) = — Zth ! <Vf(5c,m; &) — Vf(fc,m)) is the mean of E,, i.i.d.
copies of s(x,m) = Vf(x,m, f,m) Vf(xtm) at a fixed X it implies that
E e’ = —Elle@,)I? < — (€, + CElI%, - x*IP) s . (18)

where the first inequality is from Lemma A.1.1 with C;, C, two universal constants defined

therein and the second inequality uses Lemma 2.5.2. Using the last result, we have that
a 1
2
ET, 5 L § — | AL -Gc7!".
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By Lemma 2.5.1, it follows that as T — oo,

T T
1 12 ~1yy. 1 -
=3 4L -6 < G+ 116 1||>-7§=30||A2—G | =o.

m=0
Lemma 2.5.6 implies that E sup,¢(o 1 | 711> = o(1).

Lemma 2.5.6. Let {E, } be a positive-integer-valued sequence satisfying Assumption 2.3.4
and {a,, 1} e 7>1 be a non-negative uniformly bounded sequence satisfying 711_{%0 % ZZ;(]) a1 =

0. Then - _—_—
. (Zmzo Em)(Zmzo En_1 am,T)
lim
T— T2
Proof of Lemma 2.5.6. The proof can be found in Appendix A.6. O

Step five: Uniform negligibility of 75 It is subtle to handle 95 because its coefficient de-
pends on r.
h(r,T)

h(r, T
1731l = > Al -4,
=0

h(r,T) T I

>, > | I Bifrwen

m=0 I=h(r,T)+1 \i=m+1

2. 2| 11 Birwen

I=h(r,T)+1 m=0 \i=m+1
T l h(r,T) ( h(r,T)
Z H Bi Z H Bi Ym€Em
I=h(r, T)+1 \i=h(r.T)+1 m=0 \i=m+1
h(r,T) ( h(r,T)

Ir
SRy s i
Yh(rT)+1 m=0 \i=m+1

Vir
T
Vir
T
\/g T h(r,T) 1
T
Vir
T

9

where the last inequality uses

T /

Z H B; | Yher )41

I=h(r,T)+1 \i=h(r,T)+1

_ T
= ||Ah(r,T)+1Bh<r,T>+1H R

Lemma 2.5.7 shows that sup,.¢(o 1 |73l = op(D).
Lemma 2.5.7. Under Assumptions 3.2.2 and 2.3.4, it follows that

Vi
sup

refo.1] T

h(@r,T) ( h(r,T)

H Bi Ym€m

Yh(r D1 o izt

= op(1).
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Proof of Lemma 2.5.7. The proof can be found in Appendix A.7. ]

Remark 2.5.1. There is a more user-friendly version of Lemma 2.5.7 for a plug-and-play use.

Define an auxiliary sequence {Y,,} >0 as following: Y, = 0 and for m > 0,
Ym+1 = BmYm t VmEm = I - ymG)Ym + Vim€m- (2-19)

1t is easy to verify that
t t
t=0 \ i=m+1
Under this notation, Lemma 2.5.7 is equivalent to

VIT 1Y 4l
sup —— =

= op(1).
o<zt T Vi F

More formally, we have the following lemma which one can prove from Lemma 2.5.7.

Lemma 2.5.8. Ifthe martingale difference sequence {€,,} > satisfies sup,, E||€,, |70

< oo
Jor some 6 > 0 and Assumption 2.3.4 holds with E,, = 1, for the sequence {Y,,},,>( defined
in (2.19) with G positive definite, we have

1 Y gl
sup ———10 — o (1),
0<IST A/T Vit

2.6 Related Work

Local SGD in Federated Learning Federated learning enables a large amount of edge com-
puting devices to jointly learn a global model without data sharingl’!. The seminal paper™! pro-
posed Federated Average (FedAvg) for FL, which is slightly different from Local SGD that we
focus on in this work. The main difference is that FedAvg randomly samples a small portion
of clients at the beginning of each communication round to alleviate the straggler effect caused
by massively distributed clients. When all clients are forced to participate, FedAvg is reduced
to Local SGD. Their theoretical convergence does not vary too much with an additional statis-
tical error incurred when clients participate partially!>!l. There has been a rapidly growing line
of work concerning various aspects of FedAvg and its variants recently, including the effect of

non-i.i.d. datal”], client sampling!’®), decentralized optimizationt'? ¥, acceleration!””]

(78] [79]

, com-

posite optimization'’®!, and privacy'’”!. Local SGD or Fedavg is an iterative and multi-round

distributed algorithm that communicates only gradient information at each communication

round. Other algorithms of this type have been proposed and analyzed previously!*3 36 80-811,
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The biggest difference is that Local SGD lowers the communication frequency, while others

do not. This simple change improves communication efficiency greatly!!'!l.

Analysis on Local SGD In the context of distributed inference, as we know that no works
consider the asymptotic properties of Local SGD or FedAvg, letting alone conduct inference.
Most works focus on the optimization properties of Local SGD (or their proposed variants).
Woodworth, Patel, Stich, Dai, Bullins, Mcmahan, Shamir, Srebro [15 ], Woodworth, Patel, Sre-
bro %] gave the state-of-the-art convergence analysis for Local SGD in convex settings, show-
ing its convergence rate is dominated by the statistical error incurred by stochastic approxi-
mation of gradients. However, it additionally suffers a relatively minor residual error caused
by local updates. As a complementary, our work shows that when the effective step size is set
toy, = E,n, x m™%(a € (0.5,1),m > 1), Local SGD enjoys the optimal asymptotic vari-

ance, even though the communication length increases at a sub-linear rate (i.e., E,, = o(t,lﬂ/z)).

(82]

It corresponds to the previous non-asymptotic result'®~' that shows E, can be set as large

as O(t,ln/z) for convergence. Later, Haddadpour, Kamani, Mahdavi, Cadambe [83]

provided a
tighter analysis showing E,, can be set as large as O(t2). However, they used a smaller learn-
ingrate y,, « m~! that cannot guarantee asymptotic normality in our theory. Indeed, the choice
of learning rate plays an important role in chasing the non-asymptotic goal of a fast finite-time
convergence rate and the asymptotic goal of achieving limiting optimal normality, as noted
by Li, Mou, Wainwright, Jordan [63] Wwho instead proposed a new SGD variant to achieve both
together. In addition, Karimireddy, Kale, Mohri, Reddi, Stich, Suresh [84], Liang, Shen, Liu,
Pan, Chen, Cheng [85], Pathak, Wainwright [86], Zhang, Hong, Dhople, Yin, Liu (87 removed
the effect of statistical heterogeneity via control variates or primal-dual techniques. From our
theory, statistical heterogeneity will not affect the asymptotic variance. Similarly, it has been
found that heterogeneity will not alter the minimax optimal bound for the estimation of the
commonality parameter!8-8%1,

Recently, there are some works studying the efficiency of Local SGD via a continuous
perspective. Viewing FL as a linearly constrained optimization problem, Liang, Han, Li,
Zhang °°! modeled intermittent communication as a probabilistic projection and proposed a
loop-less algorithm® to solve it. Using a novel jump diffusion approximation, they showed

that the trajectories connecting those properly scaled last iterates weakly converge to the solu-

tion of specific stochastic differential equations (SDEs) that are driven by either a Brownian

(D In the context of FL, this algorithm can be viewed as Local SGD where the periodic communication is replaced by a
probabilistic communication.
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motion or a Poisson process. Gu, Lyu, Huang, Arora °!! derived a SDE that captures the long-
term behavior of Local SGD and provide a theoretical explanation why Local SGD generalizes
better than SGD. Deng, Ma, Song, Zhang, Lin °? proposed a federated averaging Langevin al-
gorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients.
They then study several factors including communication, accuracy, and privacy for this algo-

rithm.

Statistical inference via SGD and its variants  Statistical estimation and inference via SGD
attracts great attention. Polyak, Juditsky [*°1, Ruppert [°®] showed averaging iterates along the
SGD trajectory has favorable statistical properties in the asymptotic setting, while Anastasiou,
Balasubramanian, Erdogdu [31], Mou, Li, Wainwright, Bartlett, Jordan [32] supplemented it
with a non-asymptotic analysis. Many papers recently developed iterative algorithms for con-
structing asymptotically valid confidence intervalsi®>l. Chen, Lee, Tong, Zhang, et al. [6!]
proposed a consistent plug-in estimator. However, the computation of the Hessian matrix of
loss function is not always tractable. Then, Chen, Lee, Tong, Zhang, et al. 611 adapted the non-

94] and obtained an offline consistent covariance estimator

[39]

overlapping batch-means method!
by using time-increasing batch sizes. Later on, Zhu, Chen, Wu °”! extended it to a fully online
setting via a recursive counterpart using overlapping batches. In one latest work, Lee, Liao,
Seo, Shin (2] proposed random scaling, which uses nested batches instead. But the analysis in
their corrected version requires a stronger condition on the gradient noises that should not only
be a-mixing but also have at least forth-order moment (see their Assumption 2). The a-mixing
assumption forces gradient noises to be asymptotic stationary in a fast rate. By contrast, we
provide a valid analysis for random scaling under only 2 + 6 moment assumptions (see As-
sumption 2.3.2), which is much weaker and can be of independent interest. We speculate the

(2 4+ &) moment condition might not be relaxed any further. In addition, Fang, Xu, Yang >,

Fang [96]

proposed online bootstrap procedures for the estimation of confidence intervals via
randomly perturbed SGD. Meanwhile, Su, Zhu [67] 14, Liu, Kyrillidis, Caramanis (971, Liang,
Su °®1 proposed variants of the SGD algorithm to facilitate inference in a non-asymptotic fash-

1on.

2.7 Numerical Simulations

This section investigates the empirical performance of the plug-in and random scaling

methods via Monte Carlo experiments. We consider both the linear and logistic regression
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Figure 2.1 L, convergence ||y, — x*|| in terms of communication T'. Left: Results of linear regression.
Right: Results of logistic regression. Black dashed line denotes the nominal coverage rate of 95%.

models. At iteration ¢, the k-th client observes the pair (agC , bf) with af the d-dimensional

covariates generated from the multivariate normal distribution /#(0,1;) and bf the response

generated according to the model. We detail the data generation process as follows:

* In linear regression, bf = (af)TxZ + sf where the sf are 1.1.d. according to .#(0,1,) and x,f
is the true local parameter which we also generate from 4°(0,1,). In this case, the global
parameter x* is the average of x;’s.

* In logistic regression, bﬁ‘ € {0, 1} is generated to be 1 with probability 0((af)Tx*) and 0
with probability 1 — a((af)Tx*). Here 6(8) = 1/(1 + exp(—0)) is the sigmoid function. We
do not impose data heterogeneity for logistic regression in order to avoid numerical error
in the calculation of x*. Here x* is equi-spaced on the interval [0, 1] following previous

works[01-62],

We set y,, = yo/m*>®

with y, = 0.5 for linear regression and y, = 2 for logistic regression.
The initial value X, is set as zero. We fix K = 10 in all our experiments and vary the number
of rounds T'. In all cases, we set E,, = 1 for the first 5% observations as a warm-up and

. . o
then increase E,, from scratch, i.e., E,, = E, ., r
six choices of { E,,},,, namely (i) C1: constant E, = 1, (ii) C5: constant E, = 5, (iii) Log:

logarithmic E!, = [logy(m + 1)], (iv) P(1/3): power E. = [m'?], (v) P(1/2): power

for another sequence { E,,}. We consider

E' = [m"?], and (vi) P(2/3): power E! = [m**]. The nominal coverage probability is set
at 95%. The performance is measured by three statistics: the coverage rate, the average length
of the 95% confidence interval, and the average communication frequency. For brevity, we
focus on the first coefficient x’f hereafter. All the reported results are obtained by taking the
average of 1000 independent runs.

We first turn to study the communication efficiency for Local SGD. From Figure 2.1, we

find the faster E,, grows, the faster the L, convergence in terms of communication, which
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Figure 2.2 Comparison of the plug-in (the top row) and random scaling (the bottom row) in linear regres-
sion. Left: Empirical coverage rate against the number of communication. Black dashed line denotes the
nominal coverage rate of 95%. Right: Length of confidence intervals.
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Figure 2.3 Comparison of the plug-in (the top row) and random scaling (the bottom row) estimators in
logistic regression. Left: Empirical coverage rate against the number of communication. Black dashed line
denotes the nominal coverage rate of 95%. Right: Length of confidence intervals.
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Methods | Ttems t; = 5000 tp =10000  f; =20000  t; = 40000
c1 95.70(0.641)  94.20(0.739)  94.20(0.739)  93.80(0.763)
cs 93.70(0.768)  94.00(0.751)  94.30(0.733)  93.10(0.801)

Cov Rate | Log 91.70(0.872)  93.20(0.796)  93.80(0.763)  93.80(0.763)
(%) | P(1/3) | 91.90(0.863)  92.70(0.823)  93.90(0.757) 93.60(0.774)

Plug-in P(1/2) | 91.10(0.900)  92.60(0.828)  93.90(0.757) 93.80(0.763)
P(2/3) | 91.00(0.905)  92.60(0.828)  93.40(0.785)  93.60(0.774)
c1 7.857(0.099)  5.547(0.050)  3.917(0.025) 2.768(0.013)
cs 9.737(0.242)  6.868(0.121)  4.847(0.061)  3.423(0.031)

AvgLen | Log 12.168(0.371)  8.953(0.204)  6.602(0.106)  4.864(0.058)
(1073) | P(1/3) | 11.372(0.336)  8.656(0.195)  6.613(0.110)  5.059(0.063)
P(1/2) | 15.431(0.559) 12.100(0.327) 9.433(0.188) 7.300(0.112)

P(2/3) | 19.593(0.791) 15.375(0.491) 11.896(0.274) 9.083(0.156)

c1 95.00(0.689)  93.90(0.757)  93.70(0.768)  94.80(0.702)

cs 97.70(0.474)  96.90(0.548)  97.20(0.522)  96.90(0.548)

Cov Rate | Log 98.20(0.420)  98.70(0.358)  98.90(0.330)  98.80(0.344)
(%) | P(1/3) | 97.60(0.484)  98.20(0.420)  98.50(0.384) 98.00(0.443)

Random P(1/2) | 96.00(0.620)  97.20(0.522)  96.40(0.589)  96.60(0.573)

Scaling P(2/3) | 88.70(1.001)  89.90(0.953)  90.70(0.918)  90.00(0.949)
c1 10.011(4.343)  7.081(3.106)  5.010(2.092) 3.605(1.511)
cs 14.434(6.950)  10.043(4.923)  7.078(3.389)  4.946(2.448)

AvgLlen | Log 19.187(9.763)  14.120(7.154) 10.430(5.219) 7.611(3.895)
(1072) | P(1/3) | 16.781(8.397) 12.810(6.460) 9.821(4.906) 7.440(3.777)
P(1/2) | 20.888(10.842) 16.127(8.004) 12.379(6.027) 9.314(4.460)
P(2/3) | 21.495(11.324) 16.463(7.991) 12.509(5.924) 9.276(4.325)

Table 2.3 Simulation results of linear regression with d = 5. The standard errors of coverage rates j are
computed via 1/p(1 — p)/1000 X 100% and reported inside the parentheses.

3 11 Figure 2.2 shows the

is consistent with previous studies from optimization perspectivel
empirical coverage rates and confidence interval lengths in linear regression, both obtained
by averaging over 1000 Local SGD paths. The result of logistic regression is depicted in
Figure 2.3. For plug-in, though wandering above 90%, the faster E,, family (namely, Log,
P(1/3) and P(1/2)) has relatively inferior coverage rate than the slower E,, family (namely,
C1 and C5). The coverage rate of P(2/3) can’t even cross 90%. For random scaling, it is
clear that the coverage rate of all the methods fluctuates around 95%. Though with a much
smaller deviation from 95%, the slow E,, family has the slower shrinkage rate for its confidence
interval. By contrast, the faster E,, family achieves comparable coverage with faster shrinkage
of confidence intervals. It implies that Local SGD has high efficiency of communication and
maintains a good statistic efficiency via random scaling.

We then turn to the empirical performance of Local SGD with limited computation or

finite samples. Table 2.3 shows the empirical performance of the six methods under linear
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Methods Ttems tr =5000  t; =10000 t; =20000 t; = 40000
c1 94.70(0.708)  93.50(0.780) 94.60(0.715) 95.40(0.662)
cs 93.00(0.807)  92.30(0.843) 93.50(0.780) 94.10(0.745)

Cov Rate | Log 92.30(0.843)  92.10(0.853) 92.60(0.828) 92.90(0.812)
(%) | P(1/3) | 92.70(0.823) 92.00(0.858) 92.50(0.833) 92.90(0.812)

Plug-in P(1/2) | 90.80(0.914) 92.20(0.848) 91.70(0.872) 92.10(0.853)
P(2/3) | 90.90(0.909) 92.80(0.817) 91.30(0.891) 92.20(0.848)
c1 4.113(0.046) 2.903(0.022) 2.049(0.011) 1.448(0.005)
cs 5.081(0.118)  3.587(0.057) 2.534(0.029) 1.790(0.014)

AvgLen | Log 6.347(0.175)  4.681(0.093) 3.453(0.049) 2.544(0.027)
(1072) | P(1/3) | 5.949(0.146) 4.526(0.091) 3.456(0.049) 2.647(0.027)
P(1/2) | 8.062(0.256) 6.320(0.149) 4.927(0.088) 3.821(0.052)

P(2/3) | 10.254(0.380) 8.036(0.218) 6.223(0.127) 4.752(0.070)

c1 95.50(0.656)  92.40(0.838) 94.10(0.745) 94.70(0.708)

cs 96.00(0.620)  95.90(0.627) 96.80(0.557) 95.80(0.634)

Cov Rate | Log 97.60(0.484)  97.40(0.503) 97.80(0.464) 98.20(0.420)
(%) | P(1/3) | 96.10(0.612) 96.60(0.573) 97.50(0.494) 97.90(0.453)

Random P(1/2) | 94.40(0.727) 94.30(0.733) 94.50(0.721) 95.10(0.683)

Scaling P(2/3) | 88.30(1.016) 88.00(1.028) 86.80(1.070) 88.80(0.997)
c1 5.112(2.302)  3.612(1.502) 2.646(1.162) 1.877(0.816)
cs 7.296(3.714)  5.166(2.535) 3.687(1.836) 2.637(1.316)

AvgLen | Log 9.703(5.176)  7.241(3.713) 5.383(2.787) 4.023(2.063)
(1072) | P(1/3) | 8.499(4.465) 6.569(3.345) 5.071(2.621) 3.924(1.999)
P(1/2) | 10.574(5.688) 8.278(4.193) 6.340(3.194) 4.880(2.366)
P(2/3) | 10.915(5.876) 8.497(4.244) 6.373(3.147) 4.850(2.293)

Table 2.4 Simulation results of logistic regression with d = 5. The standard errors of coverage rates p are
computed via 1/p(1 — p)/1000 X 100% and reported inside the parentheses.

models with four different 7;-’s. 71 is actually the total iteration each client runs through T

rounds or equivalently the number of observations they receive. From the table, almost all

the methods achieve good performance. Except P(2/3), random scaling gives better average

coverage rates than the plug-in method, because its average coverage rates of all different com-

munication intervals are near (or even exceed) 95%. However, its average length is usually

larger than that of plug-in. Furthermore, its average length usually has a much larger devi-

ation than that of plug-in. For example, when # = 5000, for C5, the standard deviation of

average lengths for plug-in is 0.807 x 1072, while it increases to 3.714 x 102 for random scal-

ing. Such a wider average length might account for the unexpected advantage on the average

coverage rates. We speculate the reason for the poor performance of P(2/3) is because less

frequent communication enlarges asymptotic variance and decrease the sample efficiency. It

might require more samples to reach a counterpart level of coverage rates. However, as the
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communication round increases and more observations are available, the average length de-
creases and the coverage rate increases, with both deviations reduced. The poor performance
of P(2/3) implies that when E,, grows too faster (e.g., E,, = [m?]), its performance might
deteriorate, accordant to our Theorem 3.3.1.

In addition, comparing the results of Log, P(1/3), and P(1/2), we can find that the faster
E,, increases, the larger average length as well as its standard deviations. However, they all
have satisfactory performance when observations are sufficient. Indeed, Local SGD trades
more computation for less communication, resulting in a residual error gradually accumulated
when communication is off, slowing down the convergence rate and enlarging asymptotic
variance (e.g., the existence of v). However, the benefit is also attractive: the averaged com-
munication frequency is substantially reduced and the convergence in terms of communication
largely increases. It implies that Local SGD obtains both statistical efficiency and communi-
cation efficiency as expected. We further consider the logistic regression, which is a standard
non-linear model. The result is given in Table 2.4. A similar pattern is observed: random
scaling has higher average coverage rates at the price of wider average lengths which typically

shrink as more observations are generated.

2.8 Conclusion

This chapter studies how to perform statistical inference via Local SGD in FL. We have
established a functional central limit theorem for the averaged iterates of Local SGD and pre-
sented two fully online inference methods. We have shown that the Local SGD has statistical
efficiency with its asymptotic variance achieving the Cramér-Rao lower bound and commu-
nication efficiency with the averaged communication efficiency vanishing asymptotically. It
is worth noting that although we considered Local SGD (a distributed variant of SGD), our
results also hold for the standard SGD because the latter as a single-device SGD is a special
case of Local SGD.

In literature, stochastic gradient descent (SGD) is considered an instance of the stochas-
tic approximation (SA) method. SA is a more general framework that can be applied to a
wider range of optimization problems. The aim of SA is to iteratively update an estimate of
the root based on noisy or incomplete data, in order to find the root of a specific stationary
equation. Q-Learning, introduced by Watkins ['7], is another important example of SA and
has recently gained popularity in reinforcement learning!®). The stationary equation in SGD

is simply V f(x) = 0, while in Q-Learning it is 7 Q = Q, where I is the Bellman operator
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and Q is the vectorized Q-value function (which is the counterpart of x in this chapter). There
are two main differences that distinguish Q-Learning from SGD. Firstly, I is typically not
smooth, unlike the gradient V f, which has a continuous derivative. Secondly, the data used to
evaluate I 1is typically generated along a Markov chain, whereas in SGD, the data is assumed
to be independent. These differences imply that inference methods for SGD cannot be applied
directly to Q-Learning. As a result, we are motivated to explore how to perform statistical

inference for stochastic approximation using a single trajectory of Markov data.
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Chapter 3 Online Statistical Inference for Nonlinear

Stochastic Approximation with Markovian Data

3.1 Introduction

Stochastic approximation (SA) is a class of iterative methods for solving root-finding
problems in which only noisy observations of objectives are available®®!. The aim is to find
the root g(x*) = 0, where g : RY — RY is expressed as an integral over the data points &

drawn from a distribution z on a Polish space E:

g(x) I=/_H(x,§)ﬂ(d§)=0- 3.1

When g is a linear function of x, the method is referred to as linear SA, otherwise, it is referred

to as nonlinear SA. A typical SA algorithm is given by the d-dimensional recursion:

Xip1 = X — ntH(xta fz), (3.2)

in which {#, },5( is the non-negative step-size sequence and {&, },5 denotes the sequential data
point. Over the past two decades, SA has gained significant attention, driven by applications

[52, 100-102]

in reinforcement learning and stochastic optimization . Despite the numerous SA

methods developed and even the establishment of minimax optimal instance-dependent esti-

21,32, 100, 103-104]

mation boundsl , there is still a need for methods and theories that quantify

estimation uncertainty and provide precise procedures for constructing confidence intervals.

Uncertainty quantification provides many benefits for practical sequential decision prob-
lems. By providing valid confidence intervals around predicted point estimates, it enables
decision makers to make more informed and confident decisions with improved stability of rec-

ommendation qualityl!%°!

. In addition, confidence intervals provide a solid basis for risk man-
agement, allowing decision-makers to consider the potential consequences of various courses
of action in the presence of uncertainty. This is particularly important in domains such as
autonomous driving and personalized medicine where decisions have significant impacts.

In these applications, the sample-generating mechanism behind {&, } 5 is commonly mod-
eled using a Markov chain. However, the introduction of Markovian data brings several chal-
lenges. Firstly, modeling arbitrary relationships between variables in Markovian data is diffi-

cult. Secondly, the distribution of each &; changes over time and is unlikely to equal the desired
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distribution z, causing H(x,,&,) to become a biased estimate of g(x,) given the history. Fi-
nally, given a point estimate, there is currently no known method to estimate the asymptotic
variance in the presence of Markovian data, though either a plug-in estimator or a batch-mean
estimator could help under i.i.d. dataB38-3°1.

To address these challenges, Ramprasad, Li, Yang, Wang, Sun, Cheng [43]

proposed an
online bootstrap method in linear SA with Markovian data. This method maintains multiple
perturbed iterates {x’} »erg) from which confidence intervals can be constructed by estimating
the asymptotic variance or quantiles from its empirical distribution over b € B. However, the
per iteration update of each {x”} peB) elies on the multiple oracles that evaluate the values of
all {H (xﬁ7 » 1)} pe By at different parameters xf’s but with the same data point &,. Due to limited
control over real environments, multiple oracles typically are not feasible in scenarios where
one-trajectory sampling is prevalent. Another limitation of the method is that it is heavily
dependent on the linear nature of linear SA problems. As for the more general nonlinear SA

(see Section 3.2.2 for examples), its effectiveness remains uncertain.

3.1.1 Contribution

In this study, we are motivated to inquire whether we can propose an efficient online
inference method that does not require multiple oracles and can handle Markovian data in

nonlinear SA. We provide an affirmative answer to this question.

Theoretical contribution In the absence of multiple oracles, we focus on utilizing the longi-
tudinal dependence between consecutive iterates, rather than the crosswise dependence among
perturbed iterates used in the online bootstrap method. To that end, we establish a func-
tional central limit theorem (FCLT) in Theorem 3.3.1 that describes the asymptotic behav-
# ZILT(;J (x; — x*). Recall that Do ;e = {¢ :

cadlag function ¢(r) € IRd,r € [0, 1]} collects all d-dimensional functions that are right-

ior of the partial-sum process ¢r(r) =

continuous with left limits. As a random element in Dy ;) ga, this partial-sum process ¢
weakly converges to a scaled Brownian motion y := G~'S>W in the Skorohod topology,

1§12 {5 the unknown scale

where W is the standard d-dimensional Brownian motion and G~
matrix. By the continuous mapping theorem, f(¢y) weakly converges to f(y) = f(W) for
any continuous scale-invariant functional f* : Dy ;;re — R that satisfies f(A¢) = f(¢) for
any non-singular A and cadlag process ¢. f(¢r) is a measurable function of the observed

data points {&, },[r) and the target parameter x*, while f(W) has a known distribution whose
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quantiles can be computed via stochastic simulation. It implies f(¢p;) is an asymptotic pivotal

statistic, from which an asymptotically valid confidence interval can be constructed.

To offer a comprehensive understanding of the FCLT, we further establish two additional
results. The first result, outlined in Theorem 3.3.3, presents a semiparametric efficient lower
bound that demonstrates the asymptotic variance of any regular asymptotic linear (RAL, see
Definition 3.3.1) estimator T',, computed using the first n observed data points, is asymp-
totically lower bounded by %G_ISG_T in the sense that ’}Lnolo n-ET,—x*)T, - x*)1 >
G 'SG™". In Theorem 3.3.4, we find that for each fraction r € (0, 1], ¢ (r) is the most effi-
cient RAL estimator with its asymptotic variance matching the efficiency lower bound. This
result answers an open question of efficiency in linear stochastic approximation raised by Ram-

prasad, Li, Yang, Wang, Sun, Cheng [**] and provides evidence of the statistical optimality of

the partial-sum process ¢ in terms of asymptotic variance.

The second result establishes a non-asymptotic upper bound on the functional weak con-
vergence rate measured in the Lévy-Prokhorov distance, denoted by dp(-, ). More specifically,
Theorem 3.3.5 relates dP(9T¢T, 0"y), the dissimilarity of the probability measures generated
by the two cadlag processes BTd)T and 0"y, to the iteration number 7 and the mixing time
i of the underlying Markov chain. Here, @ € R is a vector with a unit dual norm satisfying
[|16]], = 1. To the best of our knowledge, it is the first non-asymptotic bound of functional
weak convergence for the nonlinear iterative algorithm (3.2). It highlights the impact of several

factors, including the underlying Markovian data, the degree of non-linearity, and the trade-off

in step size parameter selection.

Methodological contribution The idea of applying a continuous scale-invariant functional
to a partial-sum process, and constructing asymptotic pivotal statistic from it, has been adopted
in the econometrics literature. This inference method is considered robust, as it not only elim-
inates the need to estimate the unknown scale matrix (e.g., G~'S 12y "but also works well

for a wide range of linear series models with heteroskedasticity!6® 721

. Recently, Lee, Liao,
Seo, Shinl%?! extended this technique by proposing an online statistical inference method
named “random scaling” for nonlinear SGD iterates. Following this line of research, sub-
sequent works have further developed this approach for specific iterates {x;},5, under i.i.d.
datal?!- 3% 1961 " our work, we extend this concept to the more general setting of nonlinear
SA with Markovian data. Additionally, we consider a family of adequate functionals f,, in-

dexed by m € N. We study various aspects of confidence intervals generated by f,,, including
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their online computation efficiency, rejection probability, and confidence length. Finally, we

evaluate the efficacy of different f,,’s through numerical experiments.

Technical contribution The main difficulty in analysis is the establishment of the corre-
sponding FCLT. If the sequence {x,},5( is defined in a simpler manner, substantial research
has been conducted to establish weak convergence for its partial-sum process in probability lit-
erature. The celebrated Donsker’ s invariance principle concerns an i.i.d. sequence of {x, },5,

107]

while subsequent works have extended it to weakly dependent random variablel!?”), includ-

(108] 109] However, the

ing stationary sequences and martingale-like nonstationary structures!
sequence {x,},5( we consider here is defined recursively through (3.2). There are several rea-
sons why the weakly dependent scenario from previous works is not applicable to our situation.
Firstly, even if we assume {&, },5( is sampled from a uniformly ergodic Markov chain with an
arbitrary initialization distribution (in Assumption 3.2.4), the decaying step size {#;},5o im-
plies {x,},5( is not stationary.® Secondly, H (x,, &) usually does not behave like a martingale
difference and neither does each x,. Lastly, the conditions to control the degree of sequence
dependence (e.g., various mixing conditions) in previous probability-oriented works are often
difficult to verify in real-world applications. Therefore, we establish weak convergence from
scratch by constructing a martingale-remainder decomposition. The idea behind this approach
is to decompose the partial-sum of {x,},5( into the sum of partial-sums of martingale differ-
ence arrays and remainders, the latter vanishing asymptotically and uniformly under appropri-
ate regularity conditions on H (-, -) (see Section 3.2.1). By doing so, we can further establish

weak convergence rates by leveraging existing rates for martingale difference arrays!!!%!

once
those rates for the decomposed remainders are available.

We make several technical contributions along the martingale-remainder approach. The
decomposition idea originates from the seminal work[*”) for pointwise weak convergence and
recently is extended to functional weak convergence by Li, Liang, Chang, Zhang %1, Lee,
Liao, Seo, Shin [62] in the context of i.i.d. online convex stochastic optimization. However,
for nonlinear SA with Markovian data, several difficulties arise. The Markovian noise pre-
cludes the direct use of martingale central limit theory and necessitates a Martingale approx-

imation to decompose H(x;,&;) — g(xt).@ Furthermore, the recursive update scheme (3.2),

as well as the generality of nonlinear SA, bring difficulty to validate the uniform asymptotic

(D Decaying the step size is necessary to obtain an asymptotically unbiased estimator for x*.

() In the i.i.d. case, we have E[H (x,,¢)|F,_,]1 = g(x,) as a result of the assumption &, o n. Therefore, H(x,,¢,) — g(x,)
is a martingale difference adapted to %, and thus the martingale central limit theory could apply. However, it is often not
true for Markov cases.
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vanishing of one particular remainder sequence.® To address the first issue, we utilize an ex-
isting martingale-residual-coboundary decomposition introduced by Liang 1. In (3.15), it
decomposes H (x,, §,)—g(x,) into the sum of a martingale term, a residual term, and a so-called
coboundary term, with the last two terms having ignorable impacts on our target partial-sum
process (see Lemma 3.4.1). For the second difficulty, we devise a novel technical Lemma 3.4.3
that drills down the particular recursion structure, from which functional weak convergence

rates for the remainder sequence can be further derived. See Section 3.4.1 for more details.

3.1.2 Related Work

This study investigates the use of stochastic approximation algorithms for conducting
statistical inference on Markovian data. Our findings have important implications for both
reinforcement learning and stochastic optimization. So as to put our results into context, we

provide more background on previous research in these areas.

Stochastic approximation on Markovian data The use of recursive stochastic procedures

for root-finding problems dates back to the pioneering works of Robbins, Monro *°!

[112]

, as well
as Kiefer, Wolfowitz , who established asymptotic convergence for derivative-free one-
dimensional problems. Since then, stochastic approximation (SA) has been studied exten-
sively, with a focus on its convergence and rate, parametric dependence, and qualitative prop-
erties. Except for the iterative analysis used to derive pointwise convergence, an ordinary
differential equation (ODE) approach has been proposed and developed to track the trajectory
behavior of SA procedurest>? 113-1141 The reader is referred to the monographs®2->4,

In many applications, the sample-generating mechanism behind {&, },5 is modeled using
an underlying Markov chain. Asymptotic convergence of SA algorithms with Markovian data
can be established using either the ODE method®?! or the Poisson equation method!>3!. Our
paper falls into the second category with a specific interest in functional weak convergence.
While other works assume that {&, } ., comes from a state-dependent Markov chainl!!!> 115-116]
it is beyond the scope of our paper. However, we believe that our analysis and methodology
could be applied in this area with a stronger assumption on the existence of a solution to a Pois-
son equation. Our focus is on asymptotic analysis, but non-asymptotic estimation rates for SA
algorithms with Markov data can be established if the Markov chain has a bounded mixing

time. These rates have been studied in a general mannert!03-104 117]

118-120

, or in special cases, in-

[121-123

cluding two-timescale algorithms! 1 gradient-based optimization 1. and estimation

(3 This troublesome process refers to the y, in (3.20).
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1241 Our contribution is orthogonal to these results, providing rates

in autoregressive models!
of functional weak convergence for the entire partial-sum process, in terms of the number of

samples and mixing time, instead of moment convergence rates for point estimation.

Statistical inference via averaging stochastic approximation By averaging the iterates of

SA procedures, it is known that one can obtain both an improved convergence rate and a Gaus-

(30,58, 125] 'The form of this limiting distribution is optimal in the sense

[2, 59, 126]

sian limiting behavior
of local asymptotic minimax optimality . Therefore, iterate averaging provides auto-
matic optimal uncertainty quantification, laying the foundations of online statistical inference.

In the field of online stochastic optimization, several methods for statistical inference have
been proposed. Zhu, Chen, Wu 3 9], Chen, Lee, Tong, Zhang, et al. (61 developed batch-means
estimators for the limiting covariance matrix of asymptotic normality. Several variants of
SGD-type algorithms have been proposed to either simplify inference procedures, such as im-

[98

plicit SGDI?% 127], resampling-based SGDI% 97], and moment-adjusted variants ], or address

structured problems, such as online decision making!®®! and sparse generalized linear mod-

615[128

1. Other works establish Donsker-style generalization to the asymptotic normality to use
trajectory information. Su, Zhu %71 took advantage of the asymptotic independence between
the averaged iterates of different threads in a tree-structured scheme, while Lee, Liao, Seo,
Shin [%2] embraced the dependence between consecutive iterates and showed it was asymp-
totically negligible for a partial-sum process via a functional central limit theorem (FCLT).
This partial-sum FCLT leads to a computationally efficient and memory-friendly online in-

ference procedure that has proven effective in practicel®?].

[50]

Subsequent work has extended

, synchronous reinforcement learning?!/,
[106]

this approach to areas such as federated learning

(1291 "and non-smooth regression

gradient-free optimization

A limitation in the above statistical inference methods and theories is that they assume
1.1.d. data points {¢, };,,. However, in asynchronous reinforcement learning (RL)H30-1311 data
is generated along a single Markov chain, precluding the use of stochastic optimization meth-
ods. Inspired by resampling-based inference methods in stochastic optimization, Bootstrap-

40-43]

based methods have been developed for linear policy evaluation tasksl . However, they are

not suitable for nonlinear tasks, such as quantifying randomness in the optimal value function.
The only available approach for this nonlinear task is considered by Shi, Zhang, Lu, Song [13?]
which uses sieve methods to approximate the Q-function and constructs two-scale confidence
intervals, but it relies on batch updates from an offline dataset, making it computationally in-

efficient for sequential data scenarios. By contrast, we take the advantage of the partial-sum
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FCLT and provide a fully online inference method for nonlinear stochastic approximation with

Markovian data.

Trajectory behaviors in stochastic approximation To understand the asymptotic behav-
iors of SA trajectories, functional central limit theorems (FCLTs) are established to show weak
convergence of a properly constructed process to a limit process. For discrete iterative algo-
rithms, such as (3.2), the so-called ODE method introduced by Ljung '3 implies that, asymp-
totically, the noise effects average out or normally distributed once properly scaled, allowing
the asymptotic behavior to be effectively determined by a mean ODE or an SDE (e.g., the

34,102, 1331 ¢onstruct piecewise

Ornstein-Uhlenbeck equation). Following the spirit, works likel
linear or piecewise constant interpolated processes by connecting properly centered and shifted
iterates x, — x*. These processes have a left-shifted initial point and a time-scale adjustment
to approximate the mean ODE or SDE with increasing accuracy. Other SGD-type algorithms

134] studied weak conver-

have used similar last-iterate interpolated processes. Chao, Cheng
gence of the trajectories from generalized regularized dual averaging algorithms (gRDA) for
online ;| penalized problems, while Negrea, Yang, Feng, Roy, Huggins (1351 established a
joint step-size—sample-size scaling asymptotic limit for stochastic gradient Langevin dynam-
ics (SGLD). Our focus is the partial-sum process associated with {x, —x* }1>0 in nonlinear SA
with Markovian data, whereas most results focus on i.1.d. datal?!>30- 62,106,129, 136] ‘\we choge
not to utilize the ODE/SDE approach to demonstrate the FCLT, as it appears unsuitable for

partial-sum processes on account of the imposed shifting initial point or the time scale.

Chapter organization The remainder of this chapter is organized as follows. We introduce
the main assumptions and provide three examples of nonlinear SA in Section 3.2. We present
the main asymptotic theoretical results in Section 3.3 and the online inference method in Sec-
tion 3.5. We revisit the three examples and conduct numerical experiments in Section 3.6. We

summarize our results and discuss future research directions in Section 3.7.

Notation Given a vector v = (vy, ..., vd)T € R?, we associate with it a norm || - || and

denote its dual norm as || - ||, ie., [[vll, = supjy < [{v.u)|. We will denote |lv||; :=

d
2 .
) ety Vil vl = \/D icrd) Vi» and |lv|l, = max;grq) [v;]. By — we denote the point-

: p : o
wise weak convergence and by — we denote the convergence in probability. We use the
standard Loewner order notation A > 0 if a matrix A is positive semi-definite. We denote

[n] := {1,2,---,n}, the floor function |-| that is the greatest integer less than or equal to
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the input number, and ceiling function [-] that is the smallest integer greater than or equal
to the input number. For two non-negative numbers a, b, we denote t a < b if there exists
a positive number C such that a < Cb with C depending on parameters of no interest. Let
F; = 6({&, }o<:<,) be the o-fields generated by all randomness before iteration 7 and then x,

is &#,_;-measurable.

3.2 Problem Setup and Motivating Examples

Recall from our earlier set-up that we are interested in providing confidence intervals
for the root x* of (3.1) by using only the iterates {x;}1er) produced through the iterative
algorithm (3.2) with the data {&,},,( sampled from a single Markov chain. We do not assume
multiple evaluation oracles or access to derivatives of H (x, &) with respect to x. In summary,

our target is a nonparametric inference method that is suitable for single-trajectory data.

3.2.1 Assumptions

We first introduce and discuss the assumptions that underlie our analysis.

Definition 3.2.1 (Hurwitz matrix or stable matrix). We say A € R4 is a Hurwitz (or stable)

matrix if ReAd;(A) < 0 fori € [d]. Here A;(-) denotes the i-th eigenvalue.

Assumption 3.2.1 (Local linearity). There exist constants Lg, 4,65 > 0 and a Hurwitz -G €
R4 such that

g(x) = G(x = xM)I| < Lgllx — x*||? for any ||lx = x*|| < &

We consider a generally non-linear g which is locally linear at the neighborhood of the
root x*. We assume the linear coefficient —G is a Hurwitz matrix, a matrix whose every
eigenvalue has a strictly positive real part. In engineering and stability theory, only using a
Hurwitz matrix could make the linear system x = —G'x have a converging and stable solution.
Such a kind of matrices have also been viewed as a generalization of positive definite matrices

in the stochastic approximation literature!>% 321,

Assumption 3.2.2 (Regularized noises at the root). There exist p > 2 and ¢ > 0 such that

sup {/E|| H(x*,&)||P < o and sup || P H(x*,&)| < o,

>0 EeE

where we denote P H (x, &) = /E H(x,E)P(E,dE).
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Assumption 3.2.2 adds moment conditions on the noise at the root H(x*, &) (noting that
Ee,H(x*,&) = g(x*) = 0). In particular, we assume that { H(x*,&)},5o has uniformly
bounded p > 2 moments so that we can use the martingale central limit theorem to establish

asymptotic normality.

Assumption 3.2.3 (Lipschitz continuity). Assume H (-, &) is a uniformly averaged- L y-Lipschitz

continuous function in the sense that
1
(PIHx,&) ~H@.OI")? < Lyllx —yll forany x,y eR and ¢ €E,  (3.3)

where P||H(x,&) — H(y,OIIP := [ H(x,&") = H(y, PP, dE") with p given in As-
sumption 3.2.2.

Assumption 3.2.3 provides a Lipschitz continuous condition that for any two parameters
x,y € RY, the L ,-norm of || H (x, & — H(y,&")|| is uniformly and linearly bounded in terms
of the difference ||x — y||. Here & denotes the data transited one step from the initial one
¢ € E. This condition serves as a bridge to connect the running increment { H(x,, &) },>( and
the root-point-around noise { H(x*, &) },so. In this way, once x, converges and stays close to
x*, we would expect H(x,,&,) ~ H(x*, &), which together with Assumption 3.2.1 imply that
the dynamic of the iterative procedure (3.2) is captured by a linear system up to a high-order
approximation error.

Under the idealized 1.1.d. setting (i.e., &, is 1.1.d. according to x), the condition in (3.3)
simplifies to the L -averaged Lipschitz continuity, with ([E§Nﬁ||H (x,&) — H(y, f)llp)l_l’ <
Ly|lx — y|| and the o defined in Assumption 3.2.2 is equal to zero. A sufficient condition
for (3.3) is almost surely Lipschitz continuity, meaning that || H(x, &) — H(y,§)|| < Ly|x—Yy|
holds for any x,y € RY and & € E. This type of condition is commonly used in machine
learning, as demonstrated by the A2 condition inl!?*!,

Assumption 3.2.4 (Uniformly ergodic Markov chain sampling). We assume &, € E is gen-
erated from a time-homogeneous and uniformly ergodic Markov chain 4 with r the unique
stationary distribution. Furthermore, there exist k > e,p € [0, 1) such that for any initial

ek
t
Kp
dTV(Pt(é’ ')9 ﬂ-) S 7’ (34)
where dpy (-, +) denotes the total variation (TV) distance of probability measures and P'(&, -)

denotes the distribution of &, with the initial state as §y = &.
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A Markov process that satisfies Assumption 3.2.4 with the parameter (x, p) is called a
p-geometrical ergodic or uniformly ergodic process. Irreducible finite-state Markov chains
are always uniformly ergodic. In general, if ./ satisfies a drift condition and a minorization
condition, as stated in Proposition 5.1 in Andrieu, Moulines, Priouret 37 or Theorem 1.2

1381 then (3.4) holds. In practical applications, when &, 1s a concatena-

in Hairer, Mattingly |
tion of random variables taking values in a finite space, such as the current state in an MDP,
and exogenous independent observation noises, such as independent stochastic rewards, (3.4)
typically holds.

An important consequence from Assumption 3.2.4 is that for any bounded function h :

E - R4 P h(&) would converge to E §~ﬂh(§) exponentially fast uniformly over & € E.

Lemma 3.2.1. Under Assumption 3.2.4, for any measurable uniformly bounded function h

= — RY, we we have for any t > 0,

sup [|2'h(&) — Bz h(O)Il < xp" - 21112 1A(E) = Bz qh(O)]. (3.5)
(SC

I{=c

Proof of Lemma 3.2.1. Define an auxiliary function hy(¢) := h(§) — E:.h(). Since h(:) is
uniformly bounded, so is hg(-). Furthermore, E,_,hy(&) = 0. By Strassen’ s duality theorem,

let &, € E denote the random variable with distribution 7z that satisfies dpy(P'(&,-), ) =

P(fz a foo|§0 = £). Then

||=@tho('f)|| = ||[E[ho(§t)|§o =¢]|| = ||[E[ho(§t) - ho(foo”fo =&]l
= ||[E[(ho(&) — ho(eo)) - 1g 2e 10 = ¢l
< sup |[hy(&,) — ho(E)Il - P&, # € l&p = &)

é[’ o0
< 2211[_) lho(OIl - dpy (P! (E. ). 7)
ex
< xp' - sup [|hy(&)]|.

4=

We comment that we allow . to be initialized arbitrarily rather than from its stationary
distribution #. One important quantity is the mixing time, that is, the time to approach sta-
tionarity (in terms of the TV distance) from the worst initial state. For the uniformly ergodic

Markov chain above, the mixing time to accuracy € is 7, (€) = [log, 2—;] so that g pmix®) < g
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With a special interest in the halving accuracy time,® we also define

0 if p=0, (3.6
foo = )
mx iT’; if p € (0,1).

One can show that 7, is an upper bound for ¢,,;,(0.5) by using the inequality 1 — % < Inu for
allu > 0. If s are 1.1.d., then p = 0 and the 7, ;, 1s also zero. If &, s follow from the Markov

sampling, p becomes positive and ¢,;, goes to infinity when it approaches one.

Lemma 3.2.2. Under Assumptions 3.2.2, 3.2.3, and 3.2.4, there exists a unique bivariate func-
tion U(x, &) satisfies
1. It is the solution to the Poisson equation, where U (x,&) 1= fE U(x, &P, dE),

Ux,5) - 2PUK,8) = H(x,$) — g(x). (3.7)
2. It is bounded in the sense that for any x € RY and & € B,
19U e, Ol < Kty - (2Lpgllx = x* 1l +0)

3. It is mean-zero in the sense that E¢_,U(x,&) = 0 for any x € RY.

4. It is uniformly averaged Lipschitz continuous in the sense that
1
(P0G, =UW.OIM)? < Lyllx = yll for any x,y € R and § € E,

where Ly = O(Ly(1 + kty;,)) with O(-) hiding universal constants. Here we de-
note P|U(x,&) = U@, O = [cIIUx,E) = Uy, )PP, dE") with p given in
Assumption 3.2.2.

Proof of Lemma 3.2.2. Define

[00]

Ux,&) :=) (P'H(x,8)—-gx).

1=0
We first claim U(x, ¢) is finite almost surely and thus well-defined. When setting h, (&) =
H(x,&) — g(x), we know that Zh, (&) = PH(x,&) — g(x) is bounded by o, := 2Ly||x —

x*|| + o uniformly over & € = due to

|Zh (O]l < Py (&) = hyx Ol + [[Phyx )]
< PIH(x, &) — Hx™, Ol + gl + 1P H (x>, &)l

<2Ly|lx—x*|| + 0 =0,

(D Note that different accuracy &’s affect 7, (¢) only mildly. We take a concrete value of & for notation simplicity.
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where the last inequality uses Assumption 3.2.3 and Assumption 3.2.4. Therefore, under As-

sumption 3.2.4, we have E; g h,(§) = Oand || 2" H(x, £)—g(x)|| < kp' "o, from Lemma3.2.1.

As a result, we have

IUx, Ol < |H(x, &) - gl + Y 1P H(x, &) — g

=1
<|[Hx.&) - gx)ll +x Y plo,
t=0

<||H(x,¢&) — gx)| + % < 0.

Similarly, we can show

= Ko
12U <) 17 H(x.&) = g0 € 7= < KOs,

=1

which completes the proof for the second item. We then show U(x, &) is indeed a solution
to (3.7) because

U(x, &) - PUx,&) =) (P Hx&-gx)-P> (PHxE - gx))
=0 =0

(0e]

Y (P'Hx.&)-gx) - > (P Hx.&) - g(x))
=0

=1

H(x,$) — g(x).

It is also clear that E._,U(x,&) = 0 since z is the stationary distribution of & and the equa-
tion (3.1). If there exists another solution U’ (x, &) to the same equation (3.7) and satisfying
[EéwU’(x,g") = 0 for any x € RY, then there exists a function ¢(x) such that U’ (x, &) =
U(x,&) + c(x) from Proposition 1.1 of Glynn, Meyn [139] " As a result, we have c(x) = 0 for

any x € R, which implies the uniqueness of U (x, &).

Finally, for any x, y € RY and & € &, by Lemma 3.2.1,

IUx,&) -Uy. Ol =

> [2(H(x,&) - H(y,9) — (8(x) — g(y))] H

=0

< |I(H(x,&) — H(y.£) — (8(x) — gyl

+) ||9 (H(x,&) - H(y. &) - (8(x) — g»))|

t=1

<|H(x,&) — H(y. Ol + llgx) — gyl
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+ o sup | (H(x, &) ~ H(y. &) — (5() ~ g0l

— P &eE

By Jensen’s inequality, it follows that for the p defined in Assumption 3.2.2,

UG, &) -U@,ol” <37 |H(x,&) - H(y, OII” + 37" || g(x) — g)II”

p—1_p
sup || P (H(x,&) — H(y, &) — (8(x) — gy)IIP
(1— PP ee=
p—1 p p—1 6" kP p
<3| H(x,8) - Hy, P + 37 + - lg(x) — gl
(I—-p)p
s O P Hx O - PHG, O
(1— PP ecE

By Assumption 3.2.3, it follows that 2 || H (x, &) — H(y,&)||” < L’;I ||x—y||” uniformly for & €
E. Notice that have that E 5%9’(-) =Esr(0) because z is the (unique) stationary distribution

of &. Therefore, by conditional Jensen’s inequality,

1g(0) — gWII” = ||Ez e ? (H(x.8) ~ H(y, )|
SEern P 1H(,E) = Hy, O|IP < L l1x = ylIP.
Similarly, we also have that
Sup I2H(x,8) — PH(y, O < 2161299 I1H(x,&) - H(y,HII” < L llx - yl”.
Putting the pieces together, we conclude that there exists a constant Ly; = O(L (1 + k1))

such that
PIU, &) - Uy, OII” < Ly, lIx — ylI7.

]

The existence of a unique solution to the Poisson equation (3.7) (denoted U(x, &)) is a
crucial result from Assumptions 3.2.2, 3.2.3, and 3.2.4. It can also be expressed as (& —
PN H(x, &) — g(x)), where .7 is the identity mapping. Lemma 3.2.2 demonstrates that the
operator ¥ — & is invertible on the mean-zero function class {h € (RHE - [E§~”h(§) = 0}.
Additionally, the function U (x, &) inherits all the properties of the bivariate function H(x, &)
outlined in Assumptions 3.2.2 and 3.2.3. This function is important in determining the asymp-

totic variance and the semi-efficiency lower bound, which will be stated later.

Assumption 3.2.5 (Slowly decaying step size). Assume ()0 < 5, < 1,1, | 0, n,log>t — 0
oo logt

and tn, 1T o ast — oo, (ii) % = o(n,_y) for t > 1, (iii) > 2, \/n, < oo, and (iv)
1
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ZT=0'71

We consider the step size that decays at a sufficiently slow rate satisfying Assumption 3.2.5.

A classic example is the polynomial step size n, = n¢~* with the scale n > 0 and a € (0.5, 1).

Definition 3.2.2 ((L?, b,)-consistency[mo]). For a sequence {x,;},5o C RY and a non-negative
sequence {b,},;5o C R, we say {x,}5 to be (L?, b,)-consistency if there exists a positive con-

stant C, > 1 such that for any t 2 0,
{Ellx, — x*||P < C,b;.

Assumption 3.2.6. Assume {x,} satisfies the (L%, (14log 1) \/n—,)—consistency and sup,sq E||x,—

x*||P < oo with p given in Assumption 3.2.2.

The final assumption, Assumption 3.2.6, concerns the (L?, b,)-consistency introduced

by Gadat, Panloup ['4°].

This refers to the behavior of the SA update procedure in (3.2).
It is important to note that (L”, b,)-consistency implies (L9, b,)-consistency for 0 < ¢ < p
with 1 < C, < C,, as per the Jensen inequality. In our case, we only require (LZ,(I +
log t)\/n_t)-consistency, a weaker condition than the original work that assumes (L%, \/11_,)-

consistencyl 4%,

3.2.2 Examples of Nonlinear Stochastic Approximation

We now present some examples of nonlinear SA which we would revisit in the numerical

experiments.

3.2.2.1 Stochastic Gradient Descent

The most celebrated example is stochastic gradient descent (SGD) that is originally intro-
duced by Robbins, Monro [*°1. Due to its simplicity and efficiency, SGD probably becomes
the most powerful method for solving optimization problems in machine learning. The stan-
dard task is to minimize an (unknown) objective function F : R? — R in the form F(x) =
E:rF(x,8). We have access to the noisy samples of the gradient VF(x) = Een VE(x, &)
where & is the observed data. When having complete control over data collection (e.g. the
case of offline training), we can assume each data &, e z for granted. In the streaming data
setting, it is more practical to assume the data {&},5, sampled from a Markov chain with 7
the unique stationary distribution (see Assumption 3.2.2). In this case, during the ¢-th gradi-

ent oracle, we input a parameter x, and observe a stochastic gradient vector VF(x;,&,;) as the
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sample of VF(x,). We then perform SGD to update x, via

X =x;—nH(x, &) with H(x;, &) = VF(x,,§).

For convex F’s, one can find that its minimizer x* is exactly the root of its gradient func-
tion, i.e., x* = argmin,cpe F(x) = {x € R : VF(x)=0}. When VZF(x) further satisfies a
local continuity condition around the root x* where || V2 F(x)— V2 F(x*)|| < 2Lg|lx—x*]| for
any || x—x*|| < 85, Assumption 3.2.1 is satisfied. This local continuity condition is used by Li,
Liang, Chang, Zhang °°1, Su, Zhu 1871, Chen, Lai, Li, Zhang ['?°! to ensure local linearity in
their applications. To ensure (3.3), a sufficient condition is almost surely Lipschitz continuity
that ||VF(x,6)— VF(y,8)|| £ Ly|lx—y|| forany x,y € R¢ and & € 2. Assumption 3.2.2 re-
lies on how the data &, interacts with the gradients V F(x*, &), while Assumption 3.2.4 purely

depends on the data generation mechanism, both of which require a case-by-case discussion.

In the following, we provide two more concrete examples of V F(x, &,) and see how they

satisfy the assumptions we imposed.

» The first example is linear regression with autoregressive noises. We receive data &, =
(a,,y,) where y, = (a,,x*) + ¢,. Here m : R — R is a transformation function, the
covariate a;, e r,, and each infused noise ¢, is sampled from an autoregressive model
with 7, the stationary distribution. The stationary distribution z corresponds to the joint
distribution of (a, y) where a ~ 7, and y = (@, x*) + ¢ with { ~ 7, independent of a. We
use the squared loss F(x,¢&;) = %(y, - (at,x))2 and thus VF(x,¢&,) = ({(a;, x) — y,)a,. One
can show that Assumption 3.2.1 holds with G = [EaN,raaaT and (65, Lg) = (0,0). Once
Eg-r, lal|” < oo, Assumptions 3.2.2 and 3.2.3 follow.

» The second example is generalized linear model with Markovian data. In the observed data
& = (a, y,), the covariate {a,}, is generated according to an autoregressive model with
7, its stationary distribution and {y, }, is generated from the canonical generalized linear
model p,(yla,) o exp (th - b(9t)) with 8, = (a,,x*). The stationary distribution r is
ma(da)Xp,(dyla). We use the negative log-likelihood loss F(x,, &) = b({a,, x)) —(a;, x)y,
and thus VF(x, &) = (b'({a,, x))—y,)a, where b’ is the derivative of b. Standard choices of b
include the identity map for linear regression and the logistic function for logistic regression.
Assumption 3.2.1 is satisfied with G = V2F (x*) and some finite (6G» Lg) if we assume b” is
non-negative and uniformly bounded with sup, E||a, I> < . Assumptions 3.2.2 and 3.2.3
are satisfied if we further assume b’ is Lipschitz continuous and uniformly bounded together

with sup;s Ella;||” < oo for p > 2.
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In these cases, the uniform ergodicity of §; in Assumption 3.2.4 is reduced to that of either
¢, or a,, both autoregressive processes. Uniform ergodicity has already been established for a

wide range of first-order linear autoregressive (a.k.a. AR(1)) models!41.

3.2.2.2 Asynchronous Q-Learning

Reinforcement learning algorithms are often studied in terms of the Markov decision pro-
cess (MDP) with a finite state space & and action space &/!°]. An MDP contains a collection
of probability transition kernels { P(-|s, a)} s pesxa C RISXZIXIST where the transition ker-
nel P(s’|s,a) denotes the probability of transiting to s’ when action a € & is taken at the
state s € &. The MDP is also equipped with a random reward function R € RI**“l and
R(s, a) corresponds to the immediate reward collected in state s € & upon performing the
action a € &/. We denote r = ER by the expected reward function. A policy 7 : & — A(H)
is a mapping from the state space & to the simplex of action space & (denoted A()). In
discounted MDPs, a common objective is to maximize the expected long-term reward. For a

given policy 7, the expected long-term reward is measured by its Q-function Q" defined as

Q"(s,a) = E [Z v'R,(s,,a,)

=0

S0=S,ao=a,ﬂ'] .

where the trajectory is generated according to a, ~ 7(s,), 5,1 ~ P(:|s;, a;), and R,(s;, a;) ~
R(s,,a,). Classic results show that the optimal Q-function Q*(s,a) := max, Q”(s,a) is
uniquely determined by the fixed point of the Bellman equation Q* = r + yPF Q* where
T RIS RIS g a blockwise max operator defined by (7 Q)(s) := sup,c O(s, a) for
any s € 8.

Q-Learning is perhaps the most popular model-free approach to seek the optimal value

[17]

function'" "!. In the so-called asynchronous RL, a generative data simulator is not available

and data access is limited to the Markov chain introduced by a given behavior policy nb[130].
At iteration ¢, the agent performs action a, ~ m(s,) from the current state s,, then receives
a random reward R,(s;,a,), and transits to the next state s,.; ~ P(-|s;,a,). With the data

& = (s;.a, R,(s;,a,), 5,41), Q-Learning updates an estimate Q, for Q* via

Q,(s,a) if (s, a) # (54, a,),
QH-] (Sa a) = .
(L=n,)-O(s,a)+n, (R(s;,a) + 7 8Upaey O/(s11. @) if (s,a) = (s, a)).

Denote by R, € RI**I the one-hot vector with only the (s,, a,)-th entry non-zero with value

R,(s,,a,) and by P, € RIS*¥XISI the sparse matrix with only the (s,, a,, s, |)-th entry nonzero
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with value one. Then one can rewrite (3.8) in a matrix form

Qt+1 = Qt - ﬂtH(Qt, é:z) with H(Qta é:t) = It(Qt - yPthz - Rt)’ (38)

where I, € RI$*“| s a sparse diagonal matrix with only the (s;, a,;)-th entry equal to one and
0, e RIS*| is the vectorized Q-value function. We slightly abuse the notation and always use
R;, P, to denote the dense observation whose most coordinates are not accessible but filtered
out by the sparse matrix I,. By contrast, a data generator is available in synchronous RL that
produces independent rewards and next states for all state-action pairs so that I, is always an

identity matrix[>¢],

Proposition 3.2.1. Assume that (1) the MDP introduced by m, is irreducible, (ii) the optimal
policy is unique and denoted by n'*, and (iii) { R,(s, @) } s ayesxs 1S independent on {s,},5o, and
SUP(s.aesxa EIR(S, @)|P < co. Then the iterates {Q,},5 in (3.8) satisfies Assumptions 3.2.1-
3.2.4.

The consequences of the assumptions in Proposition 3.2.1 are as follows. Firstly, under the
assumptions, the stationary distribution of &, is given by d, (ds)m(da |)p,(dr|s,a)P(ds’|s, a),
where dﬂb(-) is the state stationary distribution of the MDP determined by =, and p,(-|s, a) is
the probability density function of R(s,a). As a result, g(Q) = D(Q — yPI Q — r) with
D = diag({dﬂb(s)ﬂb(als)}(s’a)) is a square diagonal matrix with order |§ X &/|. Using the £

211 showed Assumption 3.2.1 holds for Q-Learning

norm, Li, Yang, Jiadong, Zhang, Jordan |
with (65, Lg) = (o0, %) if the optimal policy z* is unique, where A is the optimality gap
defined by A := mingmin,,«, [V*(s) — Q*(s,a)|. In this case, when [|Q — Q™| 3 A,

FQ =TI* Q behaviors like a linear operator where IT” € RIS XIS*|

is a projection matrix
associated with a given policy 7 defined by IT* := diag({n(-ls)T} ses)- Therefore, the local
linearity matrix is G = D(I — yPH”*) whose negative is Hurwitz.% Secondly, if each ran-
dom reward has bounded p-th order moments, Assumption 3.2.2 holds with ¢ = 0 due to the
boundedness of Q*. Thirdly, one can show that Assumption 3.2.3 follows with Ly =1 +y.
Finally, the Markov chain determined by 7, on the finite space & X & is irreducible and thus
uniformly ergodic, which along with the 1.1.d. nature of R,(s, a) implies that Assumption 3.2.4

holds.

(D Note that PII*" is a Markov transition kernel on & x & and thus has eigenvalues with norm at most 1. As a result of
y €[0,1),I- yPl'[”* has eigenvalues with strictly positive real parts and so its negative is Hurwitz. By Liapunov’s
theorem, A is Hurwitz if and only if there exists symmetric matrices B,, B, such that A" B, + B, A = B,. Using this
equivalence, one can show —G is Hurwitz as well.
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3.3 Main Results

We now turn to the statement of our main results, beginning with a FCLT in Section 3.3.1,
followed by consistency guarantees in Section 3.3.2, a semi-parametric efficient lower bound

in Section 3.3.3, and ended by functional weak convergence rates in Section 3.3.4.

3.3.1 Functional Central Limit Theorem

Theorem 3.3.1 (FCLT). Under Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, and 3.2.6, for the
iterate {X,},>( defined by (3.2) and any r € [0, 1], we define the partial-sum process as what

follows
[T7]

1
br(r) 1= — Y (x, — x*).
r ﬁ; ,

Then, as a random function on [0, 1], ¢r(-) weakly converges to a scaled Brownian motion

y(), ie.,
br =y =G S"PW (3.9)

in the Skorohod topology where
S 1=Es, [UE*,OU*,ET — PUR*, HPU K, )| (3.10)

is the covariance matrix and W = {W (r) . r € [0, 1]} is the standard d-dimensional Brown-

ian motion.

Theorem 3.3.1 shows both the cadlag constant function ¢, weakly converges to the rescaled
Brownian motion G~' SW . The scale G~ S involves both the local linearity coefficient G and
the covariance matrix . One can show S = E grr Valer P(&,)(U(x*, £")) is the expected con-
ditional covariance matrix of U (x*, &') with & ~ w and &' ~ P(¢, ). This functional weak con-
vergence provides stronger characterization for asymptotic behaviors of the SA scheme (3.2)
than pointwise weak convergence. By applying the continuous mapping theorem with a con-

tinuous functional f, we can arrive at Corollary 3.3.1.

Corollary 3.3.1. Under the same assumptions in Theorem 3.3.1, for any k > 1 and any |||-|||-

continuous functional f : D[O’l]’Rd - Rk, it follows that as T — oo,

Fbr) S fap) = £(G' S2W),

By the corollary we could easily establish weaker pointwise weak convergences by pick-

ing up a |||-|||-continuous functional f. For example, one can recover the standard i.i.d. CLT
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inB% by setting £ : ¢ — ¢(1). Wesay f : Dio.11re — RY is scale-invariant if f(A¢) = f(¢p)

for any non-singular matrix A € R9*4

and ¢ € Dy ;) ra- Moreover, when we choose f as a
scale-invariant functional, we immediately have that f(¢;) weakly converges to a functional
of the standard Brownian motion because f (G_1 S W) = f(W)which eliminates out the de-
pendence of the unknown scale G~1S. A close inspection reveals that f (¢p7) 1s a pivotal quan-
tity involving only collected data and the unobservable root x*, while f (G'S2w) = f(w)
has a known distribution whose quantiles can be computed via simulation. In this way an
asymptotic confidence regime can be constructed. This is the reason why the FCLT under-
pins the theoretical support of our statistical inference method. By making use of randomness
along the whole trajectory ¢, a confidence region can be formulated by reverting an asymp-
totic pivotal quantity. We provide a proof sketch in Section 3.4.1 and highlight the technical
novelty in the proof of Theorem 3.3.1. Before introducing our inference method, we supple-

ment Theorem 3.3.1 with several side results that would deepen one’s understanding on our

methods and theories.

3.3.2 Consistency Guarantee

A remaining issue is to ensure the (L?, (1+log 1) \/n_t )-consistency and uniformly bounded
p-th moment in Assumption 3.2.6. Typically, this can not be done without further assump-

tions. Previous work[14%]

assumes the existence of a smooth Lyapunov function to derive
non-asymptotic convergence rates, which suffices to address our issue here. However, for
non-smooth applications like Q-Learning, such a well-behaved Lyapunov function is not off-
the-shelf. Recently, Chen, Maguluri, Shakkottai, Shanmugam[?® 143l develop a regularized
Lyapunov approach for SA problems satisfying a general norm contraction by treating the
generalized Moreau envelope as the Lyapunov function. In this way, even for non-smooth
SA, a smooth counterpart of Lyapunov functions can be constructed and convergence rates
can be established. Inspired by their work, we adopt this approach and narrow down our focus
to SA problems satistfying both a similar contraction in Assumption 3.3.1 and a growth condi-

tion in Assumption 3.3.2. We emphasize the possibility of finding other general conditions to

guarantee Assumption 3.2.6. This subsection provides a particular example.
Assumption 3.3.1 (Contraction condition). There exist y € [0, 1) and ¢ > 0 such that

|2 (H(x,&) — H(y,&) —c- (x =yl < yc- |lx — yll for any x,y € R and & € E.

The contraction condition implies the map x - P H(x,&) — cx is a y-contraction in the

norm ||-||. The condition y € [0, 1) ensures that (1—y)c||x—y|| < || (H(x,&) — H(y, &) || <
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(1 + y)ellx — y|| uniformly over x,y € RY and & € E. This inequality can be viewed as a
strengthened version of (3.3) when p defined therein equals to one. For u-strongly convex and
L-smooth convex function® F (.&), H(x,&) = VF(x, &) satisfies Assumption 3.3.1 in the £,
norm with ¢ = —— and Yy = Q—L’j For Q-Learning in (3.8), Assumption 3.3.1 follows in the

L+
¢, norm with ¢ = 1 and y the discount factor.

Assumption 3.3.2 (Growth condition). There exist M > O and a non-negative function g

= — R such that
IH(x, Il < M(l|x| + g(&) for any x € R? and & € E.
Furthermore, we assume sup,» E||g(§)||” < oo with p > 2 given in Assumption 3.2.2.

The growth condition requires the incremental update || H(x, £)|| grows at most linearly
in both ||x|| and a non-negative function g : E — R that captures the contribution of data
¢ to the norm growth of ||H (x,&)[|. It would be emphasized that we assume {g(&,)},>( has
uniformly bounded p-th moments, much milder than previous almost surely uniformly bound-

ednessl20- 103, 123]

Remark 3.3.1. We impose a slightly stronger contraction condition than previous work!?% 103/,
Their counterpart condition is ||(g(x) — g(y)) —c - (x = Y)|| < yc - ||x — y|| uniformly over
x,y € RY and & € E under our notation. This is because we assume a much weaker growth
condition than theirs. Under our notation, they all assume (1) supscg | H(x,&) — H(y,&)|| <
Allx — y|| uniformly and (ii) supsez |H(x*,&)|| < B for two constants A, B > 0. The con-
ditions imply ||H (x,&)|| < A(||x|| + ||x*|) + B which essentially requires g(-) in Assump-
tion 3.3.2 to be a constant function, excluding the possibility of unbounded observation noises.

/20, 103]

Take Q-Learning as an example. The theories in work only for (almost surely) uniformly

bounded random reward R(s, a)s, while ours allow them to have p-th order moments.
Our second result is the consistency guarantee under a weaker growth condition.

Theorem 3.3.2. Under Assumptions 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.3.1, and 3.3.2, {X;};>0 up-
dated according to (3.2) satisfies the (L*, max{a,, 1} - \/n_,)—consistency with p > 2 given in
Assumption 3.2.2 and®

0 ifp =0,
“= [Imix <;_;>] B { [log, 211 i'fz € (0, 1). G1D

D TItmeans y - [|[x —y|| < |VF(x,&) — VF», 8| < L-|lx—y| forany x,y € R? and & € E.
(D If 6 = 0, we make a convention that a,=0.
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Theorem 3.3.2 implies that the sequence {x,},5( satisfies Assumption 3.2.6. This is be-
cause when p > 2, the (L?, max{a,, 1} \/r/_,)-consistency naturally implies the (L2, max{a,, 1} \/’1_1)'
consistency by Jensen’s inequality, which further implies the (L2, (1+log)- \/n_,)-consistency
due to a, = O(log t).@ Furthermore, the (L?, max{a,, 1}\/11_t)-consistency also leads to the

uniformly bounded p-th order moment as a result of #, log? t — 0 in Assumption 3.2.5.

Corollary 3.3.2. Under the same conditions of Theorem 3.3.2, Assumption 3.2.6 holds.

Previous work requiring i.i.d. data often establish the (L7, \/n_t)-consistency“”’ 140, 144]

We comment on the additional a, factor in Theorem 3.3.2. This is because most analyses for
Markovian randomness (including ours) use a conditioning argument of the geometric mix-

20,1231 'Roughly speaking, this argument attempts to address the issue of E[H (x*, ENFi_1] #

ing
0 by replacing it with E[ H (x™, ENF g1l = Pt H (x*, &i—q,—1)- The geometric mixing in
Assumption 3.2.4 implies that the latter could be exponentially small given g, is sufficiently
large. More specifically, we have |P“T T H(x*, &) < kop™ uniformly over £ € E from
Lemma 3.2.1. To derive the consistency result, it suffices to set |24 H(x*, &) < Nss
which explains the choice of a,’s in (3.11). However, several approximation errors occur be-
fore this replacement is taken, whose addressing requires a further elaborate analysis which we
defer in the Section 3.4.3 due to the technical complexity. As a result, the square estimation
error E||x, — x*||? typically depends linearly on the squared mixing time at2 (e.g., Theorem
2.1 in Chen, Maguluri, Shakkottai, Shanmugam [?°1). Our result provides a more complete
characterization on the mixing time a,’s, that is, E||x, — x*||” = © (af ntg ) depends linearly on

p
a;.

3.3.3 Semiparametric Efficient Lower Bound

Theorem 3.3.1 shows the asymptotic variance of ¢-(r) at any fraction number r € [0, 1] is
rG~'SGT. It is of theoretical interest to investigate whether this asymptotic variance matrix
is efficient or not. This question has already been addressed in the context of i.i.d. observations;
the asymptotic variance of the averaged iterate under this scheme (3.2) is known to achieve

the Cramér-Rao lower bound??% >°!

. However, the counterpart result for our Markovian root-
finding problem is unclear, which is our target in this subsection.

Before presenting the semi-parametric efficiency lower bound, we first formally describe
the estimation task. The parameter of interest x* is the root of the equation E §~7rH (x,6=0

where 7 is the stationary distribution of the transition kernel P(&, d£”). We do not parameterize

(2) This is because by tn, T oo, we have 5, = %
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the kernel P in a finite-dimensional space and thus enter the semiparametric world. We assume

adataset 2 = {§;},¢[,) With ;s collected by following the Markov kernel P. Here, we denote

by n (instead of T') the size of & following the notation in Greenwood, Wefelmeyer [1431.
We define the following perturbed transition kernel P, (&, dE),

Pads) 1
e v L,
pEaz) )

where h is a function on Z X E belonging to the following function class
XB = {h € R : h is bounded, measurable and E(:/Np(f’_)h(f, EYy=0forall ¢ € E}

The boundedness of h implies P, is well-defined as long as n is large enough. By =z,, we

denote the stationary distribution of P, and by x:h the root of the equation E gom,, H(%,8) = 0.

Definition 3.3.1 (Regular asymptotic linearity). We say an estimator T, (which is a measur-
able function of D) to be regular for x* with limit L, if for all h € B,

d
(T, — x:h) — L under P,,.

Furthermore, we say T, to be regular asymptotically linear (RAL) if T, is both regular for x*

and asymptotically linear with a measurable function @ such that

T, = x%) = == 3" @1, &) + opu(),
n

=

where @ is referred to as an influence function. It is satisfied that B¢ ., ¢1 . pce 9§, & @(E, e’
is non-singular and B¢, ¢1..pe., @&, &) = 0.

To establish efficiency lower bound, we focus on an important class of estimators, the
regular asymptotically linear (RAL) estimators. Tsiatis ['*¢! argued that RAL estimators pro-
vide a good tradeoff between expressivity and tractability. Informally speaking, an estimator
is regular if its limiting distribution is unaffected by local changes in the data-generating pro-
cess. In Definition 3.3.1, it means even we perturb the data-generating transition kernel from
P to another P, the asymptotic distribution of n'/ Z(Tn - x:h) remains unchanged as L. This
regularity excludes super-efficient estimators, whose asymptotic variance can be smaller than
the Cramér-Rao lower bound for some parameter values, but which perform poorly in the
neighborhood of points of super-efficiency.

Our third result is the efficiency lower bound for the asymptotic variance of any RAL

estimators for x*. By Definition 3.3.1, any influence function ¢ determines an asymptotic
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linear estimator for x*. Theorem 3.3.3 serves as a concrete target in constructing the influ-
ence function, and any influence function that achieves this bound is the most efficient among
all RAL estimators. Theorem 3.3.3 is also helpful in understanding recent non-asymptotic
instance-dependent estimation bounds for Markovian linear SA['%4!. These bounds show that
1nan supp E|T, — x* ||2, the minimax estimation bounds in £,-norm, is lower bounded by
an instance-dependent quantity %ll G ls!? ||2F, which can be computed directly from (3. 12).®

Similar correspondence is found in i.i.d. nonlinear SA?!> 1001,

Theorem 3.3.3 (Semiparametric efficient lower bound). Under Assumptions 3.2.1, 3.2.3, 3.2.4,
and 3.3.1, for any RAL estimator T, for x* that is computed from D = {¢, Yiemn)p we have

lim n-E(T, —x*) T, -x*)" > G 'SGT (3.12)
n—>oo
with both G and S defined in Theorem 3.3.1.

Theorem 3.3.4 implies that for each r € [0, 1], — lT ] Z[TFJ x, is most efficient estimator
among all RAL estimators and the influence function is given by @(&, &) = U(x*,&’) —
PU(x*, ). One can show this by the fact that (&, £') is mean-zero and its covariance matrix
is exactly S when (&, &) ~ n(d&) x P(E,dE"). This theorem implies the partial-sum process
¢ has the optimal asymptotic variance at each fraction r € [0, 1]. By contrast, the scaled

last-iterate process typically fails to achieve itl!?% 1441,

Theorem 3. 3 4. Under the same conditions of Theorem 3.3.1, for any r € [0, 1], the partial-

sum value m Z 7] x, is a RAL estimator for x* with the following decomposition
[ Tr| [Tr|
¢r(r) 1= — Z(x, —x* D> GTNUG*. &) - PUGE* D]+ op(1),

\/?zl

where @U(x*,.ft_l) = [E[U(x*,it)|97t_1] and op(1) denotes a random function whose uni-

form norm |||-||| converge to zero in probability.

Proof of Theorem 3.3.4. In Section 3.4.1, we have analyzed ¢p;. We will make use of many

results obtained therein. We decompose ¢ into several terms in (3.20)

[T7]

b (r) - LT ST G, = wo(r) + () + W) + ().
=0

(D For any standard basis e, € R?, we have lim n - [EeT(T -x)T,-x e, > e'G'SGT e;. Summing over j € [d],

n—oo J=

we arrive at lim nE||T, — x ||2 > |G~ 51/2||F
n—00
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We also show that |||(])T — ¢7||| = 0p(1) and |||y ||| = op(1) for 0 < k < 3 asin Lemma 3.4.2.
In the proof of Lemma 3.4.1, we also decompose u, := u, | +u, , into two terms in (B.1) such
that we have

[Tr]

1

Putting these results together and using Slutsky’s theorem, we complete the proof. O

=op(l)and u,, = [U(X*, &) — PUX™, 51_1)] .

3.3.4 Functional Weak Convergence Rate

In this subsection, we provide a more quantitative result that specifies the rate at which
the weak convergence in Theorem 3.3.1 takes place. For two random processes ¢, and ¢,
in Do 1) rd, We denote by dp the Lévy-Prokhorov distance between the probability measures

introduced in[147'148], that is,
dp(@y. Py) :=inf {e: P(¢, € B) <P(¢, € B) +¢, VB € Dy e | (3.13)

where Bf .= {4)1 € D1 re inf¢zeB ds(¢, Py) < e} is the e-neighborhood of B. Since
Dio,11,r¢ With the Skorokhod metric is separable, convergence in the Lévy—Prokhorov metric
is equivalent to weak convergence of the corresponding measures, as a result of which, we

have dp(¢p, G~ S>W') - 0 from Theorem 3.3.1.

Assumption 3.3.3 (Further regularity conditions). (1) Assume the initial data &y ~ & and

sup P||H(x*, &)1 -—sup/uH(x LENPPE,dE) < oo.

I{=c

(i) {x,};50 satisfies the (L?,(1 + logt) - \/r]_t)—consistency with p > 2 given in Assump-
tion 3.2.2.

Theorem 3.3.5 (Functional weak convergence rate). Let Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4,
and 3.3.3 hold and choose the step size to be n, =t~ with a € (0.5, 1). It follows that for any
vector 0 € R? with ||0]|, = 1,

p=2 1] 1

1
dp(0" 1,0 y) = (T 7@ 4 (e, +tmlx)2+” =@ 77! - +1° T76
(3.14)

L G . .. .
LutlGl } tmix 1S the mixing time

where p > 2 is given in Assumption 3.2.2, ¢, := max {LG, 5
G
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defined in (3.6), and both J| and J, are increasing functions of a given by®

W fg e (0.5, 2] : (@—05)-L ifae (0.5, 2] ,
J] (a) — 2(2+p) )4 and JZ(“) — 2+p p

a . 2 a—0.5 . 2
at2 ’f‘xe[;’l)’ e lfae[;’l)-
Here we hide dependence on uninterested parameters and the log factors in O(-).

Our last result is the functional weak convergence rate (3.14) for the one-dimensional
projected partial-sum process 0T¢T. To establish this theorem, we impose an additional As-
sumption 3.3.3. It requires &, is initialized as the stationary distribution z and assumes a
uniform bound for supscz & || H (x*, &)||?. The former condition is standard in nonasymptotic

analysis for Markovian datal!®4]

, while the later condition is mildly weaker than the uniform
boundedness used in the literature (see Remark 3.3.1). The discussion in Section 3.3.2 reveals
the (L?, (1+log?)- \/n—,)-consistency follows when Assumptions 3.3.1 and 3.3.2 hold. In short,
Assumption 3.3.3 is mild and standard.

The bound (3.14) is an analog of the Berry-Esseen bounds on the distance between the
distributions of cadag functions in Dy ;g measured in the Lévy-Prokhorov metric. To the
best of our knowledge, it is the first non-asymptotic bound of functional weak convergence

for the nonlinear iterative algorithm (3.2) in the existence of Markovian data. If {OT(x, -

x*)},zo is 1.1.d. with zero mean and bounded p-th order moments (p € [2, 3]), Borovkov [149]
showed the bound for a’P(GTqu, 0Ty)is O <T_2<p;’;+2” > . Haeusler (1'%, Kubilius ['*°! showed
the same bound holds for martingale difference sequences under specific moment conditions.
However, our result has a slower rate, as the third term in (3.14) alone is already slower

__p2
than © (T 2(ﬂ+1>>. The main cause is that the sequence {GT(x, - x*)},zo is neither sta-

tionary nor martingale differences. The non-stationarity of x,, not remaining at x*, introduces

additional errors, slowing down the rate. More exactly, Theorem 3.3.4 states that for any
Tr] ~— .

r € 0,11, pr(r) = #z}zﬂ G UG &) — PUK*, &) + op(1), with (U(x*,&) —

PU(X*,&,_)} > being a fast mixing martingale difference under Assumptions 3.2.4 and 3.3.3.

According to the existing result!'>%! the LévyProkhorov distance between the partial-sum

process # tller loTG! [U(x*,&)—PU(x*,&,_,)] and the scaled Brownian motion 8"y =
1

. _p2 1 1
0'G7'SPW is roughly O(T 20" 4t T ©). Therefore, the remaining op(1) term causes

the slow convergence rate in (3.14). The detailed proof of Theorem 3.3.5 is collected in the

6
m

Appendix D.

(1 Here we interpret (0.5, %] =gifp>4.
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There are many implications from the bound (3.14). We list them below.

» Markovian data slows down the functional convergence rate polynomially due to the second
and fourth terms of (3.14). It together with Theorem 3.3.2 implies Markovian data with a
bounded mixing time has limited consequences on both the estimation error {/E||x, — x*||?
and the weak convergence rate dp(0" ¢p7, 0" y).

* It is vital to ensure p > 2, otherwise the third term in (3.14) might blow up or keep non-
diminishing. Furthermore, the bound (3.14) mildly changes when the moment order p in-

creases.

Ly+IGll
b 5G
If we consider linear SA, then 6; = oo and L; = 0 in Assumption 3.2.1, which implies

 The non-linearity attacks the weak convergence rate via the quantity ¢, = max { Lg

¢, = 0. For nonlinear SA, c, serves as a measure that quantifies the degree of nonlinearity.
* There exists a trade-off for the step size parameter a € (0.5, 1). Indeed, since both J; and
J, are increasing, the first and second terms in (3.14) decrease in @, while the third term
increases in a. It is of theoretical interest to investigate the optimal a* and the resulting
weak convergence rates. As Corollary 3.3.3 shows, the optimal rate in linear and i.i.d. case
nearly matches the pointwise rate © (T_é )I3H when the moment order p is sufficiently large.
However, it deteriorates almost by half once either non-linearity or Markovian data gets

involved.

Corollary 3.3.3. Under the same conditions of Theorem 3.3.5, if t;, = ¢, = 0, then for any
small € > 0,

) ~ |2 AL {126
doP (07,0 w) =6 (T [4<p+1>A6]( i
ae[g}Sl-Ii-le,l) P ( ¢T V/) (

with the optimum achieved by a* = 0.5 + €. If either t,,;, > 0 or ¢, > 0, it follows that

. e
min _dpP (0", 0'y) =0 <[(Cr + 1)+ 1] .T—J(p)>,
ae(0.5,1)

where J(-) is defined as follows

(r=2)p

2(3p2+2p—1) ifp € (2, pO]a
—1)— 2__
J(p)=1 & 1)2(;?{’) 22D i p € [py, 81,

5‘2/1_9 ~0.107  ifp €8, ),
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with py € (3,4) a number making J (-) continuous and and with optimum achieved by

2p2+p—4 .
3p2+2p—4 lfp € (2’ p()],

2_ - .
a*(p) =4 Y f_r;) D it p € [py, 81,

129‘3 ~0.679 ifp € [8, o).

Proof of Corollary 3.3.3. The proof can be found in Appendix D.1. ]

3.4 Proof Sketches

Before introducing our inference method, we provide the proof sketches for the four the-
orems present in the last chapter and highlight our technical contributions therein. The proofs

for several technical lemmas are deferred in the appendix.

3.4.1 Proof of Theorem 3.3.1

The proof for Theorem 3.3.1 contains three steps. Proofs for technical lemmas are deferred

in Appendix B.

Step one: Martingale-residual-coboundary decomposition Recall that the update rule is

X, =x;,—nH(x,&). We decompose H(x;,&;) into two terms:

H(xp ét) = g(xt) + [H(xtv é:z) - g(x,)] .

By Lemma 3.2.2, there exists a unique bivariate function U (x, &) such that H (x,,&,) — g(x,) =
U(x,,¢)— PU(x,,&). We further decompose U(x,, &) — LU (x,, &) into three terms:

U(x;’ ét) - @U(xt, ‘):t) = [U(xp ét) - g)U(xt, 5;-1)] + [%QU(-’CH&’ 'ft) - ng(xp ét)
t

. 7/ -

' Vo
martingale residual

n
+ |PUx,.&_)) - ;1—“9U(xt+l,§t)] .

t
“

~
coboundary

(3.15)

We refer to the last equation as martingale-residual-coboundary decomposition which is remi-
niscent of the martingale-coboundary decomposition that is originally proposed to establish

152-153]

FCLTs for stationary sequencesl This martingale-residual-coboundary decomposi-

tion is recently used in the asymptotic analysis for stochastic approximation MCMC algo-
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[111]

rithms!" 1. The telescoping structure in the coboundary term motivates us to introduce an

auxiliary process {X,},5( to remove its effect where
X, =x, =, PUX;, &)

As a result, we have

- - n
X1 =% — 1, | UL E) — PUL &) + ;—Jrlg’U(xtH, &) —PUx, &) -
t
We then focus on { X, }, and simplify the last equation by introducing the following shortcuts:

A, =%,—x* and

r; = g(x;) — GA,, (3.16)
= [U(x. &) - PU,. &) (3.17)
v = Moy (x,, . 8) - PUx,E). (3.18)

t

With the notation, the update rule becomes
A=A =1 [GA +r +u+v] =T -nGA +n, [r,+u +v,]. (3.19)

The following lemma explains the reason why we perform the decomposition (3.15). It shows,
while { H(x,, ;) — g(x,)};>( is not a martingale difference sequence, the decomposed {u, },5
is. Furthermore, {u, },5 admits an FCLT via a standard argument of multidimensional martin-
gale FCLT (e.g., Theorem 2.1 in Whitt !>*]). The remaining terms {r:}i>0 and {v,};5( have

negligible effects because they vanish asymptotically.

Lemma 3.4.1 (Properties of decomposed terms). Under the same conditions of Theorem 3.3.1,

1. It follows that as T — oo, Ellr,|| = O,

77 Lo

2. {u,};>q is a martingale difference sequence satisfying sup,sq E|lu ||’ < co where p > 2
is given in Assumption 3.2.2. Furthermore, the following FCLT holds — ZLTFJ
S2W (),

3. It follows that as T — oo, % Z,Tzo Ellvll = O.

Proof of Lemma 3.4.1. The proof can be found in Appendix B.1. [

Step two: Martingale-remainder (or partial-sum) decomposition Setting B, = I — n,G

and recurring (3.19) give

A, = HB A0+Z HB nj[r +u; +v]

Jj=0 \i=j+1
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Here we use the convention that [’

i1 By =1 for any # > 0. As a result, for any r € [0, 1],

$r(r) 1= —— > & —x%)

ZJ{HB A0+Z HB n; [r; +u; +v]}

Jj=0 \i=j+1

| Tr| \Tr] |Tr| t

;OB A0+—ZZ HB n [rj+u;+v|.

t=0 j =0 t=j '_j-‘rl

In the following, for simplicity we define
n t
=2_| I B |n
t=j \i=j+1

Using the notation, we further simplify the last equation as

|77
or(r) = —AmJ ByA, + L > AJLT’J [ri+u;+v,|.
\/_’70 ﬁ Jj=0
Arrangement yields
|77 | |77
$r(r) — — Z G 'u, = ——A"BA + — " AT 4y
\/_ VTng \/f =0
7] |77)

1 T -1 1 ( |Tr) T)
+ — E A -G u,+ — E A — A |u
ﬁt:o( t ) t \/Tt=0 t t

= l[/o(r) + ![/1(1') + l[/z(l‘) + lI/3(r). (320)

Step three: Establishment of FCLT By (3.20), we are ready to prove the Theorem 3.3.1.

First, from Lemma 3.4.1, the functional weak convergence follows that T Z[T” G lu, e

w(r) = S">G~'W (r) uniformly over r € [0, 1]. Second, E|||¢r — ¢7 || 3 ﬁ Sy =0
because of Lemma 3.2.2, Assumption 3.2.5 and 3.2.6. It implies the random function ¢ has

the same asymptotic behavior as (}T, Le., ¢ = (])T + op(1). To complete the proof, it suffices

to show that
|||<7>T - y/||| = sup ||<7)T(r) - y/(r)” = op(1). (3.21)
rel0,1]

In this way, one has ¢ = y + op(1) and thus ¢ = w + op(1) due to Slutsky’s theo-

rem. Lemma 3.4.2 provides a sufficient condition to (3.21) where the four separate terms
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sup,epo.17 lw (N[0 < k < 3) respectively converge to zero in probability.
Lemma 3.4.2. Under the same conditions of Theorem 3.3.1, for all 0 < k < 3, when T — oo,
llwilll = sup Nl (Il = op(D).
rel0,1]

Proof of Lemma 3.4.2. The proof can be found in Appendix B.2. [

Difficulty of analyzing y; In the proof of Lemma 3.4.2, the largest difficulty is to ana-
lyze the last process y;. Because y5(r) = ZLTrJ (ALTrJ AIT> u, is a weighted sum of
martingale differences u,’s whose weights depend on the fraction r, we can’t apply Doob’s
inequality to bound E sup,¢(o ; lly3(r)||. We made a novel technical contribution towards an

elaborate analysis for sup,<(g 17 [[¥3(r)||. In particular, a close inspection reveals that

n n
1 1
B, |nu,l| .
ﬁ"”“%(f:ll l> -

In Lemma 3.4.3, we show that the right-hand side of (3.22) is indeed op(1).

llwslll = Sup Iy 3l 3 sup (3.22)

Lemma 3.4.3. Let {€,},5( be a martingale difference sequence adapting to the filtration #,

Define an auxiliary sequence {y,},>q as follows: y, = 0 and fort > 0,

Vi1 = T —n,G)y, + n,€,. (3.23)

1t is easily verified that
t t

Y1 = 2| 1] (I-nG)|ne;. (3.24)

j=0 \i=j+1
Let {n,},>( satisfy Assumption 3.2.5. If ReA;(G) > 0 for all i € [d] and sup;o E||€,]|” < o
for p > 2, then we have that when T — oo
YT +1)r]

ﬁﬂ [(T+1)r|

Furthermore, if setting n, = t—* with a € (0.5, 1), we have that for any p’ € [2, p],

|||51T||| 20 where yr(r) = for rel0,1]. (3.25)

- T
d(yp) :=infevP(|yrl| 2o =0 <p' ! “)2<p'+l>> . (3.26)
£2
Proof of Lemma 3.4.3. The proof can be found in Appendix B.3. ]

Although some works establish similar counterparts of Lemma 3.4.3 for SA algorithms,

our Lemma 3.4.3 is the most general in three aspects. First, it relaxes the restriction on —G
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30,62,129] * Second, it requires uniformly bounded

from being negative definite to Hurwitzl
p(> 2)-th order moments on the martingale difference sequence {¢,},5( rather than bounded
forth momentsl?!> ©21. Last, it accommodates a general step size in Assumption 3.2.5 instead
of simple polynomial step sizes!'?°]. We made this improvement from a key observation that
Lemma 3.4.3 is easy to prove via a similar argument in Lemma 2.5.8 when G is further diag-
onalizable. For the general non-diagonalizable case, without loss of generality, we assume G
is a matrix of Jordan canonical form by utilizing its Jordan decomposition. Then, the fact that
G would be upper triangular motivates an induction proof to relate the projection components
of y,,; on non-diagonalizable Jordan blocks to those on diagonalizable ones, completing the
proof for the asymptotic result (3.25). The proof idea also motivates a method to quantify
the rate (3.26) of convergence in probability. One can show that d(y;) — 0 is equivalent to
|||57T||| % 0. This quantitative bound (3.26) provides a great help in establishing the weak

convergence rate in Theorem 3.3.5. We believe it would benefit future quantitative studies on

weak convergence of iterative algorithms.

3.4.2 Establishment of (L2, a, \/ﬁt)—consistency

We present a proof for Theorem 3.3.2 in the following two subsections. The first subsec-
tion establishes (L2, a, \/n_,)-consistency, while the second subsection deals with (L?, a, \/11_,)-
consistency. We begin with (L2, a, \/n_t)-consistency because it is easier to establish using
existing techniques. Additionally, based on this result, one can more easily understand the
way we prove (L?, a, \/n_,)-consistency. At a high level, we adapt the generalized Lyapunov

approach developed in?% 143!

to our case. Throughout these subsections, we use the 7 5-norm,
denoted by || - |5, defined in R¢. Readers should note that the 5 used in this section has no

relation to the p defined in Assumption 3.2.2.

Lemma 3.4.4 (Smoothness and approximation of the envelope, Lemma 2.1 in Chen, Maguluri,

Shakkottai, Shanmugam ['*31), Lez || - || j denote the £ z-norm defined in RY. Define the Moreau

envelope oféll 17 wert. %ll . ||fi as

VU B ST S 2
M(x) = min |3l + 5 llx - ul}].
We then have the following results

1. M(x) is convex in x and is (p — 1)A-smooth w.r.t. the norm || - || 5.
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2. Suppose Ig|| - || < us|l - |l then for all x € RY,
1 2 A
< —2> §||x|| < <1+1—%) M (x).
b p
3. There exists one norm || - || 5y such that M (x) = —||x|| forall x € R,

Proof of Theorem 3.3.2. Recall that the update rule is x,,; = x, — n,H(x,,&;). Hence, it fol-

lows that

(p—l)

M(x ) —x*) < M(x, — x*)+ (VM (x, — x*), %, — X,) + 1, = %1113

( )11,

= M(x, — x*) = n (VM (x, — x*), H(x,,£)) + ILH (x,, €D

(3.27)
Let &, = oc({, }9<. <) be the o-filed generated by all random variables {&, }(<,, strictly

before iteration 7. Clearly, x, is &,-measurable. We denote E,(-) by E[-|€,] for simplicity and

E(-) takes all randomness. For one thing,

ENH G &3 < E, (1Hx. &) — H&*EIl; + 1HEE)l5)
<2 (ENHG, &) - HE*, IR +ENHE"&)I2)
<2 (B[ H(x.&) — Hx*, &) + E|H*. &)%)

<2 (PNH(x,, &) — HES &I + E[[H&*, &)

(@
< 22 (L2 1%, — x* |1 + E| Hx*.&)I1%)

(? 2u? <2L§, <1 + l%) M(x, — x*) +E| H(x*, (:t)||2> , (3.28)

p

where (a) uses Assumption 3.2.3 and (b) uses the Item 2 in Lemma 3.4.4.

For another thing, we decompose the cross term into three part as following

E(VM(x, — x*), H(x,,&,))
=(VM(x, —x*), PH(x,,&_,))
=(VM(x, — x*),PH(x,,§,_1) — PH(x*,§_1) — c(x, — x*))

h'd

1

+c(VM(x, —x*),x, —x*)+ (VM (x, — x*), PH(x*,&,_1)) .

(3.29)

~ ~
11 111

We are going to analyze the three terms in (3.29) respectively in the following.
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For the term / From the Item 3 in Lemma 3.4.4, we have M (x) = %llxll%u for all x € RY.
Hence, VM (x) = ||x|| v, Where v, € d||x||,, is a subgradient of the function ||x||,, at x.
Let]|- ||L denote the dual norm of || - | ;, defined by ||x||’]t,[ = sup”y”MSI(x, y). Since || - || 5/ s
a 1-Lipschitz w.r.t. the norm itself, we have ||x||’]'(4 < 1 forall x € RY. By Assumption 3.3.1,
it follows that

11 < M, = X g 1o e 3 NP H (3, &) = PH(X™,&,_p) = e(x, = x|y
< 1%, = x|y IPH (x,. &) = PH(X™, &) — c(x; — x|
For another thing, by the Item 2 in Lemma 3.4.4, <1 + %) M(x) < 21x||* < <1 + l%) M(x),
p p

o : 1 .
which is equivalent to ——==||x|| < ||x]|5, < il
242

2 2
\/lp \/uﬁ+/l

IPH (x,,&_1) = PH(x*,&_1) = c(x, = x|l iy

U=

< b
/2
uz + 4

||x|| for all x € R?. Hence,

IPH(x,, &) = PHX™, &) — c(x, — x|

i u /12 + A
< czinxt — x| < or - el = %y
1/uﬁ+ﬁ I3 uﬁ+/1
As a result,
upn/ 1>+ 4
|| < 2cy ———M(x, — x*). (3.30)
57/ + 4

Fortheterm I1 Since |||, 1s a convex function of x, we have by the definition of convexity

that [|0]] 5, — I, — x* || 5y > (Vs —rs —(3, = x*)). Hence,

IT = cllx; = x* || py (U > X, — X*) 2 cllx, — x*|13, = 2c M (x, — x*). (3.31)

For the term /11 The the term I11 exists due to Markovian data. Note that x,, VM (x, —
x*) e g and §,_; € ¥,. By Lemma 3.2.1 and Assumption 3.2.3, for any t > 0,

IELH (x*,&1)I& = Elll = 1P H(x*, &I < kp' sup | PH(x*,8)|| < kop'.

¢e=

Therefore, we are motivated to define

a, = [log, %1 if p > 0; a, = 0 otherwise, (3.11)
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for each ¢ > 0 such that for any &£ € E,

|24 H(x*, &)|| = [|E[H (x*, &, )& = Elll = IE[H (x*, E)IE,_, —y = Elll < m,» (3.32)
where the last equality holds because we consider a time-homogeneous Markov chain. Then,

EITT = E(VM(x, - x*) - VM(x,_, — x*), PH(X*,&_))) (3.33)
FE(YM(x,_, — %), PH( 6, ). |

Let § > 1 be the real number satisfying g~ + 5! =1 for the given p. By Holder’s inequality,

(VM (x, — x*) = VM(x,_, — x*), PHx*.&_))|
<IVM(x, — x*) = VM(x,_, — X)) PHE* &l
Sy [VMQx, = x*) = VM(x,_y — X IIPHE*, &I (3.34)

By the Item 1 in Lemma 3.4.4, we have
IVM (x,=x*)=VM(x,_, =x )| < = DA 1x,=%x,_g |l 5 < (5= DuyA-llx,—x,_, |l (3.35)
To proceed the proof, we introduce three useful lemmas in the following.

Lemma 3.4.5 (Properties of a,’s). Define {a,},>( according to (3.11). Under Assumption 3.2.5,it
Jollows that (i) a, = O(log?), (i1) a;n,_, logt = o(1) when t goes to infinity, as a result of which,

there exists K > 0 such that any t > K, we have
Man,_, <log2,

(iil) ;g /n; = O(1), and (Vi) a, < a,yy < a, + 1 for any sufficiently large 1.
Proof of Lemma 3.4.5. The proof can be found in Appendix C.1 [

Lemma 3.4.6. With {a,},5 defined in (3.11), we introduce
sup  g(&) ifa, > 1;

gy =4 masrsi-l (3.36)
0 ifa; =0.

Then under Assumption 3.2.3, 3.2.4, 3.2.5 and 3.3.2, for any t > K,
llx, — xt—a,” < 6Mat’7t—at(||xt” + g1) < 2(|1x [ + g-1)-

Proof of Lemma 3.4.6. The proof can be found in Appendix C.2 [
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p 2

Lemma 3.4.7. Under Assumption 3.3.2, we have Eg,_; < ([Eg?_l); = O(a,) where O(-) hides

2
the linear dependence on sup,»y(E|g(&,)] 122)1_’.
Proof of Lemma 3.4.7. The proof can be found in Appendix C.3 O

It then follows that for any ¢ > K,

(VM (x, — x*) - VM(x,_, — x*), PH(x*, & )|
@ 2 *
< (P = Duzh-|lx, = %, 1P HX™, &l
) = 2 * * *
<SOM(p— Duzd - am;_g (1%, — x| + [|x™ || + g DI P H ™, &l
© . 2 * *
< 6cM(p— 1)”13/1 : at”t—a,(”xt = x|+ x| + g-1)

) B 1
< 66 M(p— 1)u§,1 Sah_g (5”’“’ — X171+ I+ gH)

(e) ~ y)
< 66M(p - 1)u§,1 “an_, <<1 + 1_2> M(x, — x*)+ ||x*|| + g_; + 1) , (337
p

where (a) follows from (3.34) and (3.35), (b) uses Lemma 3.4.6, (c) uses || PH (x*,&,_))|| <

2
o from Assumption 3.2.2, (d) uses x < XTH for any x € R, and (e) uses the Item 2 in

Lemma 3.4.4.

Notice that 0 is the unique minimizer of the smooth function M (-), which implies VM (0) =

0. Similarly, we have
(VM (x,_y — x*), P H(X*, &, )
< (B = Dwgh- l1x,_g = XM NPT H&, &y )l
(@)
< 7];(]_7 - l)uzﬂ : ”xz—at - X*”
< (5= Dudi- (g, = 1+ 1, = x*1))
O ’ .
< 0B = Dugd - (2011l + 28—y + llx, — x™ 1)
< m(P = Dugd- (3llx, — x| + 211%™ || + g,-1))
_ 3 3
<= Dudi- (Fl% = X124 5 +201x "+ g,
© _ 2 A * *
< 3n(p=Duph- | | 145 M@ =2+ + g +1) ) (3.38)

p

where (a) follows from (3.32), (b) uses Lemma 3.4.6 and (c) uses the Item 2 in Lemma 3.4.4.
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Combining (3.33), (3.37) and (3.38), we have for any t > K,

[EITT] <3(p— D [(n, + 2Maa,;1,_at> (1 + 12) EM(x, — x*)
lﬁ
+(n, + 2Moan,_, )(Eg,_y + Ix*|| + 1)] .

Putting them together Plugging the bounds for EZ,EI1,EI11 into (3.29) and combing the
resulting inequality with (3.27) and (3.28), we have for any t > K,

EM (x4 —x*) < (1+ A} + Agann,_, — Asn)EM (x, — x*)

(3.39)
+ A4’7t2 + Asan g, + (A6’7t2 + Aqamy_q )JEE 1
where for short we denote
A= (- Duzi(3+2L%) A1) 4 =6Mo(p— Du2l A
1 — V4 P H l% ) 2 — P P l% 5
p p
upn/ 1>+ 2
Ay =2c|1 -y |, Ay = 25— DA supENHE*, &I +3(x* 11+ 1) ).
I5\/us+ 4 20
p p
As=6Mo(p— Dz (1+11x*]1), Ag =35 — Duzd, A; =6M(p— oA,
Pay attention that by setting A sufficiently small, we can ensure all A;’s are positive.
Dividing (3.39) by atznt and simplifying the inequality, we arrive at
EM(x,. —x*) 5 EM(x, — x*)
1+ 0(’71)) : <+ Al"lt + Azaznt’?t—at - A3’71)2— + @(nz),
a, 1 M+1 a1y

where we use 1,1 = n,(1 +0(n,)), 1 < a; < a,yy and n,_, /n; = OM(1) in Lemma 3.4.5, and
1+A1’7t2+A2at’71’7r—a,_A3’7t

Eg,_; = O(a,)inLemma3.4.7. Aslongastis sufficiently large, we have T3oln) <
t

1 — Byn, and there exist a constant positive B, > 0 such that

EM(x,,; —x*) EM(x, — x*)
2t+ < (1-Byn,) ++Bz’1r
a1 M1 a; My

Using the last inequality and Lemma A.10 in[%”), we have

EM(x, — x™)
sup —————— < 0.
>0 amn,

By the Item 2 in Lemma 3.4.4, EM (x, — x*) approximates [E||x, —x* II? up to constant factors.
X2 .
It implies sup,s % < oo and thus we establish the (L2, a,/n,)-consistency of {x, }i>0-
- t Mt >
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3.4.3 Proof of Theorem 3.3.2

In this subsection, we further establish the (L?, a, \/n_,)-consistency. Though the main idea
is similar to the case of (L?, a, \/n_t)-consistency, the proof procedure is much more circuitous
for the following two reasons.

1. First, following the spirit of the generalized Lyapunov approach, we should consider

the recursion of the form EM (x,,; — x*)g where x, ;| is updated according to (3.27).
However, EM (x, —x*)g doesn’t has a close-form expansion as the square counterpart
EM(x,,; — x*). We then have to bound the incremental growth of EM (x| — x*)12_)

b, . .
with respect to EM (x, — x*)? via inequalities. To that end, we derive Lemma 3.4.8.

Lemma 3.4.8. For any scalar A > 0 and any real number x > — A, we have

s pyits < d AT DA (2] ifa € (0,11,
T A QoA+ LA e x| ifa € [ ).
(3.40)

where c, in a universal constant depending a and satisfying a < c, < 3%
Proof of Lemma 3.4.8. The proof can be found in Appendix C.4. [

2. Second, according to (3.40), the specific value of a would affect the inequality we use.
It implies we should proceed the proof in two cases.

Now, we formally start the proof. By (3.27), we obtain
M(x,. —x*) < M(x, — x*) — n,6,,

where
(p— DAn,
2

It is clear that M (x, — x™) — 1,6, > M (x,,; —x*) > 0. In the following, we set & = £ — 1 for

5, 1= (VM(x, — x*), H(x,,&)) - I1H (x,, EDII3 (3.41)

short and have a > 0 by assumption.

For the caseof @ € (0,1] Taking (1+a)-th order moment and using the first scalar inequality
in (3.40), we have

EM (x,, — x*)'"7* <EM(x, — x*)*% — (1 + a)n,EM (x, — x*)%6, + n/ *"E|5,| .
(3.42)

To analyze the second and third term in (3.42), we establish corresponding upper bounds
in Lemma 3.4.9 and Lemma 3.4.10.
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Lemma 3.4.9. Let d; = max,_, <.,EM(x, — x*)F¥ . There exists a constant Ag > 0 such

that
EM(x, — x*)*6, > A;EM (x, — x™*)'* — Ag(n, + a,n,_,,) (d, +a, - dﬁ) :
Here Ag depends on Ay, Ay, As, Ag, {1, }1>0 and sup,sq E||H(x*, &)
Proof of Lemma 3.4.9. The proof can be found in Appendix C.5. [l

Lemma 3.4.10. With 6, defined in (3.41), there exists a constant Aq > 0 such that
|E|5t|l+a < Ag(lEM(xz _ x*)1+a + ntl-l-a’).

Here Ag depends on p, A,uj, Ly and sup,s E||H(x*, &)

ﬁ,
Proof of Lemma 3.4.10. The proof can be found in Appendix C.6. ]

Denote v, = EM(x, — x*)!**. With d, defined in Lemma 3.4.9, we have v, < d, by
definition. Plugging the bounds in Lemma 3.4.9 and Lemma 3.4.10 into (3.42), we have

V1 < (1= A+ @)Azn,) v+ 1+ ) Agn,(n, +an,_,) <dt +a,- d,”“) + Agn T (v, + 1/ T).

=2(1+a) —(1+a)
t ny

—2(14a) —(14+a)

We define d, = d,a and similarly &, = v,q, 1, . For sufficiently large
l+a  2(1+a)
t

t, we would have 1 — (1 + a«)A3n, € (0,1). Dividing n,"a on the both sides of the last

inequality and using #,,; = #,(1 + o(y;)) and 1 < a; < a,,, we arrive at

O (1 +0(n,)) < [1 = (1 + @) Az, + (1 + @) Agn,(n, + an,_,) + Agn; W] d,

+ (I + a)Agn, (1 + a,nt_ar/n,)al_lcit”” + A9’7t1+a

< [1 =+ a)As3n,(1 +0m))]| d, + O(n,) - A 4 Agn!* (3.43)

where the last equality uses a,n,_, = o(1) and #,_, /n; = O(1) in Lemma 3.4.5.
We assert that

supd, < co.
>0
We prove this statement in the following. For sufficiently large ¢, we have that 0 < %‘W <
t

1 — Byn, < 1 for some constant B; > 0. Then we can find constants B,, B; > 0 and sim-
plify (3.43) as

By < (1= Byn)d, + Bynd ™ + Byy, =: d, — n,h(d,) (3.44)
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where h(x) = B;x — Bleera — Bj is a helper function. One can show that A(x) is a function
defined on [0, co0) that starts from a negative value, then decreases, and finally increases to
infinity. As a result, there is a unique root d* > 0 such that A(d*) = 0. With a sufficiently
large ¢, one has a, < a,,, < a,+ 1 from Lemma 3.4.5. If d, > d*, we then have h(d,) > 0 and
thus #,, < d, from (3.44). As aresult of the fact 7 + 1 — a,, | >t — a,, we have

d., = max 7, < max 0, =max<{ max o, D =max {d,, ¥ 3.45
+ tHl—ag <r<t4l | T t—g<e<i+l t—a,<r<t ' +1 { t t+1} ( )

<d,.

In short, once d, > d*, d,| decreases until it is smaller than d*. Furthermore, if d, < d* and
d,, > d*, from (3.45), we have d,, | < 0,,,, which, together with (3.44), implies d,,, — d,
is bounded by a universal constant. As a result, we conclude that d, is impossible to reach
infinity, and thus sup, d, < .

Given sup,s d, < oo and g = 14+ a, we have that EM (x, — x*)g < Cpntg a’ uniformly for
1 > 0 and a universal constant C,, > 0. By Lemma 3.4.4, we have ||x, — x| < M (x, — x*).

)
As a result, we have E||x, — x™||? < Cpnt2 af (by slightly abusing the notation C,).

For the case of « € (1,00) Taking (1 + a)-th order moment and using the second scalar
inequality in (3.40), we have
EM(x,, — x*)" < EM(x, — x*)* — (1 + a)y, EM (x, — x*)*8,
c,(1+a (3.46)
+ %M(x, —x*) 1y215,1% + cantl+“[E|6,|1+“.
Because most of the terms in (3.46) have been analyzed previously, we only focus on the

remaining term EM (x, — x*)*~|5,|.

Lemma 3.4.11. There exists a positive constant A,y > 0 such that

g a-l
EM(x, — x*)* 6,12 < Ay [EM(x, — x™)*H + (EM (x, — x*)+%) T 4+ gZ(EM (x, — x*)+¥) a1

Here A, depends on Ly, M, ||x™ ||, 4, I5,sup;> EllH (x™, &P and sup,s( E|g(&)]P.
Proof of Lemma 3.4.11. The proof can be found in Appendix C.7. [

Plugging these bounds in Lemma 3.4.9, Lemma 3.4.10, and Lemma 3.4.11 into (3.46),

we have

V1 < (1= (1 +@)Azn,) v, + (1 + @) Agn,(n, + agn,_,) <d, +a,- dF)
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a—1

Tre TTa 1 1
+ (1 + a)c  Agn? lvt + 0 ol ] + c Agn, (v, + 1, ).

~2(1+a) —(1+a) 2(1+a) —(1+a)

Recall that d, = d,a, n, and 0, = v,a, n, . For simplicity, we let O(-) hide
positive constant factors. Then, dividing ntH“a?(Ha) on the both sides of the last equation and

using #,,1 = n,(1 +o(n,)) and 1 < a, < a,,;, we arrive at

B (14 001)) < 1= (1 + @ A3t + O - (1, + ayn_y) + 00 *) | d
a—1

+0) - (1 +am_ In)a; ' + 06(2) - d*" + O

a—1

(@) - . a1

< [1 =+ @) Asn (L + o)) d, + O, - d)* + O@?) - d* + 6y +*)
(0) o o

< [1 =+ a)Asn,(1 +o(n)] dy + O - d° + O+, (3.47)
where (a) uses ali_q, = o(1) and ’7z—a,/’1: = O(1) in Lemma 3.4.5 and (b) follows because
we can assume d, > 1 without loss of generality (which can be achieved by redefining d, «
max{a7,, 1}).

For sufficiently large ¢, we can find positive constants By, B,, By > 0 such that
Uy (1= Blnt)d~t + B2ntd~ta+l + Bsn,,

which is the inequality we have already analyzed in (3.44). By an identical argument therein,
P
we conclude sup,s d; < co. Therefore, we also have E||x, — x*||” < Cyn/ a’ when a > 1.

]

3.4.4 Proof of Theorem 3.3.3

In literature, the semiparametric efficiency for empirical estimators has been well un-
derstood when the interest of (unknown) parameter is in an expectation form, i.e., E;._,Z(&)
for a function #. However, our interest parameter is x*, which is the root of the equation
gx) 1= E: ,H(x,$) = 0. To make use of the existing result, we provide the following

lemma to serve as a bridge.

Lemma 3.4.12. For any RAL estimator T, for x* on & with limit L, we have that g(T ) is an
RAL estimator for —[E5~ﬂH(x*, &) with limit G - L.

For any RAL estimator T, for x* on z with limit L, Lemma 3.4.12 shows the trans-
formed estimator g(T,) is an RAL estimator for —E enH (x*, &) with limit G - L. Because

—Ee. . H (x*, &) is a parameter in the expectation form, the Markovian convolution theorem
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[155]

presented in Greenwood, Wefelmeyer shows that G - L can be represented as M + N,

where M is independent of N and N is Gaussian distributed with zero mean and the covariance
Eeep [(F — P H(x*,8)] [(7 — 2) ' H(x*,£)]". By Lemma 3.2.2, we know the matrix
is exactly §. Therefore, under P, Var(N) > .S and thus

lim nE(T,—x*)(T,—x*)" = Var(L) = G"'Var(M+N)G™" > G 'Var(N)G™ " = G 'SG™".
n—oo
At the end of this subsection, we provide the proof for Lemma 3.4.12.

Proof of Lemma 3.4.12. By the definition of RAL estimators, we need to check asymptotic
linearity and regularity. We denote by & and &, forward operator of the transition kernels P

and P, respectively.

d
Asymptotic linearity From the regularity of T, we have \/Z(T ,—X*) = Lunder P. It
implies that T', 2 x* and EpullT, — ¥ < % By Assumption 3.2.1, it holds that

V7 (&(T,) — g(x*)) = VnG(T, — x*)|| < Lg\/nlIT, — x* 1> + 0pn(1) = 0pa(1).

By the asymptotic linearity of T',, we have \/Z(T L= X)) = ﬁ Z?zl @(&_1,¢&) +opn(1) and
thus

Va@(T,) - gx*) = \/ng(T,) = \if S G 1. &) +op(D).
hoi—1

Regularity We first control the sum E,_, H (x:h, &) +Ee, H (x*,&). By using the fact
E..,H(x", & = [E_fNﬁnhH(x:h, &) =0, we have

ErpH(x). ) +E, H(x*.9)

=E;  [H(x},.&) — Hx*. O] - E,, [H(x',.8) - Hx*, )]

O, L PIH(x, &) — Hx*, O] - By PylH(xN, ) — H(x*, )]

O, PIHY, &) - Hx*, &) - Es, PIH(XY, &) — Hx*,6)]

LB, EeopenhE ENHGY, &) — Hx*,E)]
\/; n
- / PUH(x,, &) — H(x*, |(2(dE) — 7,,(dE))

g, EopieohE EH G, €)= Hx &)
7

+

:=:Zol +2°2

&3



Peking University PhD Thesis

where (a) uses the fact that 7 and z,;, are stationary distributions of P and P, and (b) uses the
choice P,,(&,d&") = P(£,d&") <1 + ﬁh(g,g’)).

We then bound the two term Z| and Z, respectively. By the boundedness of h and
Assumption 3.2.3, we have

1Zoll S —=F.., PIHG, & - H* 6l S —=llx", - x*|I.
v v

On the other hand, from Assumption 3.2.4, both of the transition kernels P and P, are strongly
stable which is defined in Kartashov ['°®]. By Theorem 3 in Kartashov '°%1, it follows that
dyry(z, ) S 2161153 drv(P(, ), P&, ). Therefore,

17,1 < / | PLH(E,.&) — HG* O] - [7(d8) = m(dE)]

< zuP PINH(x),, &) — HX* O\ - dpy(z, )
ex

(@)
rs ”x;:h - x*” ) zup dTV(P(ga ')9 Pnh(§7 ))
ex

)
< Iy, = x*Il - —= sup_[Ih(&, NIl 3 —le - x*l,

\/_ néges \/_
where (a) follows from Assumption 3.2.3 and (b) follows from the definition of P,,(&, d&").

Combining these two bounds, we get that
. N . N [l
gt +Eep H(x*, &) =E, H(xH. &) +E., HX*8 3 o
n
Noting that [E-fwnh H(x*, &) = [EgN”nhH(x*, f)—[Ewa(x*, &), we can show [EfwnhH(x*’ &) =
o1/ \/;) by using the same technique in bounding || Z||. Using the last inequality, we have

gx*) — gxt) = —Es  H(x'. &) —Es, H(x*,&)+E.., H(x*.&)

1
=FE,_ H(x*,§)+@<—||x* —x*||).
E~Tun \/— nh
n

By Assumption 3.3.1, it is easy to show that (1 — y)c|lx”, — x*|| < [|g(x”,) — g(x™)||. Hence,

1 1 1
), —x*Il < |E, H&*OI+0 | —=lx}, —x*Il |=0( —= )+6 | —=lx}, — x*1I |.
v Vi) \yn

Rearranging the last inequality yields ||x:h -

*x < L
d
Finally, by the regularity of T, we have \/Z(Tn - x:l‘h) — L under the perturbed distri-
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: P
bution P, and thus T,, - x*. Therefore,

Vn(g(T,) + Ezop  H(x*, )
=Vn(g(T,) - gGxf) + Vi (805 + Epo, HG.O))
=/nl(g(T,) - g(x*) = (g(x5) — NI + O(llxy, — x* )
=VAlG(T, = x*) = G(xfy = X1+ 0 (ValIT, = x5, 1% + Vallxhy, = x*I) + 0(1//m
=G\/n(T, — x%,) + Opu(1/7/n) = G\/n(T, = x¥.) + 0pn(1)

d
-G - L.

The last equation means g(7T',) is a regular estimator for E ennH (x*, &) with limit GL. ]

3.4.5 Preliminaries on the Lévy-Prokhorov Metric

Before presenting the proof of Theorem 3.3.5, we introduce additional preliminaries and
notation. We relate the Lévy-Prokhorov metric dg(-) in (3.13) with a Ky-Fan-metric-type
functional d(-) that would be frequently used latter on. For any continuous stochastic process
¢ € Dyp 1) re> We denote

d(¢) :=infe v P(lllll > €). (3.48)

Proposition 3.4.1. For any ¢, ¢, € Dy 1y ra, it then follows that

dp(d) + $a. ) < d(¢y).

Proof of Proposition 3.4.1. For each ¢,, we assume the maximum in d(¢,) is achieved by &,
such that d(¢,) = ssz(|||¢2||| > &,). Itis obvious that £, < d(¢,). Recall that B¢ := {¢, :

d)inf ds(¢y,¢,) < €}. Then, for any B € Py | rd, once ¢; + ¢, € B and |||¢2||| < g, we

have ¢p; € B*. Therefore,

P(¢, + ¢, € B) =P(¢p, + ¢, € B. ||,]|| <€) + P(@, + ¢, € B,
<P(¢, € B2) + P(|||g,]|| > €2)
<P(¢, € BYP)) 1+ d(¢,).

|2 > €2)

By taking B as all measurable set in Dy |} e, We conclude that dp(p; + ¢y, P;) < d(¢,) by
the definition of dp in (3.13). [

Proposition 3.4.2. Let g : Dy yra = Dig 1y re(k 2 1) be L-Lipschitz continuous in |||-|||
in the sense that |||f(¢1) — f(q52)||| <L- |||¢1 — ¢2||| Jor any ¢\, ¢, € Dy yra. For any
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&1, P, € Djg 1) ra, it follows that

dp(g($1), g(¢,)) < (L V1) -dp(Py, Py).

Proof of Proposition 3.4.2. Let B be any measurable Borel set in R* and we define B = {¢ €
Donr - 8@) € B). Lete = dp(¢;, ¢,). By definition, we have P(¢p; € B) < P(¢, €
B?) + £. Notice that P(¢p; € B) = P(g(¢p;) € B) and P(¢p, € B?) < P(g(¢h,) € BL).

The second inequality uses the result that if ¢, € B*, then there exists ¢p; € B such that

g(#3) € Band ||, — 3| < e. Therefore, [[|g(¢) — g(p3)|| < L - || — ¢s[| < L - & and
thus g(¢,) € B¢, Hence, by arbitrariness of B, dp(g(y), g(¢y)) < (L V1) -dp(;,¢pp). [

As a direct corollary of Proposition 3.4.2, we have
Corollary 3.4.1. For any vector 0 € R? satisfying ||0]|, = 1,

dp(07 .07 d,) < dp(Py, P).

Proposition 3.4.3. If ¢ € Dy || ra satisfies Elll@|lI” < oo with p > 0, then
- 1
d(¢) < (EllllI?) 7.

1
Proof of Proposition 3.4.3. Withe = ([E|||¢|||”)m,Markov’sinequalityyieldsthat Pl >
El[¢p|l” ~ e
o)< WO _; Hence, dig) < e v RAIRIN > o) = & = (ENIF) 7. 0

Proposition 3.4.1 shows that the Lévy-Prokhorov metric between ¢, +¢, and ¢, is exactly
bounded by d(¢,). Proposition 3.4.3 then implies d(¢,) is further bounded by (E|||¢;||”) =
if the p-th order moment exists. In this way, we reduce the Lévy-Prokhorov metric between
two given random processes to the high-order moments of their difference. The latter is more

tractable and thus easier to analyze.

Theorem 3.4.1 (Corollary 1 in Kubilius [°°0)). Ler (X", F™) be a sequence of locally square
integrable martingales in R, and (X, F) be a continuous Gaussian martingale. Then for any

T >0 and0 <6 < 3/2,

1
3 T gror
dp (X", X) = 0|3 | Esup [(X"), = (X),| +<[E/ /|x|2+25nn(ds,dx)>
ti<T 0 R

12
T
In [Esup|<X">,—<X>,|+[E/ /|x|2+25n"(ds,dx)
1T 0 R

X

2

(3.49)
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where (X ) is the quadratic characteristic of X and I1" is the dual predictable projection of the

process X".

3.4.6 Proof of Theorem 3.3.5

With the preliminaries in the previous subsection, we are ready to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. Let p = 2(1 + 6) for simplicity. Then p > 2 is equivalent to 6 > 0.

Step one: Finer partial-sum process decomposition We have analyzed the partial-sum
decomposition in Section 3.4.1. We will further decompose two terms to proceed proof. Recall
that ¢, (r) = ZLTrJ (%, — x*) and X, = x, — ,PU(x,,&,_,). We directly quote the
result (3.20) here

| Tr| | Tr|
_ |Tr] [T7]
$r()——=>) G 'u, = —A ByAg+—=> A "(r +v)
ﬁ =0 \/_’10 ﬁ =0
|Tr| |Tr|

1 T -1 1 ( |Tr] T)
+ — A -G u, + — A — A |u
ﬁg( t ) t ﬁ; t t t

=)y (r) +yo(r) + (). (3.20)

First, we further decompose y(r) : =y ;(r) + y ,(r) into two terms and arrive at

|Tr| |Tr| |Tr|
yi(r) = T Z ALTrJ( r+v,) = — Z ALTrJ \/_ Z At[TrJ Ve =ty )4y o).
=0

Second, we decompose the noise u; = u, ; + u, , where

= [U(x, &) — PU(x,. &) = [U™, &) - PURS, &),

(B.1)
u, = [U*, &) - PUGNE_)).

This decomposition has been used to analyze the asymptotic behavior of — \/_ Zt -0 G! u; in
Lemma 3.4.1. From the proof of 2 in Lemma 3.4.1, we know that both {u, | },5¢ and {u;,},59

are martingale difference sequences with bounded (2 + 26)-th order moment. For simplicity,

we denote
] |Tr| | Tr|
W =—> Glu,. w()=—> Glu, and y(r)=G'SW(@.
T =0 ﬁ =0
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Therefore, it follows that

br=(r— P +Wo+ W W+ W+ W+, Wy,

By repeatedly using Proposition 3.4.1 and Corollary 3.4.1, it follows that for any 8 € R?
satisfying ||0||,. = 1,

dp(0" pr, 0 y) < dp (071, 0" dr) +d(wo) +d(y ) +dw, )

_ _ _ (3.50)
+dWo) +dw;) +dwy)) + dp(0 5.0 y).

Step two: Moment analysis By Proposition 3.4.3, each d(y) is bounded by the moment
([E 1w ]ll ”) ﬁ forany 1 < v < p. Therefore, analyzing most of the terms in the right-hand side
of (3.50) is reduced to analyze their higher-order moment with the moment order v unspecified
as a variable. Lemma 3.4.13 provides these higher order moment bounds with A, m,[, k the
corresponding variables. Given the interested parameters include only ?,;, and 7', we will

hide other parameter dependence in <, © and 6.

Lemma 3.4.13. Rewrite p = 2(1+06). Under the assumptions of Theorem 3.3.5, it follows that

1

1+m 1+m T 2+m
~ = 1
dp (0T 7,0 dr) = O|e2m . 7220 - Z nl Vm € [0,268 + 1], (3.51)
t=0
~ 1
dwy) =0 (172), (3.52)
1
- - 1+4 1+4 1 r 244
dy,) =0 (cr + tmix)zu LT 2247 . = Z”tlH Vi € [0, ], (3.53)
t=0
1
T 2+m
7 5 o o 1 1+m
dy2) = O (1+tyis) 2om - T3 | 2y Vm € [0,26 + 1],
t=0
(3.54)
~ l—a
dwy=0 (1775 ), (3.55)
- _ld-o
dly3) =0 ((1 +0)-T 3+ ) vl € [0, 4], (3.56)
1
1 T 1+k
dyy,) = 6| Ve, - = S gk Vk € [1,2(1 + 6)], (3.57)
t=0
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5 1 1 1 1
dP(OTq/4’2, 0Ty)=0 <T_3+7 +17 G L5 4 tﬁlixT_5> for an infinitesimal o(1),

(3.58)

where ¢, :=max< L., —"’+” I and C, is the constant in the (L?, (1+logt)4/n,) consistency.
r G p g t Y.
G

Here, O(-) hides uninterested parameters and the log factor log T .

Proof of Lemma 3.4.13. The proof can be found in Appendix D.2. [

Step three: Variable selection Notice that for any f > 0, we have

L reap)
S 0 (257 ifap <1
- - — p _ logT : _ — A —(ap)Al
TZ_; _TZ_: ~af = @(%) ifap=1 =06 (T"@N) (3.59)
- = O(3) ifaf > 1

where O(-) hides the log factor log T and constant dependence on a, ff and a A b = min{a, b}.

With the help of (3.59), we simplify the bounds in Lemma 3.4.13 by choosing (nearly)
optimal variables A, m, [ and k. Recall that we rewrite p = 2(1 + §) for simplicity.

* It is easy to verify that

ak A2 agf_l,_;? ifa € <0, n] achieved by k = 2(1 + §),
Ji(a) ;= max =
1 ke[1,2(1+6)] 2(k + 1) 2-%(1 ifa € [] = 1) achieved by k = %
(3.60)

By setting kK = min {2(1 + 9), % }, we get that

Cz,
P .T—Jl(a)> = 6 (T™®)

o

J(W4,1) = 5(

where the last equality uses @ € (0.5, 1) and C; is increasing in k.

* Note that
1
247
T—Z(lziﬂ) Zﬂlwl _6 <T w [(a OS)AZ(IH)]) = 6 (Th)
where we denote
+ 1-4
ho(A —05A
o= l(“ N 3T ,1)]
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One can show that
(@- 05 ifae (0.5, ﬁ] achieved by A = 5,
=05 ifae[ L 1)achievedbyﬂ=$—l.

PO BT e =
a+ +
(3.61)

By setting A = min {5, -1 }, we get that

R~

max {d (y1,).d (w12)} =0 ((1 Tt .T—Jz(a)> .
» Note that

1 ! 2 ifse [0, 3] achieved by [ = 6,
max [— A —] =4 %
1061 L3 3+2I 3 if 6 € [3, ) achieved by [ = 3.

By setting / = min{4é, 3}, we have that

max {d (y2).d (w)) = 6 (r“—w[%&]) .

—ay[ 2 AL 5 I !
0‘)[3+25’\3] > max {T_M,T_(Z_o(l)),T_§} due to @ €

* Finally, we note that T -
O, D).
Combining these bounds and using p = 2(1 + 6), we arrive at

o 1

1
dP(9T¢T, GTW) =0 <T_J1(a) +(1+ [miX)Z%p LT T_(l_a)[m/\g] L T—é) ‘

mix

(3.62)

A special case: Li.d. data From the above analysis, one can find that y; , contributes a lot
to the bound (3.62). When it comes to the i.i.d. case, U(x, &) = H(x,&) and g(x) = P H(x,¢)
for all x € RY and & € Z. In this case, there is a refined decomposition where Y, doesn’t
show up. In contrast, y | , always appears in (3.50) no matter what the case is.

The key idea in the refined decomposition is to use ¢4 rather than ¢. With a slight of
notation abuse, we redefine A, = x, —x*, then similar to (3.19), we have A, | = (I —1,G)A, +
n,lr, +u,] where r, = g(x,) — G(x, — x*). The key observation is that once iterating ¢»; rather
than ¢7, the sum of the residual term and coboudary term in (3.15) equals to zero because
PU (x,,&) = g(x,) for all £ € E. Hence, by a similar recursion analysis in Section 3.4.1, we

have

br=wot+ty i ty,tws+w, +yy,.

By repeatedly using Proposition 3.4.1 and Corollary 3.4.1, it follows that for any 8 € R?
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satisfying |||, = 1,
dp(0" ¢7, 0" w) < d(wo) +d(y ) +dWw,) +dws) +dy, )+ dp(0 w5, 0" y).

It turns out that dP(GTqu, 0" y) doesn’t depend on d (y,) any more. We comment that (3.53)
is still a valid upper bound for d (y1,1) even we change the definition of A, from X, — x* to
x, —x*.

Taking this special case into consideration, we have
j j 5 s =@
max {d (y1,).d (y,5)} =0 <(cr iy + (L4 t)1, )28 -T2 )
s 145
=0 <(Cr + tmix)2+5 . T_Jz(a)> )

where 1, . is an indicator function for the event {7, > 0} satisfying 1, = <7.;,. Asaresult,

a finer bound is

~ _p_ —(l=a)| AL 1
dp(OT by, 0Ty) = 6 <T'J‘("‘) Flo+ 1T pne 0|5 e e

3.5 Online Statistical Inference Procedure

In this section, we formally introduce the online statistical inference method. As discussed
in Section 3.3.1, the key idea is to find a scale-invariant |||-|||-continuous functional f so as
to cancel out the dependence of the unknown scale G~'.S. For analysis facilitation, we con-

tinuize the cadlag function ¢, by linearly connecting points {qu (%) } TI00] such that it
nell'|U

becomes an element in Cyy 1 r. In particular, we denote the continuous function by ¢7. with

n n+l
9

the following definition that given n € [T — 1] U {0}, when r € [T’ -

500 = () + @r=m [or () - or (2)]. (3.63)
One can show that ¢ = y in the uniform topology effortlessly from Theorem 3.3.1.
Theorem 3.5.1. Under the same assumptions of Theorem 3.3.1, it follows that
<. L \'6"*w
in the uniform topology with the same G, S given in Theorem 3.3.1.

Proof of Theorem 3.5.1. One can show that |||¢T - ¢CT||| = op(1). This is because of the
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equality |||¢T qu||| = supnem |lx, — x*|| and the fact that

1 2 2 < logT
—E sup |lx, —x*[I° < = > Ellx,—x*||” 3 n, — 0.
Le sup I, ; , z ,

Hence, we know that ¢, A y in the Skorokhod topology. That is for any bounded and
dg-continuous functional 4 : Dy re — R, we have Eh(¢}) — Eh(y). Note that any
bounded and |||-|[|-continuous functional A : Cy ;;re — R can be viewed as a bounded and
dg-continuous functional Dy ;;g¢ = R. Hence, EA(¢7) — Eh(y) holds for any bounded
and |||-||-continuous functional & : Cjy j;re — R. It is equivalent to [ A y in the uniform

topology. [

For simplicity, we focus on one-dimensional inference via the one-dimensional projected
process ¢ 1= 9T¢CT for any @ € R“ and consider the one-dimensional scale-invariant func-
tional f : Gy jre = R. Such a f satisfies f(a) = f(¢) for any process ¢ € Cj ;g and

positive number a > 0.

Corollary 3.5.1. Under the same assumptions in Theorem 3.5.1, for any @ € RY and any

Il lll-continuous scale-invariant functional f : Cio 1 g — R, it follows that as T — oo,
w
fOT 95— f(W).

where W = {W (r) . r € [0, 1]} is the standard one-dimensional Brownian motion on [0, 1].

Proof of Corollary 3.5.1. By Theorem 3.5.1, we have f(9T¢§r) hed F(OTGT'S’W). We
complete the proof by noting that 0' G~ S>w 4 leTG=ls!? |[,W and f is a scale-invariant
functional so that £(||0TG~'S2|,W) = fF(W). O

3.5.1 A Family of Scale-invariant Functional f,,

We then explore possible choices of adequate functional f. In statistics, the ¢-statistic is
the ratio of the departure of the estimated value of a parameter from its hypothesized value to
its standard error. It is of great use when the population standard deviation is unknown For the
partial-sum process ¢, ¢pr(1) is exactly the difference between averaged estimator — Z, 1 %
and the hypothesized value x* (up to a factor \/_ T). Following the spirit of ¢-statistics, we

propose a family of scale-invariant functional f,,(m € N) by using different normalization
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terms to remove the scale dependence

¢(1)

Tol) = —= .
VI 16) - rg(Ddr

(3.64)

In the econometrics literature, the pivotal statistics f2(9T¢T) 1s used to conduct robust
testing and result in the fixed bandwidth heteroskedasticity and autocorrelation robust (fixed-b
HAR) estimator. Such an estimator takes advantage of the underlying autocorrelation structure
in linear autoregressive models and overcomes the series correlation and heteroskedasticity
therein!®® 721, Lee, Liao, Seo, Shin [°?] utilizes and generalizes this technique to propose an
online statistical inference method named as random scaling for SGD iterates. Subsequent
works follow the spirit and propose similar procedures for specific iterates {x, },5, under i.i.d.
datal?!> 3% 1061 1 our work, we consider a general family of m-th root normalization in (3.64)

instead of the square root normalization in f,.

Proposition 3.5.1. The functional f,, are scale-invariant and symmetric so that f,(—¢) =
— (@) for any process ¢ and m > 1. Furthermore, it is |||-|||-continuous in the uniform
topology.

As a result of Proposition 3.5.1, the limiting distribution f,,(W") is mixedly normal and
symmetric around zero. For better illustration, we show the density probability function of
different f,,(W)’s in Figure 3.1(a) and compute the corresponding asymptotic critic values
qq.m in Table 3.1. We note that Abadir, Paruolo [72] calculates the probability density of f,(W)
explicitly, based on which more accurate asymptotic critic values are accessible. We perform
stochastic simulations to approximate each g, , as what Kiefer, Vogelsang, Bunzel (631 did
for simplicity and universality. Numerical experiments in Section 3.6 validate its sufficiency.
Finally, the following proposition shows how we can establish the confidence set by inverting

the asymptotic pivotal statistics.

Proposition 3.5.2. Under the same assumptions in Theorem 3.3.1, given @ € RY and m > 1,

it follows that when T — oo,
P (OTx* € € (a, m)) ->1—-a,
where € (a, m) is the a-level confidence set defined by
Cla,m) :={0"x* €R : |£,,(07d5)| < gy} (3.65)

and q, ,, is the critical value satisfying P(| f,,(W)| = q4 ) = a.
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; =@l e 2s% 5% 10% 0% 90% 95% 975% 99%
7 10705 -8334 -6.569 4749 0.000 4749 6.569 8334 10.705
f2 8628 -6758 -5316 -3.873 0.000 3873 5316 6758 8.628
i 7495 5809 -4.650 -3403 0.000 3403 4.650 5899 7.495
1\ 6798 5344 4232 3108 0.000 3.108 4232 5344  6.798
fe 5069 -4705 -3728 2754 0000 2754 3.728 4705 5.969
o 3408 2711 2175 -1.626 0.000 1.626 2175 2711 3.408

Table 3.1 Asymptotic critic values g, , of f, (W) defined by g, ,, = sup{q : P(|f,(W)| > q) < a}. They
are computed via simulations. In particular, the Brownian motion W is approximated by normalized sums
of i.i.d. /' (0, 1) pseudo-random deviates using 1,000 steps and 50,000 replications.

— h

fa
— s
— i 73«»0:«
— fs H
— I~

Gaussian 3

y val
-
= & =
n

Probability density value

0.02

0 4
0 -25 00 25 50 75 10.0 0 10 20 30 10 50 m=1 m=2 m=3 m=4 m=6 m=oo

(@) P.df of £,,(W)’s (b) P.d.f. of h,(W)’s (c) Components of e(m, q,,,)

Figure 3.1 (a) shows the probability density functions (p.d.f.) of different f,,(W')’s. The black line rep-
resents the standard normal distribution. (b) shows the p.d.f. of the denominator of different f,(W)’s,
denoted by A, (W)’s. (c) computes the dominant quantities in the bound (3.72).

3.5.2 Online Computation Efficiency

We study per-iteration computation complexity of computing different f,,’s in the sub-

section. We denote ¢ = GT(I)CT and x, = % Z’TZO x, the averaged iterates at iteration .
Proposition 3.5.3. f,,(¢) with an even number m can be computed efficiently online.

We explain this above proposition in the following. First, the numerator is set to be

(1) = 9T¢°T(l) = ﬁ GT(J'CT — x*) where X can be undated in a moving average form, in-

curring (1) additional computation cost per iteration. Second, denoting ¢, = —=0" (%, — X1)

VT
nontl

T T ) for some n € N,

for simplicity, we have when r € [

br(r) —rép(l) = ¢n,T +(Tr— n)(¢n+1,T - ¢n,T),

which has nothing to do with the unknown parameter x*. It is easy to verify that

T-1 n+l

1 T
/0 (Pr(r) — rdp(1))*dr = Z / (bpr + (T = n)(Pyyr7 — b)) dr

n=0°“T71
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(¢n T) + GurPprir + (Dpy, T)

_Z 3T

n=

The right-hand side of the last equality can be computed in an online manner. Indeed, by ex-
panding (¢, )% into % ((OTx Y +207%7)° +0"% OTxT) and doing similarly for ¢, 76,1 7
and (¢, +1,T) , one can find that the sum of each decomposed terms can be updated fully online

without passing the observed data twice. A simpler method used for m = 2 is to approximate

b G4 g b r+Brarr)’ ey Grerr) (21,50, 62, 106]
T

37 . In other words, we use the rectan-

cac

n+1

gle rule to compute the integral / ET (p(r) — rq’)(l))2d r instead of the Trapezoid rule so as to

T
simplify computation. In this way,

/0 @1~ oy (1 2_: (¢;)2 = Z 2[07%,) +(0"%1)” +20"%,0" %/

" (3.66)
can be constructed in a simpler online fashion via only two iterative updates of (9T5€n)2 and
0"x,0" x;. Simulation studies turn out hardly any difference between them in terms of em-
pirical coverage and confidence interval lengths (see Table 3.2). Hence, we will use the
rectangle-rule approximation to compute /01 (pr(r) — rér(1)"dr(m = 2,4,6) in all exper-
iments. Once the integral is computed and denoted by o, 7, inverting (3.65) produces the

following the confidence interval

Qo.m o.m
m T 9 xT +

T T

0 x* e |0 x; — Ot | - (3.67)
However, fm(¢CT) with an odd m can’t be computed online efficiently. This is because
there is no similar decomposition as (3.66) for the integral /01 |pr(r)— r¢T(1)|2k+l dr due to its
inner absolute value. More specially, computing (or approximating) fol((,bT f(M=rér (1)%dr
necessitates the calculation of all the values {¢,, . },¢[7}> Incurring O(T') computation cost.
By contrast, as we illustrate in (3.66), the existence of a closed-form decomposition for the
integration with an even m enables an incremental update to each decomposed term, incurring
only O(1) computation cost per iteration. For completeness, we include three examples with

m = 1,3, co for a fair comparison. When m = oo, we have f = o ¢|)<(]51()r) ik
rel0,1] -

3.5.3 A Qualitative Study

In previous subsections, we have proposed a family of the scale-invariant functional f,,

which introduce the different asymptotic pivotal statistics f,,(W). The choice of m’s not only
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affects the critical value ¢, ,, in the confidence interval (3.65) but also the convergence of

rejection probability. We measure the latter by e(m, x) with the following definition

e(m,x) := |P(|£,,(0T $5)| > x) — P(| f,,(W)| > x)], (3.68)

which is the absolute error of the tail probability of | fm(GTqSCT)l against the tail probability of
the limiting distribution | f,,(W)|.

Theorem 3.5.2. Let ep = dP(OTqSCT, 0T y) denote the Lévy-Prokhorov distance.D Under the
assumptions of Theorem 3.3.1, it follows that for any x > 0 and z > 0,

e(m, x) <2 [PE,?>(x, 2)- %’ + max {PE,P(x, 2, PP(x, 2) }] + olep), (3.69)

where

P 2) = (£ (W), - 25 L

P (x,2) = P (1/,,(W)| > x and h,, (W) < z),
PP (x,2) =P (|f,,OW)| < x and h, (W) < z).

In this context, r(X, x) refers to the probability density function value of the random variable
X at point x, while w = |6eTG1s'? ||, represents the unknown scale. Furthermore, we define
Prob,,(x, z) as follows, where h,,(W') corresponds to the denominator of f, (W), Finally, the

o(1) term denotes an infinitesimal term (that might depend on x, z) when ep — 0.

Proof of Theorem 3.5.2. Recallthat ¢y = 9T¢°T andy = 0Ty. Let B, := {(,b D ()] > x}
and gp = dP(9T¢CT, 6" y). From Proposition 3.5.1, the functional £, is continuous such that
B, is a measurable set in its Borel o-field €y j;g. By the definition of the Lévy-Prokhorov

distance in Cj 1) g, We have
P(pr € B) <Py € BY)+ep and P(¢p € BS) < Py € (BE) + ep,

where B is the e-neighborhood of B, defined as following and B is the complementary set
of B

x>

B)EC = {¢1 (S C[O,l],R . 3¢2 (S C[O,l],R SUCh that |||¢)1 - ¢2||| S E and d)z (S Bx} .

Then, it follows that

P(| fu(dr)| > x) = P(| f,n(w)| > x) < P(w € B, w & B,) + ep, (3.70)

(D Since both 8" ¢ and W are continuous functions, the definition of the Lévy-Prokhorov distance for Cio.11r 1s different
than that for Dy in the topology (i.e., the uniform topology) and the Borel o-field used.
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P(fn@)] > x) = P(fu(dr)l > x) < ep + P(y € B,y & (BYP). (3.71)

We rewrite f,,(¢) = P:M—(g) where h,,(¢) = "\1/ /Ol(qb(r) — r¢(1))"dr denotes the integral
functional. By the Minkowski inequality, we know that A, (¢) is a 1-Lipschitz |||-|||-continuous
functional in the sense that for any ¢, ¢, € €1 1r> [Am(P)) — hy(Pr)] < |||(i>1 - ¢2|||.

Furthermore, we have

Proposition 3.5.4. When h,(¢;) > z, h,(¢,) > z and | f,,(¢1)| < x, one can show that

1+x
z

| fn(@1) = F(@o)] < ll®1 = &5 |]|-

Proof of Proposition 3.5.4. 1t follows that

(1) ¢ (D)

B ¢ (D)
hy (P hy(dy)

hy($2)  hy(hy)

|fn(®1) = fu(P2)] <

$1(D | |hy(hy) = hy(é)l N | (1) — (D]
| h(dy) |2, (o) |, (o)
1 1+
<Jlgr - all + Lllr - gall = 2l - gl

We then proceed to simplify (3.70). It follows that

P(y € By",y & B,) =P (|/,,(w)| < x and 3 satisfying ||| — wl| < ep, | f,,(#)] > x)
<P (1/,(w)| < x and 3 satisfying [|[§ — wlll < ep, |£/,,(@)] > x, b, (w) > 2, h,, () > z)
+ P (1/,,()l < x and Vi satisfying [l — || < &p, h,, () < z)
+ P(|f,,(w)| < x and h,,(y) < z)

= : 15P < )l < x) +2P (| f,,(w)| < x and h,,(y) < z)

<P (x —
= r1 @)l %) 5L ey 28 (1£,0)] < ¥ and By () < 2) + olep)

where the second inequality uses Proposition 3.5.4 and the 1-Lipschitz |||-|||-continuity of A,
and the last inequality uses the definition of differentiability.

By a similar argument, for any z > €p, we simplify (3.71) to

Py € B,y & (B9)®) = P (|/,(w)| > x and Vi satistying ||| — ||| < &p, |/,,(@)] > x)
<P (1/nW)| > x and Vi satistying [ — wlll < ep, | £,,(F)] > X, h,, (W) = 2 — €p, h,,(F) > 2 — &p)
+P (1f,n(w)] > x and 3y satisfying |[[§ — wlll < ep, h,(F) < z — &p)

+ P f,, ()| > x and h,,(y) < z — &p)
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x+1

<P <x < @)l < x+ ep> +2P (1£,(w)] > x and h,, () < z)

x+1

Z Ep

=r(|fmW)l, x) -

~ep + 2P (1£,,(w)| > x and h,,(w) < z) + o(ep),
Z—Ep

x+1

= r(| £, ()], x) - - &p + 2P (| f,u(w)| > x and h,,(y) < z) + o(ep).

Combing these bounds for (3.70) and (3.71), we have for any z > 0

x+1

P f (D) > x) = P(f W) > )| < r(1f,, )], %) - -€p +2 - Prob,,(x, z) + o(ep).

where

Prob,,(x, z) = max {P (| f,,(w)| > x and h,,(y) < z) ,P (| f,,(w)| < x and h,,(w) < z) } .

Letw = ||0TG™1S1? l,. We then have that y 4 oW . Onone hand, we note that r(| f,,,(w)|, x) =
2-r(f,(w),|x]) =2 r(f,(W),|x|) due to the symmetry of the probability density function
of f,,(w) and its scale-invariance, i.e., f,,(y) 4 fm(@W) = f,(W). On the other hand, we
have h,,(y) i wh,, (W). Therefore,

Prob, (x, z) = max {um (lfm(W)l > xand h, (W) < é) P <|fm(W)| < xand h, (W) < g) } .

Finally,we complete the proof by replacing z with zw and still denote the last equation as

Prob,,(x, z) with a slight abuse of notation. (]

Theorem 3.5.2 shows that the absolute error e(m, x) depends on three factors, namely
the Lévy-Prokhorov distance €p, the probability density function values r(f,,(W), x), and the
joint probability Prob,,(x, z) where h,, (W) = (/ /01 |W(r) — rW (1)|™dr is the denominator

of f,,(W). From Theorem 3.5.1, we know that ep - 0 as T — oco. A non-asymptotic bound

for ep is accessible via a similar argument in proving Theorem 3.3.5 that makes the weak
convergence bound for dp(0" ¢, 6" y) explicit.

The bound (3.69) captures the convergence rate of rejection probability. The dependence
of e(m, q, ,,) on m is of interest because it provides practical instruction for selecting m. Let z,,
be the number satisfying P (h,,(W) < z,,) = %P. Plugging x = q,,, and z = z,, into (3.69)
yields that

= 2p P 4 2 max { P p® 3.72
e(m’ q(x,m) - m (qa,m’ Zm) @ + 2Zmax m (qa,m7 Zm)’ m (qa,m’ Zm) +o(£P)' ( . )
%,—/ | ~ 7

decreasing in m increasing in m

When we set a = 0.975 and %’ = 0.05, the first two terms in (3.72) are of comparable mag-
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nitude, but are still difficult to analyze. To understand the behavior of e(m, g, ,) as a func-
tion of m, we compute the individual components of the bound (3.72) and plot them in Fig-
ure 3.1(c). In Figure 3.1, we present the probability density functions for r(f,,(W), x), which
reveal that r(f,,(W), x) decreases in m for a given x € (2.5, 10), an interval where most of the
97.5%-1evel asymptotic critic values qq 975, are located. By contrast, Figure 3.1(c) demon-
strates that r(f,,(W), q, ) increases with m. By applying Holder’s inequality, we observe
that h,, (W) and z,, increase with m, whereas | f,,(W)| and ¢, ,, decrease for any a > 0 (Ta-
ble 3.1 confirms this). Consequently, the term PE,?)(qa’m, z,,) decreases with m. Furthermore,
Figure 3.1(c) illustrates that Pf,f)(qa,m, z,,) Increases with m and has a greater magnitude than
both Pg?)(qa,m, z,,) and Pﬁ)(qa,m, z,,). Therefore, the final dependency of e(m, g, ,,) on m is
dominated by Pﬁf) (94.m> Zm) and remains increasing. This trend is further supported by the
experimental findings in Figure 3.2 and 3.3. It implies that, smaller m contributes to a faster
convergence of P(| f m(OTd)CT)I > q,.,) and, in turn, a more rapid convergence of empirical

coverage.

We then study the effect of m on the length of the asymptotic confidence interval. We
denote the length by L, r := % * Qoy.mOm,r according to (3.67). By Holder’s inequality, we
know that ¢,  increases in m for any fixed T, while Table 3.1 shows that g, ,, decreases in m
for most used a’s. Numerical experiments turn out that the final monotone tendency of m on

the length L,, 1 is still decreasing (see Table 3.2).

Finally, we comment that (3.69) can be further minimized by choosing an optimal z when
an explicit formula of the growth rate in x of the head probability P(h,,(W') < z) is available.

The following corollary serves as an example.

Corollary 3.5.2. Under the assumptions of Theorem 3.3.1, if there exist a,,, b,, > 0 such that
Ph,(W)<z)=a,, - zbm 4+ o(zb’") when z — 0, then it follows that for any x > 0,

e(m,x) = 4a,l,’? . <r(fm(W),x) o+ D . 8P>m +o (eé’?) .

w

Proof of Corollary 3.5.2. We omit the dependency on m for simplicity. The corollary follows

by noting Prob,,(x,z) < P(h,(W) < z) = a,, zPm 4 o(zPm) for any x > 0 and using the
1

r(fn(W).%)-(x+1a’m 8P> bt 0

a

particular choice of z = <

m
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Mot Tl 400 2000 10000 50000 | 400 2000 10000 50000
5 Bomy | 878 912 OL6 940 [ 131208 7871 27032 1223
(1.464) (1267) (1.241) (1.062) | (75.616) (29.175) (12.445) (5.583)

/. (Both) 876  90.8 926 944 | 126916 56731 26424 11.961
(1.474) (1.293) (1.171) (1.028) | (69.3) (27.11) (11.531) (5.168)

864 902 924 948 | 122709 5544 25827 11.718

/3 (1.533)  (1.33) (1.185) (0.993) | (64.969) (25.656) (10.898) (4.89)
862  89.6  91.8 942 | 118943 54.179 25274 11.497

Ja (1.542) (1.365) (1.227) (1.045) | (61.729) (24.524) (10.421) (4.681)
852 892  91.8  93.6 | 114.021 52.534 24597 11.242

T (1.588) (1.388) (1.227) (1.095) | (57.747) (23.102) (9.848) (4.428)
792 848 882  90.8 | 89.64 43.073 20852 9.835

Jeo (1.815) (1.606) (1.443) (1.293) | (42.106) (17.296) (7.631) (3.465)
M 40 200 1000 5000 40 200 1000 5000
B— 10 390 654 738 782 | 17501 2563 19352 9.404
(2.181) (2.127) (1.966) (1.846) | (5.185) (6.595) (4.876) (2.262)

B— 50 49.0  80.6  90.8 920 | 19368 29.883 24374 11.943
(2.236) (1.768) (1.293) (1.213) | (4.409) (4.434) (3.206) (1.57)

B_100 | Y78 790 926 950 [ 19672 31176 25191 12473
(2.234) (1.822) (1.171) (0.975) | (4.121) (3.854) (2.401) (1.145)

B_o00 | 14 798 920 928 | 32339 48869 37.095 17.801
(2.235) (1.796) (1.213) (1.156) | (8.637) (6.128) (3.056) (1.184)

Table 3.2 Averaged coverage rates (%, left) and average lengths (1072, right) of different inference meth-

ods over 500 Monte-Carlo simulations. Standard deviations are reported inside the parentheses.

3.6 Numerical Experiments

In this numerical section, we not only conduct validation experiments to support the claims

in the last section, but also investigate the empirical performance of the proposed inference

procedures and their corresponding coverage rates for different examples introduced in Sec-

tion 3.2.2.

3.6.1 Linear regression with autoregressive noises

In this experiment, we consider linear regression with autoregressive noises. In this linear

problem, the observed data & = (a;, y;) is generated as the following manner

iid.

a, ~ NO0,1,),y =

100

iid. ,
(@, x*Y+8, & =pp -Gy +EpE ™ \/E - Uniform(B,_,),
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Figure 3.2 Performance of different inference methods for linear regression with autoregressive noises.
(a) shows the empirical coverage rates based on 500 repeated experiments. The black dot line represents
the nominal 95% coverage rate. (b) shows the averaged confidence interval (CI) lengths.

where the infused noise ¢, is sampled from an autoregressive process and p, is the unknown
coefficient. In this setup, one can find that all of the imposed assumptions are satisfied, the
update (3.2) reduces to x, = x,_; — n,a,({a,,x) — y,), and the confidence interval is given
in (3.67). Here our target is to estimate and construct confidence intervals for 8 x* with
0 =(,--, 1)T/\/E € R and x*’s coordinates evenly spread in the interval [0, 1]. We
test the performance of each f,,, where m takes values from {1,2,3,4,6, 0}, and use two
methods to calculate the integral in the denominator of f, f,. Our benchmark is the online

al*3]. This method approximates the

bootstrap inference method for linear SA with Markov dat
distribution of X7 by maintaining and bootstrapping B = 200 perturbed SA iterates {)_ng YoerB1-

: b _ b b b =b _ 1 b
The perturbations are made by computing x,, | = x; —n,W H(x/,§) and X} = 7 > e X;
where {I/th Yerrperpy 18 @ bounded sequence of i.i.d. random variables with mean one and

variance one.

We report the performance of confidence intervals with their average coverage rates and
average lengths in Table 3.2 and Figure 3.2. We note the following findings from these re-
sults. Firstly, there is minimal difference in the average length and coverage rate between the
exact computation and the rectangle-rule approximation for the denominators of f; and f,.
Therefore, for simplicity, we use the latter method in all future experiments. Secondly, as the
iteration number T increases, all averaged coverage rates gradually grow towards 95% while
the length of the intervals decreases. Finally, a larger value of m slightly reduces the average
coverage rate but slightly decreases the length of the asymptotic confidence intervals. The
impact of m on the performance is minimal, suggesting that f, could be used without further

considerations.
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The benchmark method, with a value of B = 200, reaches an average coverage rate of
95% after 5 x 10° iterations, while our method f> accomplishes a similar coverage rate in 10*
iterations. At first glance, Figure 3.2 and Table 3.2 suggest that the online Bootstrap method
1s more sample efficient as it requires fewer iterations to achieve the nominal coverage rate
of 95%. However, this efficiency is contingent on the availability of multiple oracles that
can compute { H (xf, &)} perp) for different iterates {xf Ypep) at a given data &. In practi-
cal scenarios where one-trajectory sampling is performed, accessing multiple oracles is often
not feasible due to limited control over the environment.? By contrast, our method does not
require multiple oracles and even uses fewer gradient computations compared to the bench-
mark. 2 Table 3.2 demonstrates that given the same budget of gradient calls (e.g., 5x 10%), our
method produces higher average coverage rates. Additionally, the bootstrap method is time-
consuming, with the completion time of 5 x 10° updates taking approximately 1.5 hours for
500 repeated experiments, roughly equal to the time it takes for our method f, to finish 5% 10*
updates. Finally, an improperly chosen small value for B will reduce the performance, while
a reasonably large value for B increases computation and memory demands. The difficulty of

tuning a reasonable value for B contributes to the final disadvantage of the bootstrap method.

3.6.2 Asynchronous Q-Learning

In this experiment, we evaluate the performance in asynchronous Q-Learning with differ-
ent methods (f5, f4, fg) in arandom MDP. The behavior policy is set to be uniformly random,
and the target of the estimation is [E g ;) tniform(sxr)@ " (5- @) where Q™ is the optimal Q-value
function. We did not include the online bootstrap method of Ramprasad, Li, Yang, Wang, Sun,
Cheng ! in our comparison due to two reasons. Firstly, it is not theoretically guaranteed in
nonlinear SA settings. Secondly, a direct application of the method resulted in unreasonable
confidence intervals.

From the results shown in Figure 3.3, all of our methods reach the desired 95% coverage
rate after approximately 4 x 10% iterations The length of the confidence intervals first increases
and then decreases, which is due to the initialization of the length at zero, followed by the
accumulation of errors, and finally the convergence. As expected, larger m values result in

shorter confidence interval lengths, but slightly slower convergence of the empirical coverage.

(D Ramprasad, Li, Yang, Wang, Sun, Cheng®! tested their algorithm in online game environments where rewards are
deterministic and ¢, is equal to the current state s, of the underlying Markov chain. Hence, H(x,&) is a deterministic
function of x and the state s, making multiple gradient oracles accessible. However, in other applications, such as finance
where rewards are random and Markov, accessing multiple oracles is not possible.

(@ It is worth noting that the online Bootstrap method requires B + 1 gradient calls per iteration.
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Figure 3.3 Performance of different inference methods for asynchronous Q-Learning. (a) shows the em-
pirical coverage rates based on 200 repeated experiments. (b) shows the averaged confidence interval (CI)
lengths therein. (c) shows the trajectory of averaged confidence intervals with shadows presenting their
lengths. Black dot lines represent the nominal 95% coverage rate in (a) and the parameter of interest in (c).
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Figure 3.4 Performance of different inference methods for logistic regression with Markovian data. (a)
shows the empirical coverage rates based on 200 repeated experiments. (b) shows the averaged confidence
interval (CI) lengths therein. (c) shows the trajectory of averaged confidence intervals with shadows pre-
senting their lengths. Black dot lines represent the nominal 95% coverage rate in (a) and the target parameter
in (c).

In Figure 3.3(c), we present the evolution of the averaged confidence intervals. After around
1.5 x 10* iterations, the averaged confidence interval starts to include the interest parameter

with its center gradually increasing and converging to the interest parameter.

3.6.3 Logistic regression with Markovian data

In this experiment, we consider logistic regression with Markovian data. We take a similar
simulation setup as Sun, Sun, Yin 1?2}, The observed data & = (a,,y,) is generated as the

following manner

a, = Aa,_, + e, W, with A,,_; "< Uniform([0.8,0.991), W, " (0, 1),

1 with probability S ({(a,, x*)),
0 with probability 1 — S ({a;, x*}),
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Figure 3.5 Sensitivity analysis for logistic regression with Markovian data. In these experiments, we chose
/>, set the step size to be 7, = n¢~* and treat x ; as the initial iterate for a warm-up. The perturbed parameters
include @, # and N with the legend specifying the used values. (a) (d) (g) show the sensitivity of empirical
coverage, (b) (e) (h) show the sensitivity of CI lengths, and (c) (f) (i) show the sensitivity of absolute errors.

where A € R is a subdiagonal matrix with only {A,,_;}, <i<q DON-zero, e is the first vector

ii—
in the standard basis, and S(x) = % is the sigmoid function. The target parameter in this
experiment is @' x*, which is constructed similarly to the first experiment. By applying the
update rule in Equation (3.2) to the negative log-likelihood objective, the experimental results
are shown in Figure 3.4. All of our methods reach the desired 95% coverage rate, with f,
having a slight advantage in terms of convergence speed. The confidence interval (CI) lengths
decrease as the iteration progresses or as m increases. Figure 3.4(c) displays the trajectory of
the average CI lengths, which start to include the target parameter from the very beginning.
Figure 3.5 displays the sensitivity of the results produced by our method to various param-
eters, including the step size parameter a, the step size scale #, and the warm-up iteration N.

The empirical coverage rates and the averaged lengths of the confidence intervals are plotted

with respect to each of these parameters. From Figure 3.5(a), it can be seen that the empiri-
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cal coverage rates are relatively robust to changes in the step size parameter within the range
(0.5,0.6). However, for larger values of « in the range (0.6, 1), the empirical coverage rates
begin to degrade. The optimal step size parameter predicted by Corollary 3.3.3 (a = 0.679)
is not seen to have an impact in this particular logistic regression experiment. This could be
because the nonlinearity and Markovian data have a minimal impact, leading to ¢, ~ 0 and

i« ~ 0. In this case, the optimal « is close to 0.5, which is consistent with the results shown

mix
in Figure 3.5(a). Figures 3.5(b) and 3.5(c) provide insight into why smaller values of a result
in faster convergence of the empirical coverage: for smaller a, the center of the confidence in-
tervals converges more quickly, while the length of the intervals is even wider than for larger
values of @. Additionally, from the middle and lowest row of Figure 3.5, both the absolute
estimation error and the length of the confidence intervals converge more quickly for smaller
values of 7 or larger values of N. However, these advantages are relatively small and our

methods are robust to changes in the step size scale # and the warm-up iteration N.

3.7 Conclusion

From a methodological standpoint, in this chapter, we introduce a fully online statistical
inference method for nonlinear stochastic approximation using a single trajectory of Markovian
data. Our approach, motivated by the random scaling introduced in the last chapter, centers
around constructing an asymptotic pivotal quantity through the application of a continuous
scale-invariant functional f to the partial-sum process ¢pr. To accomplish this, we propose a
family of suitable functionals f,, that are indexed by m € N. In our simulations, we found that
smaller values of m result in faster convergence of empirical coverage, although the confidence
interval lengths may be slightly wider.

From a theoretical perspective, we demonstrate the validity of our approach through a
functional central limit theorem and provide the first non-asymptotic upper bound on its weak
convergence rate measured in the Lévy-Prokhorov metric. The asymptotic result in Equation
(3.25) and the qualitative bound in Equation (3.26) for the coefficient-varying remainder pro-
cess 5 can be leveraged in future studies on the weak convergence of iterative algorithms.
Additionally, we present a semiparametric efficient lower bound to highlight the statistical ef-
ficiency of the partial-sum process ¢. It is the most efficient RAL estimator among all RAL
estimators with an asymptotic variance that attains the semiparametric efficient lower bound

for all fractions r € [0, 1].
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Chapter 4 Conclusion and Future Directions

4.1 Summary

In this dissertation, we investigated ways to conduct online statistical inference in feder-
ated learning (FL) and nonlinear stochastic approximation (SA), focusing on the Local SGD
algorithm in FL and asynchronous Q-Learning in RL. Both of them are instances of nonlinear
SAs, because they can be formulated as a stochastic iterative algorithm in the root finding prob-
lem of g(x) := [z H(x,&)r(d€) = 0, where the root is denoted by x™ that satisfies g(x™) = 0.
The (possibly nonlinear) function g is the gradient of the aggregated global loss function in FL
while being the Bellman equation in RL. Our target quantity is a linear functional of the true

parameter x*, which is @7 x* for a unit norm vector 6.

For Local SGD, we introduced two inference methods to construct confidence intervals:
the plug-in method in Section 2.4.1 and the random scaling type method in Section 2.4.2. We
establish either asymptotic normality or functional central limit theorem to support these meth-
ods. We compare these two methods in terms of their computational complexity and memory
requirements. The plug-in method requires the access of noisy observations of the derivative
of g(x) to estimate G, i.e., the ability to evaluate V H (x, &), which satisfies E en VH(X,E) =
Vg(x). To obtain a consistent estimator for the asymptotic variance, the plug-in method needs
to store both estimates of G and S and take the inverse of G at each iteration. This requires
0(d*) memory space and O(d>) computation complexity. In contrast, the random scaling
method does not attempt to estimate the asymptotic variance. It formulates an asymptotically
pivotal statistic by utilizing the trajectory information, which is more computationally efficient
and memory-friendly, requiring only O(d) memory space and O(d) computation complexity
at each iteration.

For nonlinear SA, due to the lack of Hessian information, we propose a nonparametric
inference following the spirit of random scaling in Section 3.5. Under the existence of Marko-
vian data, we establish a functional central limit theorem for the partial-sum process ¢. Fur-
thermore, we propose a semeparametric efficient lower bound for the asymptotic variance and
a non-parametric upper bound for weak convergence quantified by the Lévy-Prokhorov dis-
tance. By selecting any continuous scale-invariant functional f, this quantity f(¢;) becomes

an asymptotic pivotal statistic, allowing us to construct an asymptotically valid confidence in-
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terval. We proposed a family of functionals f,, and analyze its several aspects including the
rejection probability and confidence lengths. In the numerical part, we compare our method
with another popular approach namely the online bootstrap method!*3!. In general, despite
its popularity, bootstrap is not suitable for trajectory data analysis where a complete control
of the environment is lacked because it requires multiple oracles. Additionally, the memory
and computation complexity of bootstrap methods are much more severe because they main-
tain multiple (say B) perturbed iterates and need to update them at each iteration. Hence, the
complexity depends on the value of B. To ensure the estimated confidence intervals stable, B

should be set sufficiently large, increasing the handwork of parameter tuning.

4.2 Future Directions

There are many other interesting issues presented in this dissertation that can be explored

in future work.

Statistical analysis for decentralized data We first focus on the distributed learning setting.

Recall that federated learning is a special case of distributed learning.

1. Weaker assumptions: One direction is to relax the current assumptions and consider Local
SGD for more challenging optimization problems (e.g., non-smooth or non-convex prob-
lems). The quantile regressions would be an important application of non-smooth optimiza-
tion. The use of neural networks forces us to step into the world of non-convex optimization.

2. Asymptotic analysis for other FL methods: Our theory shows that Local SGD enjoys sta-
tistical optimality in an asymptotic sense, and it is definitely not also optimal in finite-time
convergencel®]. We can analyze the asymptotic normality of other state-of-the-art algo-
rithms in FL. For example, Karimireddy, Kale, Mohri, Reddi, Stich, Suresh [84] proposed
a new algorithm using control variates to remove the effect of data heterogeneity, which
achieves a better non-asymptotic convergence rate.

3. Double efficient algorithms: From an theoretical perspective, it would be interesting to
investigate algorithms that are efficient both asymptotically and non-asymptotically. The
former means the produced estimate, say x;, enjoys an asymptotic normality where the
asymptotic variance matrix nearly matches the Cramer-Rao lower bound, while the latter
means the convergence rate of x; is as tight as possible in terms of 7" and other instant-

[68, 103]

dependent quantities. This question has been answered partially in the context of

the single-agent setting. It would be interesting to investigate similar double efficient algo-
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rithms as well inference methods to handle the challenge in the big data eral®].

Random scaling for online statistical inference The idea of random scaling motivates the

online inference method introduced in Chapter 3. Despite the progress made in our paper,

several avenues for further research remain.

1.

High-dimensional cases: It is important to extend our methods to high-dimensional sce-
narios. One possible solution is to use a proximal Robbins-Monro method!'>”! with # 1
penalization in cases where the root x* is high-dimensional but sparse in its coordinates.
The other possible method is stochastic mirror descent!!>3-16% " Although the last-iterate

134

process of online #, penalized problems has been analyzed!!3#, the partial-sum process of

proximal methods has yet to be similarly studied.

. Other stochastic optimization methods: We essentially establish a functional central limit

theorem for SGD. Recent years witness many progresses in stochastic optimization and
many efficient algorithms have been proposed. For example, the Nesterov accelerated
gradient and proximal gradient descent for composite optimization, and variance reduced
methods for finite-sum minimization!'®'"1%%]. Tt would be very interesting to establish sim-
ilar FCLTs for these variants of SGD. In this way, we expect to achieve fast convergence
and efficient statistical inference simultaneously. However, for these more delicate algo-
rithms, our iterative analysis method should be modified, but we speculate the high-level

picture is still similar.

. Combination with other inference methods: Recent years have many nonparametric infer-

ence methods been proposed. The bootstrap replies on the multiple oracles**), while the

1631 How

conformal inference methods depends on the exchangeability of observed datal
to combine them with random scaling in an organic way so as to take their advantages for
online statistical inference would be another interesting future direction.

Other efficient functional f: Although we propose a family of functionals f’s, it is not
clear whether there exist other functionals that can be efficiently computed online and also
have improved empirical performance in terms of smaller confidence interval lengths and

faster convergence of empirical coverage. Establishing similar weak convergence rates for

different functionals would allow for their theoretical comparison.

. Lower bound for weak convergence: The tightness of our upper bound for weak conver-

gence remains uncertain. Determining the minimax lower bound for weak convergence and
finding the optimal iterative procedure to match it are ongoing open problems.

Functional data analysis: In this work, we essentially consider data in the Euclidean space,
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while statistical methods for analyzing functional data have been extensively developed

1641 1t is typically considered challenging to conduct statistical in-

in the past decades!
ference for streaming functional data. When data points are functions, it is more appro-
priate to consider stochastic approximation methods in Banach spaces. Recently, Mou,
Khamaru, Wainwright, Bartlett, Jordan [103] studied the problem of estimating the fixed
point of a contractive operator defined on a separable Banach space. They proposed a
variance-reduced stochastic approximation method that achieves the local asymptotic min-

1651 proposed an online

imax risk non-asymptotically. Xie, Shi, Sang, Shang, Jiang, Kong !
bootstrap resampling procedure to conduct inference for functional linear regression in a
similar manner as Ramprasad, Li, Yang, Wang, Sun, Cheng [43] did in their online boot-
strap linear SA paper. It is possible and would be interesting to extend the random scaling

method for functional data.
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Appendix A Omitted Proofs for Theorem 2.4.2

Appendix A Omitted Proofs for Theorem 2.4.2

The proofidea of Theorem 2.4.2 has already been illustrated in Section 2.5. In this section,

we provide the omitted proofs for the lemmas introduced therein.

A.1 Proof of Lemma 2.5.2

Proof of Lemma 2.5.2. Define % = 6({1&¥) o<k (0<r<r) by the natural filtration generated by
ks, so {x¥}, is adapted to {F}, and {X; }nisadaptedto {# },. Noticethatv, =h, +35,

where
tm+1_1
1
hy =g Z Vi(%,:&) and VS, @—Zpkvf(xr &)

implying [E[hml‘%m] = Vf(ictm). The L-smoothness of f(-) gives that
_ _ - _ L, _ _
[ VS &)+ (V)% X > + 1%, =%, I

= f(xz ym(Vf(xt ) Um> + _” ”
Conditioning on & F: in the last inequality gives
EL/(x, )IF, ]
_ i, YL
< F&,) = 1V (%, ). Elo,|F, 1)+ “=Elllp, ||F, |

L
= &) = 1l VS @OIP = 1V f (%, ). EL8,|F, 1) + ym—[E[||h +8,IP1%, 1

< F&,) = 1l VS G )IP + 2V £, IR + ZHIELS, 7, 1P
+ VA LE(R, P15, | + 72 LELS,I71 7,
= [(&,,) = DIV Sy I + 7 LEL, P15, 1+ (22 + 7 L) ELIS, 21, 1 (A

where we use the conditional Jensen’s inequality ||[E[<‘5,,,|P/7tm]||2 < [E[||6m||2|=%m]

We then bound the last two terms in the right hand side of (A.1).

Step one  For E[||h,,[|*| %, 1, it follows that
Elllh,|I*|F, 1 = [Elh,,|F, 1II* +ELllh, — Elh,|F 1II*|F ]
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= IV (&I +Elllh,, - V(X OIP1F ]

= IVF& I+ EitE[HVf(fctm;am) - V/EOIPIZF, 1,

m

where the last equality uses the fact that h,, is the mean of E,, i.i.d. copies of Vf(X; :¢; ) 1=

Z,Ile nV (% éj,k ) given % , so its conditional variance is E,, times smaller than the latter,

Elllh,, — V.f (X, )IP|F, 1= EL[E[MW@,,";&;,,") - V&I ] (A2)

m
Lemma A.1.1. Recall that £(X, ) 1= Vf(X, ;& )= V[ (X, ) and e (x{) 1= Vf(x[; &) -
Vf(xf). Under Assumption 3.2.2, it follows that
Ectllen(xOI> < Cp + Collxf = x* 1> and  Eg lex, I < Cp + Cyll%,, = x*1%,

where C; = d max; gy || S¢ll + 9€ and G, = Sd—c with C defined in Assumption 3.2.2.

Proof of Lemma A.1.1. By Assumption 3.2.2, we know that 5(5%,") = Vf()‘ctm; étm) - Vf(ic,m)
satisfies

IE;, e, )e(x,)" = SI <€ (1%, -1 + 1%, - x*II?).
Therefore, it follows that

ELIVS(R,,:6,) = VG IPIF, ] = Ellle)IP1F, 1= Eg,_lleG,)I”
= tr([Eétme(J‘c,m)s(J‘ctm)T)
<d||E; (%, )e(x,) |
<d|IS||+dC||x, —x*||+dCl||x, —x*|?
< (anst+L5) + 2 %, -2
<C +Gllx, — x|
with C| = d max; || S, || + = d and C, = 3dc . Here we use the fact that §' = Zk lkak and

K
thus IS1 < Y25 ISl S Zk:lpk”Sk” < maxXyeg [[Sll-
With a similar argument, it follows that

dC 3dC
EcllecDIP < dllSell + 5 + 25 ek = x* |2 < €y + Gyllxf = x|
With Lemma A.1.1, we have
ENIVS (X, :& )= VIEOIPIF 1<C+Gllx, —x*|*.
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Then, it follows that

— Cl C2 —
Elllh,)I*1F, 1< IV £ DI+ 7t E_”x”" — x|,

m m

Step two For [E[||6m||2|9'tm], by Jensen’s inequality, we have

E[1l8,11°|F, 1=Elllv,, — h,[*|F ]

| tme1—1 K | tmi1—1 K 2
=Bz, > Zpkvfk(xf;ftk)‘E— SN nVAaGE, | |7
m t=t, k=1 m t=t, k=1
1 tm+1_1 K )
<z D 2nE lefk(xi‘;if‘)—ka(iczm;éf,") |9‘~tml.
mt=t, k=1

3

Because xﬁ‘,ictm € FandF C F fort, <1<t,,, wehave that

LIV S € = V%, s EONPIF, 1= EENV Sl ) = VX, EOIPIFNF, ]
= E[E4IV /(x5 &) = V%, 16011 F, ]
< L’E[||x} — %, ||, 1.
where the first equality follows from the tower rule of conditional expectation and the second
inequality follows from the expected L-smoothness in Assumption 2.3.1.

Combining the last two results, we have

tm+l_1 K tm+l_1
2 L’ k= 2 L?
ES, 1717, 1 < = S pElllxf -, IMF 1= = v,
m-t=t, k=1 Ly

where V; is the residual error defined by

K

Vi=> pElllxf -% X% 1. (A3)
k=1

The residual error is incurred by multiple local gradient descents. Intuitively, if no local update

is used (i.e., E,, = 1), such a residual error would disappear. The following lemma helps us

[

* ”2
t=ty, :

1, . ,
bound ELm Vi interms of y,, and ||X; —x

Lemma A.1.2. Under Assumptions 2.3.1 and 3.2.2, there exist some universal constants C3, Cy >
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0 such that for any m with ym

< 1, it follows that

L 1

—Z <2

mtt m

-1
(C5 + Callz,, - x*117).

Proof of Lemma A.1.2. For a fixed m >

0, let us consider the case where 7,,.; > ¢, + 1,
otherwise the result follows directly due to V; = 0. Fort,, <7 <t,,; —l and k € [K], we

have x* =%, and
m m

xk = xk -, VAahE) = xk = ankau,,f ).

T=t,,

Using the last iteration relation, we obtain that
2

= 2
Ellx,, — %, 1719, 1= n3E

Z V [k 6

T=t,,

o
t+1 Fi

t
S+ 1—=1,) > ElV il EO11°|F, ]

T=t,,

t
<nRE, Y ElV ik EDIP|Z, ]

T=l,,
t
=naE, Y E [rE(quk(x’;;5f>||2|%)|93m] :
=t

We then turn to bound [E[llka(x 5 )| |J' ] as follows:

ELIV £ (s EDIP|Fl = BV S (3 £ = VA GDIP|Fl + IV £
< Estlleg (X0 + 21V £, (x5) = V£ + 201V £, (x|
< (C) + 20V £ xMIP) + (Cy +2L2) [Ixk — x*|
C
< Cy+ — [l = x|
< C3 + Gylixf =, II” + Cyll %, — x*1I%,
where C3 = C| + 2 max, ¢k IV £ (x*)||? and C, = 2C, + 4L>. The second inequality uses
the L-smoothness to bound ||V £, (x%) = V f,(x*)|| and Lemma A.1.1 to bound E lle (x5)]12

which yields
Egtllec(xDI? < €y + Gyllxf = x* 1%,

124



Appendix A Omitted Proofs for Theorem 2.4.2

Therefore, by combing the last two results, we have

t
k = 2 2 = 2 < 2
ElllxE,, = %, 15, ) S My Y [Cy+ Call®,, - x*IP + CiEllIxE - %, P17, ]|

T=t,,

Hence, for ¢, <t <t,,; — 1, we have

K t
Ve = D niEAIxE = %, IP1F,) S mEy Y (Co+ Cills,, = x*IP+ V) (Ad)
k=1 T=t,,

Because V; =0, it then follows that

tm+1_2

=2 S s - t—1)<c3+c4||x, —x ||2+C4V>

1=t,,
tm+]_l
<nA(E, -1 Y (G4 Cillx,, - 2P+ CY,)
t=t,,

m+1 1

= 2 4
G+ Cyllx,, —x* I+ —= > V|,

m m = f

FE
<y2

where we use the definitionof E,, =1¢,, |, — ¢, andy,, = n,,E,,.
-1

|/\
=

glves

1= 1

Ly v<opt

mtt

(63 + Cyll%,, - x*I2).

Finally redefining C; := 2C; and C, := 2C, completes the proof and the restriction on y,,

becomes y;, E}'zi_l C4 < 1 under the new notation of C;. ]

Almost sure convergence Denote A, = f (x, ) — f(x*) for simplicity, then from the u-

strongly convexity and L-smoothness of f (+), it follows that

U - 1 _ 1 _ L _
SI%,, = 1P < Ay < SIVIEIP and IV < A, < S5, - 511
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Note that y,, — 0 when m goes to infinity, which means there exists some m, such that for any
m > m, we have y,%lC4 < 1andy,, < min{ ﬁ, 1}. It implies that we can apply Lemma A.1.2
for sufficiently large m. Combining the two parts and plugging them into (A.1) yield for any
m 2 my,
E[A 1%, 1 <Ay = 2NV E I+ 72l |IVFE I+ — + =
m 2 m E, E,
(I 2n) 22 (e + culx, - x*IP
) m Vm 3 411X . X ”

2
2||%, - x| ]

) 2C,
SAm_ymﬂAm-i_ymL —+ 2L+T Am

2C
+ (% + ymL ymL2 <c3 + 4 >
U

ca 2C, - 2C,
= }’m,MA + }/m Cl +(2L+— + YmL C3 + _Am
" "
L 26 - 2C,
<Ay = pudy t il ot (2L+ =2 ) 8, 47007 (Gt =2,
= (1+ e 17m) A + Vi = WY By (A.5)

where
2(LC, + L*Cy)

u

= 2L2 + and C = LCI + L2C3

To conclude the proof, we need to apply the Robbins-Siegmund theorem!! %61,

Lemma A.1.3 (Robbins-Siegmund theorem). Let {D,,, B, @y, $n} oy be non-negative and
adapted to a filtration {Z,,} > _, satisfying

[D,, 118, <1 +p,)D, +a,—C,

Sorallm > 0 and both ), B, < oo and ), a, < oo almost surely. Then, with probability

one, D,, converges to a non-negative random variable D, € [0, 00) and ), ¢, < co.

From Assumption 2.3.3, we have that ¢, Z;"zmo y2 < coand ¢, Y% g y2 < o0. Hence,
based on (A.5), Lemma A.1.3 implies that A,, = f (itm) — f(x*) converges to a finite non-

negative random variable A almost surely. Moreover, Lemma A.1.3 also ensures that

U Z YmA,, < oo. (A.6)

m=my
IfP(A,, > 0) > 0, then the left-hand side of (A.6) would be infinite with positive probability
due to the fact zm mo Ym = - It reveals that P(A,, = 0) = 1 and thus f()'ctm) — f(x*)as
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wellas X, — x* with probability one when m goes to infinity.

L, convergence We will obtain the L, convergence rate from (A.5). This part follows the

[67

same argument of Su, Zhu [®7] (see Page 37-38 therein). For completeness, we conclude this

section by presenting the proof of it. Taking expectation on both sides of (A.5),

2
EAps1 _ Yoot (1= 0 + 1Y) EA,,

ym ym ym |

+ CrVm-

Because y,, — 0, we have that for sufficiently large m, ¢;y2 < 0.5uy,,, and hence,

u
[EAm+1 < Vm-1 (1 B EJ/m) [EAm
> + C2¥Vm-
Ym Ym Ym—1

Lemma A.1.4 (Lemma A.10 in Su, Zhu [*7)). Les ¢y, ¢y be arbitrary positive constants. As-
sume y,, = 0 and y’;—‘l =1+ o0(y,,). If B,, > 0 satisfies B,, < MB,,,_I + ¢y, then

Tm

sup,, B,, < co.

With the above lemma, we claim that there exists some Cs > 0 such that
EA,,
sup — < Cs, (A.7)
O<m<oo ¥m—1

which immediately concludes that

B ) 2 2C5 2C5
Ellx, —x*|I” < ;[EAm < — Imo1 = 7(1 + 0¥, )V < Co¥Ym-

A.2 Proof of Lemma 2.5.3

Proof of Lemma 2.5.3. Recall that

tm+1_1

En == VIG) == > (VfGi8) - V1)),

m t=t,

where Vf(%, ;&) = SR oV f(X, ;&) and & = {&}4grx)» and recall that e(X, ) =

Vi, ;& )—Vf(X, ). Hence ¢, is the mean of E,, i.i.d. copies of (X, ) at a fixed X; .
Define &, = 6({55 }1<k<k.0<c<¢) Dy the natural filtration generated by é’f’s and &,_; =

&, . Then {¢,}7_, is a martingale difference with respect to {Z,,} >, (for convention &, =

{@,Q} if X 1s deterministic, otherwise &, = o(X,)): E[¢,1%,_1]1 = 0.
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The following lemma establishes an invariance principle which allows us to extend tradi-

167

tional martingale CLT. Interesting readers can find its proof in Hall, Heyde [1®7] (see Theorems

4.1, 4.2 and 4.4 therein).

Lemma A.2.1 (Invariance principles in the martingale CLT). Let {S,, &}, be a zero-mean,
square-integrable martingale with difference X, = S,—S, _(Sy =0). LetU? = > EIX 212, 11
and s> = EU? = ES2. Define {,(t) as the linear interpolation among the points (0,0),
UPUL U S, (UPUL, UGSy, .., (LULLS,), namely, fort € [0,11and 0 < i <n—1,
L) =U S+ (UL, - U Uy -UDHX,y,| if UF<tU; <UZ,.
As n — oo, if (1) the Linderberg conditions holds, namely for any € > 0,
n
532 Y EIXAI(1X,,| > €5,)] = 0, (A.8)
m=1

and (i) s;2U% — 1 almost surely and s> — o, then
£, () = B(t) inthe sense of (C,p).

Here B(t) is the standard Brownian motion on [0, 1] and C = C[0, 1] is the space of real, con-

tinuous functions on [0, 1] with the uniform metric p : C[0, 1] — [0, 00), p(w) = max,g(g 17 |@(®)|.

Lemma A.2.1 is for univariate martingales. We will use the Cramér-Wold device to reduce
the issue of convergence of multivariate martingales to univariate ones. To that end, we fix any
uni-norm vector a and define X,, = a'¢,,. We then check the two conditions in Lemma A.2.1

hold for such {X,,, %, } 5.
The Linderberg condition For one thing, since X, — x™ almost surely from Lemma 2.5.2,
we have [E||z-:(;>'c,m)||2+52 < 1 from Assumption 3.2.2 when m is sufficiently large.

Lemma A.2.2 (Marcinkiewicz-Zygmund inequality and Burkholder inequality). If Z,, ..., Z,

are independent random vectors such that EZ, = 0 and E|Z,,|P < o for 1 < p < o0, then

p n £
C
< —E <%Z |Zm|2> :

where the C,, are positive constants which depend only on p and not on the underlying distri-

bution of the random variables involved. If Z,, ..., Z, are martingale difference sequence,

the above inequality still holds. It is named as Burkholder s inequality!'%%/ .
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Notice that we can rewrite X, as the mean of E,, i.i.d. random variables which have the
same distribution as Z; = aTe(ic,m): X, = EL Zi"’l Z;. With the Marcinkiewicz-Zygmund

inequality and Jensen inequality, it follows that

n
m=1

1+-=
(142 " 2 —(1+%2
[Ele|2+52 5 Em(1+2) <lj :|Zm|2> ﬁEm(1+2)|E|ZI|2+52

)
—(1+) _ _
SEn O llal**2Ellex, )II** 3 E;,. (A.9)

Moreover, from Assumption 3.2.2 and Lemma 2.5.2, we have that
T . = T - * . * 12
|a [[Ee(x,m)e(x,m) - S] a| <C [[Ellx,m —x*||+ [, —x*| ]
S CHYm+¥m) = 0.

Recall that Z£=1 Em_1 — o0 as T — oo. The Stolz—Cesaro theorem (Lemma A.2.3) implies
that

Tre (v NG

T a Ee(x; )e(x; ) a

Z P ) ® T - N

, 52 C m=l T . a Ee(x, )e(%, ) a
lim 0 = lim = lim =

T—- Z;:l E_aTSa T—- Z;:l ELaTSa T—-oc0 aTSa
m m

m

(A.10)
Hence, for any € > 0, as T — oo, we have that

T T
_ _ —(2+6
572 Y ELXZI(X,| 2 esp)] < €725, 7P N E(IX,, P 1(1X,, | 2 esp)]

T
~%2 _+s
<e 2ST( Z)Z[E|Xm|2+52

m=1

T
—5, —(2+6)) 1
e %%, E T
m=1 "M

o =6y 02
= e 2s, - 0.

The second condition We have established the divergence of {s%}T in (A.10). Notice that

T T
1 s
Up = 2_BIXul9poi] = D -aEle, )e(,) 15,1 1a
m=1 m=1 """

T
1 _ _
= Z E—aT[Egtme(x,m)e(x,m)Ta.
m=1 "M
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Therefore, from (A.10) and the Stolz—Cesaro theorem (Lemma A.2.3), it follows almost surely

that
U7 € |
. T * 2
711—{20 S—2—1 STl —ZZE—[P% x|+ 1% —x||]
T 5T m
= lim —< [||5c — x|+ ||% —x*||2] -0,
T-o a'Sa T I

Lemma A.2.3 (Stolz—Cesaro theorem). Let {a,},> and {b,},>, be two sequences of real

numbers. Assume that {b,}, is a strictly monotone and divergent sequence. We have that

LS ay
thm——l then lim — = 1.
n— oo b — b n— oo bn

We have shown that the two conditions in Lemma A.2.1 hold. Hence, by definition,

¢r(r) = B(r) where

Cr(r) = UF S+ (U2 - U U7 - UDX,,, | if UF<rUZ<U?

1+1 i+1

and S; = Zinzl X, Since sy/Up — 1 almost surely and (A.10), it follows that

@UTQ@) = \vWaTSaB(r) £ \lva" SV W (r),

where W (r) is the d-dimensional standard Brownian motion. Recall that

2 Z
Lemma A.2.4. Under the same condition of Lemma 2.5.3, it follows that

t UZ, t
o (o) o

h(r,T) =

m_

sup — 0 in probability.
refon| T = T
Hence,

h(r,T) 2

Vir VIT Vir Uh(r T)
T T 12

T Z} a &y = ——Sner) =~ Urér 2 ) Vva' S'PW ().

m= T

By the arbitrariness of a, it follows that®

h(r,T)
\/; Z Em = VVSPW ().

(D See the proof of Theorem 4.3.5. in Whitt '] for more detail about how to argue multivariate weak convergence from
univariate weak convergence along any direction.
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Applying the continuous mapping theorem to the linear function € : € = G~'¢, we have

T h(T)
\/7 Z G e, > \VGT'SPW ().

Finally, since [E@”G_leon — 0, it implies that @G"leo = op(1). Then it is clear that
VI D Gle, = VG ST2W (). O

A.3 Proof of Lemma A.2.4

Proof of Lemma A.2.4. From the Theorem A.2 of Hall, Heyde [1%7] if some random func-
tion ¢, = ¢ in the sense of (C, p), {¢,} must be tight in the sense that for any € > 0,
P(sup|s_sj<s |dn(s) — ¢, = €) — O uniformly in n as 6 — 0. Since \/_UTCT(r) =>
\/;aTS 2w (r), {@UTCT }r 1s tight. We denote the following notation for simplicity

\/’_ Uf%(r T)

¢r(r) = —UTCT(") and pr(r) = )
UT

Since pp(r) satisfies pr(0) = 1 — pp(1) = 0 and py(r) is non-decreasing and right-
continuous in r, we can view pr(r) as the cumulative distribution function of some random
variable on [0, 1] and p(r) : r — r is the cumulative distribution function of uniform distribu-

tion on [0, 1]. It is clearly that p;-(r) — p(r) for every r € [0, 1] almost surely, because

2 2 h(r,T) 1

i : Uh( 1) . Sheem) . Zm=1 E,
lim pp(r) = Thm > Thm = Thm ——" == ().

o o Ur % s T Y om= T

Here we use h(r,T) — oo for any r € [0, 1] as T — oo. Since p(-) is additionally continuous,

weak convergence implies uniform convergence in cumulative distribution functions, i.e.,

lim sup |pT(r) - r| (A.11)
T—oo, €[0,1]

By the tightness of {¢,}, for any €, 7 > 0, we can find a sufficiently small 6 such that

limsupP( sup 167(s) — pr(1)] > ) <n.

T—o0 |s—t|<6

With (A.11), for this &, P(sup,¢(g 1y |[pr(r) —r| > 6) — 0as T — oo. It implies that

lim sup P < sup | (pr(n) — br(r)] = e>

T— rel0,1]
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< umsupP< sup |obr (pr(r) =yl = &, sup |pp(r) = r] s5>

T—o0 rel0,1] re[0,1]

+ lim |]3’< sup |pp(r)—r| > 5)

T—o0 rel0,1]

< lim sup[P’< sup |@pr(s) — pr (D] = 5> <n.

T—o |s—t|<6

Because 7 is arbitrary, we have shown that

sup |7 (pr(r)) — ¢r(r)| — 0 in probability.
rel0,1]

A.4 Proof of Lemma 2.5.4

Proof of Lemma 2.5.4. Recall that G = V2 f(x*), s, = X, —x*and
rm=Vf(&x )—Gs,.
When |s,, || < 6,, by Assumption 2.3.1, |V f(ss,, + x*) = V2 f(x®)|| < sL'||s,, ||, then
7l = IV F (8 +X*) = VFG*) = V2 (x5,

1
/ V2f(ss,, + x*)s,ds — V> f(x*)s,,
0

1
< / V2 (53 + x*) = V2 £ ()| U llds
0
Ll
< syl

When |5, [| > 6, [Ir, |l < NIVF&E DI+ 11Gspll < Lllisyll + Lils,ll = 2LIs,, ||l Applying the

results above yields

I7mll < L' Wsll® Ly, n<s,y + 2L0Sml L s, 155, )

Hence,

P T P T
@ Sollrall < - L1521 1) + 2L s 51| -

m=0 m=0
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By Lemma 2.5.2, s,, — 0 almost surely, which implies

T
Vir
Ea Z ||sm”1{llsmll>51} — 0 almost surely.

m=0

It then suffices to show that @ ZZ:O ||sm||21{”sm||s5l} = op(1), which is implied by
Vir < )
~ 2 Elis,ll® = o(D).
m=0

It holds because YL T= Ells, |I> 3 XL T T= Y, — 0 from Lemma 2.5.2 and Assump-
T m=0 m T m=0/'m
tion 2.3.4.

A.5 Proof of Lemma 2.5.5

Proof of Lemma 2.5.5. In the proof of Lemma 2.5.2 (see the Part 2 therein), we have estab-

lished for sufficiently large m,

L2 tm+1_1 E —1
ELIS, P17, < 2= > Vi< D= (Cy+ Cillx, - x*I1P).

m t=tm m

where V; is the residual error defined in (A.3) and C5, C, > 0 are universal constants defined

in Lemma A.1.2. Besides, Lemma 2.5.2 implies that [E||5sz —x*|? 2 rm S 1. It follows that

EN18,I° < L772 (Cs + CiEN%,, - x*I2) 373,

. . t . .
In order to prove the conclusion, it suffices to show that @ S o E|8,] = 0, which is

satisfied because

T;E”‘Sm”ST% E |8, ’ST%ym_)o

from Lemma 2.5.2 and Assumption 2.3.4. [
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A.6 Proof of Lemma 2.5.6

Proof of Lemma 2.5.6. If { E,,} is uniformly bounded (i.e., there exists some C such that 1 <

E, < C for all m), the conclusion follows because

- -1
O ENC L Entayr)  CT(CL0anr) 1 «
0< 72 ~ < T2 - =T§ apr — 0 when T — oco.

m=0
In the following, we instead assume E,, is non-decreasing in m (i.e., 1 < E,, < E, ; for all
m). Let H, = anzo a, 1. For any ¢, there exist some N = N(¢), such that forany m > N,
0 < H,, < me. Then

T T T-1
Zam,T:ZHm_Hm—lzﬂ_i_Z(L_ 1 >H _HN—I
n=N Em n=N Em ET n=N Em Em+1 " EN
T-1
Hr < 1 1 > Hy_,
<—+ — - £~
ET n=N Em Em+l N
T-1
_Hr-Te |Te <L_ 1 )mg_(N—l)e _Hy_ i —(N-De
Er Er =N E, E,q Ey Ey
T
Hr—Te Hy_;—(N-1e¢
.. Z L+ T _Hy_ = ( )
= En Er Eyn
d 1 N
€
e —_— + —
Recall 1 = Z;;(l) E,,. Therefore,
T-1 - T-1 -1
tr (D m=0 Emlam,T) f:r(z =0 E ) Qo Em Q)
T2 T2 * T2
N-1 p— _
<tT(Zm=0 Emlam,T) tT(Zm v E.)  tpNe
- T2 T2 T2Ey’

Taking superior limit on both sides and noting a,, 7 5 1 uniformly and hm % = 0, we have

T-1 -1
. tT(Zmzo Em am,T)
0 < limsup < ev.
T—oo T2

By the arbitrariness of €, we complete the proof. [
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A.7 Proof of Lemma 2.5.7

Proof of Lemma 2.5.7. Without loss of generality, we assume G~ is a positive diagonal ma-
trix. Otherwise, we apply the spectrum decomposition to G = VDV " and focus on the co-
ordinates of each g,, with respect to the orthogonal base V. This simplification reduces our
multivariate case to a univariate one. Hence, it is enough to show that the result holds for
one-dimensional €,, and G. In the following argument, we focus on an eigenvalue A of G' and

T

its eigenvector v, and denote ,, = v ' ¢, and B,, = 1 —y,,4 € R for simplicity. Clearly, 4 > 0

and 0 < B,, < 1 for sufficiently large m.

Given a positive integer n, we separate the time interval [0, T'] uniformly into n portions
with h; = [%] (i =0,1,...,n) the i-th endpoint. The choice of n is independent of T', which
implies that limy_,  h; = oo for any i. Define an event &/ whose complement is

h; h;
A€ =23h; st Vi ST IT Bi|vmen| > ¢

1

We claim that lim sup P(/€) = 0. Indeed, by the union bound and Markov’s inequality,

T-

n h; h;
P(@)<) P Vir S 1 Bivmenl| 2
i=0

n p h; h; 2
T 2
< N )
~ Z 2772 2 Z H BJ Vm
i=0 £V h 11 m=0\ j=m+1
n
Ir 1
€212 “=2 Yn+1
tr(n+1
< M -0 as T - oo.

T 2%y,

Here the last two inequality uses for any i € [n],

) BIRARE

7/hi+1 m=0\ j=m+1

which is implied by
h; m -2 h; -2
2
aim 35 T8 | 1/ | T2
m=0 j=0 j=0
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h; h;
= ] 2 / -2 -2¢1 _ B2
1| | A RN | e Ete
j=0 j=0
. 7’hi
= hh_r)noo 1 2 24 2 /12 3
= oDy, _y + 24y, Vn,

= — <

22
as a result of the Stolz—Cesaro theorem (Lemma A.2.3). Here we observe that the denominator

-2
Yh, <H7’=0 B j> increases in h; and diverges when A; 1s sufficiently large.

Since the event &/¢ has diminishing probability, we focus on the event /. We will prove

that on the event & our target random sequence is uniformly tight. For notation simplicity, we

define
h
xh=1]5.
i=m
It follows that

[P’ﬁsup Z HB YmEm| = 26 ; A

T 0<h<T |Vh+1 m=0 \ i=m+1

ﬁ‘

—pdX_ sup Z 1 > 2¢ ;A
m+1/m-m ?
T Osh<T J’h+1Xh+1 m=0
1 N h
1 T

< Z - D Xy tmen| 2265

P hel h h1+1) 7h+1Xh+1 m=0
< P T sup Z +1Vm5m + Z XonYnm| 2 2 5

P he€lh;,hiy ) 7’h+1Xh+1 m=0 m=h;+1

n—1 \/— [
<> P T, Sup ZXmH?’m Em Z mnn| | 2265

=0 helhi.hit1) J’h+1Xh+1 m=0 J’hXh+1 m=h;+1

n—1
< P _V sup xT v, E | >€;d

T m+1/m ’
P helh;hiy 1) 7’h+th+1 m=h+1
n—1 /
T m+1 m€&

— helh;hiyy) 7/h+1Xh+1 m=ht1

. \/_ 0is 245 246
B 1 246
=\"p <T sup (T) Z Xyt Vnem| 2 €

=0 he[hi,hj+1) yh+1 h+1 m= h +1
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3
|
—_

2,

Il
=)

i

where 6 is any positive real number less than min{é,, 65}.

246
Let Y, = ‘anzh' +1 XZ +1YmEm| - Itis clear that Y} is a sub-martingale adapted to

1

the natural filtration. Let ¢;, = TP

Then {c;} is a non-increasing sequence when 4 is
sufficiently large because

Yh

Xy = (1= W X0 =+ o)A = Ay X b < v X0

h+1
for sufficiently large h. Indeed, since h > h; = [%] —o00asT — oo, (14+o0(y,))(1—=Ay,) <1
is solid and X f{ is non-negative when 7' goes to infinity. Hence, each & is the probability of
the event where the maximum of a sub-martingale multiplied by a non-increasing sequence is
larger than a threshold. To bound each &, we use Chow’s inequality which is a generalization

of Doob’s inequality!! 7], Tt follows that

t1+5/2
% =P T2+5 sup Cth > 82+6
T helh;.hiyy)

(14812 hipq =2
S A— EY _ EY A.12
562+5T2+5 Chip—1 hi+1—1+ hzl(ci Cit1) i (A.12)
j=hi+

We then apply Burkholder’s inequality to bound each EY;. Burkholder’s inequality is a gen-
eralization of the Marcinkiewicz-Zygmund inequality (Lemma A.2.2) to martingale differ-

ences!1%8]. That i s,

246
EY, =E Z X VmEm
m= h+1
/ 246
. 612
SG=h)" > E|XD vueal

J
5 (,] _ hi)5/2 Z (XT+lym)2+5/E,}1+5/2

m=h;+1
J
. 6/2 —1,p146/2
SG=h)"? D e EN?,
m=h;+1

246

where we use E |£m| < I/E,}{"‘S/ 2 for sufficiently large m that is already derived in (A.9).
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Plugging it into (A.12) yields that &% is bounded by

(14612 hip1=2
T
£2+62+6 chi+1_1|EYhi+1_1 + Z (¢; — cip)EY;
’1T+6/2 s hiy—1 C_1 hiy1=2
S ot ot Y- >
N g2+8T245 Chyg =1 P =) E1+5/2 + (¢;=
m:h«-l—] j= h+1
(1+612 T\62 hip1—1 1 hiz1-2
T
< gt (3) (o 2 gl 260
246246 \ p il E1+5/2
t;+6/2 T\62 hiy1-1 1 hiy1—2
T 2+or2+0 (;) Chp-l D E1+5/2 + Z €
1+68/2 hip1—-1 -1
T 246246 \ Z m oo 1+6/2
€ T m=h;+1 Em
1+68/2 hiy1—-1
_ tr T \%72 1
T 2467246 1+6/2°
err m=t+1 Em

Recall 1 = ZZ;(I) E,,. Summing the last bound overi =0, 1, ...,

—

n—

(14612 T s T-1 )
%3 27:5 2+5 ( Z 1+6/2
+62+ +
g~toT n ‘= Enm

Il
(=)

1 —
1 G Z,Tnz(l) E, )+ Z E1+5/2 ET | /gL

¢e)—hy)? >

J+1) Z 1+5/2

mh+1
1

,+1—1) 1+5/2

n— 1 gives

J

246,62 1 T—-1 =1+6/2
£ n - E

,S T on
2512

where we use (ii) in Assumption 2.3.4 which implies

T2

1+53

Su
Tp T?

as aresult of 6 < 8.

Summing them all, we have

Z E1+5/2 ZT 1 1/Ems/z <o Z 1 E1+53 Z l/E

T?

h h
Vir
limsupP§ —— sup Z H B |V mEm| = 2¢
T—oo T o<n<t |Vn+1 525\ ioimin
h h

t

-1

Erln+5/2

<limsupP ﬁ sup LZ H B |V mEm| = 26 5 A ¢ + limsup P(/€)

T—co 0<h<T | Yh+1 o\ iZmi1
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n—1

< lim sup Z &

T=e i

1

S .

~ 2
Since the probability of the left hand side has nothing to do with n, letting n — oo concludes
the proof. [
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Appendix B Omitted Proofs for Theorem 3.3.1

B.1 Proof of Lemma 3.4.1

Proof of Lemma 3.4.1. In the following, we use a < b to denote a < Cb for an unimportant
positive constant C > 0 that doesn’t depends on p for simplicity. Let Cyy = ki (2L g || %, —
x*|| + 6). By 2 in Lemma 3.2.2, we have || 2U (x,,&,_))| < Cy x,-

1. By Assumption 3.2.1, it implies that

Ir: |l = llg(x,) — GAl
< llgx) = G(x, — x| + | PU (x,, &)
<{ L - llx, = x*|1* +1,Cy if ||lx, — x*|| < 6
L @ +IGID) - %, = x| +1,Cy x, i llx, — x*|| = 66
Ly + G
SmaX{LG,T ||xt—x*||2+ntCU,xt.

Since {x,};5( satisfies the (LZ, (1 + log t)\/F,)-consistency (from Assumption 3.2.6),

Ellx, — x*||* S #,logt. As aresult, when T — oo,

T T T T
1 1 1 logT
— ) Elrll3—=) Ellx,-x*|P+—=) n,3—> n,—0,
Vi 2 = g 2 " "

=0 =0
2. By (3.17), we have E[U(x;, &) | F_1] = PU(x,,§,_;) where &, is the o-field defined
by # = c({&, }p<r<)- Hence, {u,},5( is a martingale difference sequence. By 2 in
Lemma 3.2.2 and Assumption 3.2.2, > thTlrJ u, 1s square integrable for all » € [0, 1].

By (3.17), we decompose u, into two parts u, = u, | + u, , where

ut,l = [U(-xt’ 51) - @U(xt’ ét—l)] - [U(-x*’ ét) - (@U(X*, ét—l)] )

(B.1)
u,=[U*, &) - PUKE_)).

It’s clear that both {u, ; },5 and {u,, },5( are also martingale difference sequences. We

assert that # Zg{ J u, has the same asymptotic behavior as # > ttler ! u,, due to
| N N
E sup ||[— u, — — u || =E sup |— u, || = o(l).
relo.] |[ /T tz:; \T ; rel01]|[1/T ;
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This is because from Doob’s martingale inequality,

[T7]

§ Uu; 1

where the last inequality uses the following result

logT
E sup s—Z[E||u,1||2< Znﬁo

rel0,1]

Ellu, |I* < 2E|U(x,, &) — U™, EN? + 2ENPU(x,, &) — PU X, &I
=2EP||U(x,,&,_1) = U™, DI + 2E| PU (x,, &,_) — PU*, &P

(@) * 2

SAELNU(xp, &) — U™, &)

(b) x 2@ 2 o2 9

< AE(PIU(xps o) = UG EDIP)? < 4LE - Ellx, — x*|1> 3 n, - logr.

Here (a) follows from conditional Jensen’s inequality, (b) follows from conditional
Holder’s inequality, (c) uses 4 in Lemma 3.2.2, and (d) uses E||x, — x* 1? < n, - logt
from Assumption 3.2.6.

|Tr]

We then focus on the partial-sum process u,,. For one thing, by Assump-

=

tion 3.2.2, {u, 5 },>( has uniformly bounded p > 2 moments, which is because

sup Ellu, »|” < 277" sup [E[|Ux*, ENIIP + E[|PU(x*, &_II?] < oo.

>0 >0

As aresult, for any € > 0, as T' goes to infinity,

T 2 -
U
E{gE[ ﬁ L ali2vTe) 9‘3—1]} < e%" : {ZO [||u,,z||p‘%_1]}

< SUP;>0 [E||ut 2117
which implies

lps-l

e

t=0

=
(@)

2
F
{||ut,2||2\/fe} H]

For another thing, we notice that
.
E|[UG*.) - 2UG* )] [UG* &) - 2UG ¢ ] |7

—F [U(x*, ENU(x*, €))7

Fiot| - PUG* £ DPUG* &)

=PUX*,E_DUG*, &) — PUN*,E_NDPU*, &),
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which together with Birkhoff’s ergodic theorem (Theorem 7.2.1 inl!"!) implies

T
D PUGCH & DUGHE DT - PUG* &_DPUK* . &))]

=1

5 S =Ee, [PURH OUGH, 8T — PUGH,HPUR*, )] .

1
T

Because /E P(E,ENn(dE) = n(E") by the definition of the stationary distribution 7, we
have

Eeon PU XS, U6 = E. UG, OU X&)

Hence, we have

T
1 p
=Y Bl I 1 S S =E., [V OUGS 9T - PUGHHPUG*OT]
=1
Hereto, we have shown {u, ,}, satisfies the Lindeberg-Feller conditions for martin-

gale central limit theorem. Then the martingale FCLT follows from Theorem 4.2 in!!¢]

[171]

(or Theorem 8.8.8 inl!”!), or Theorem 2.1 inl!>*)). Therefore, we have

[Tr] { |Tr]
w w
> S"W @ and — ) u, — SPW ().

=1

=>
—F U »
VT 5
Finally, by 4 in Lemma 3.2.2 and conditional Jensen’s inequality, we have

Ellu, 1[I < 277! [ENUx,, &) — U*, EIIP + 2E(|PU (%, &) — PUGS, &,_)II”]
<2PE|U(x,, &) — U, EIIP < 2P LY Ellx, — x*||”.

As a result, we have sup,5o Ellu, 1[I’ 5 supEllx, — x*||” < oo from Assump-
tion 3.2.6. Therefore, sup,( Ellu,||” < 2p_1(sup,20 Ellu, I” + sup,>g [E||u,,2||p) < 0.
By now, we complete the proof of this part.

3. By (3.18) and 4 in Lemma 3.2.2, we have

n
t—+1<@U(xt+la ét) - ‘@U(‘xt’ ét)

ur

< ||@U(xt+l’§t) - *@U(xt’ét)” +

vl =

Niy1 — 1
L@U(xtﬂ’gt)

t

Hiv1 — My

< Lyl — x4 + (B.2)

U.xpyi

t

3 Lyl = x|+ o) - (1% —x*[ + o).
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From another hand, it follows that
(a) * *
Ellx, 1 — x| < nENH G, EDN < n, [ENH ™, EIl + Lgllx, — x*||]

(b)
LyEllx, —x™|| + Suop[EIIH(X*,é)II S s
>

where (a) uses the following result (which mainly follows from Assumption 3.2.3),
EllH (x,,&) — H(x™, &)l = EPIH(x,, & 1) — H(x™, &)
<E@IHG. &) - Ha & Iy
< LyE|lx, — x*|I,
and (b) uses the following two inequalities,

sup E||H(x*, &)l < sup([EuH(x PP <1,

>0

Ellx, — x*|| < sup {/Ellx, — x*[|I? 3 1.
>0

Finally, we have

T

T
1
Ellvill Sn, = — Ellv,|| S — —-0asT — .
o \/7Z t \/—go

B.2 Proof of Lemma 3.4.2

Proof of Lemma 3.4.2. We analyze the four separate terms sup,¢jo 1 ll@ (N[0 < k& < 3)

respectively.

For the partial-sum process of noises By 2 in Lemma 3.4.1, it follows that

T
1 = w 12
— ) u, — SPW).

VT 'S

For v, 2inLemma B.7.1 shows A;‘ is uniformly bounded. As T — oo,

T
sup [lyo(r)l = sup [ AT BoAll <
re[0,1] T relon] T

| BoAgll — O.
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For y, Recall that y(r) = Z[T” AtLTrJ (r, +v,). Since || A7 < C, forany n > j > 0,

it follows that as T — oo,

T
E sup [ly, () <—[EZ el + 11v, ) =
ref0,1] =0

where the last inequality uses 1 and 3 in Lemma 3.4.1.

Fory, Recallthaty,(r) = L] (AT G! ) u, with u, a martingale difference. Inthe

=2
following, we set z, = y,(#/T') (indexed by ¢ € [T']) for simplicity. It is clear that {z,, % } ;7
forms a square integrable martingale difference sequence. As a result {||z,||,, # },er 1s @
submartingale due to E[||u;||,|#_1]1 = ||Elu,|F_{1ll, = |lu,_;||, from conditional Jensen’s
inequality. By Doob’ s maximum inequality for submartingales (which we use to derive the
following () inequality),

(%)
2 2 2
E sup [ly,(Mll; =E sup [Iz]l; < 4E[lzrll3
rel0,1] e

4 _
=7 > EI(A] -Gl
1
<4supElul;- = > IIA] —G7'|5 -0,
up Ellull3 - 7 > 114 I3

where we use 2 in Lemma B.7.1 and the fact ||AIT -G Y is uniformly bounded by Cjy+ || G.

Due to the norm equivalence in RY |-l is equivalent to || - ||, up to universal constants.

For y; Recall that y5(r) = ZLT” <ALTrJ A,T> u, with u, a martingale difference.
Notice that for any n € [T]

S =3 H] 5 5[ 11 5|

1=0 j=n+1\i=t+1 Jj=n+1 t=0 \i=t+1

T
- 5 1T a3 ( 11 2w ®
j=n+1\i=n+1 t=1 i=t+1
1 n n
—A" B, (HBJWF
’7”“ t=0 \i=t+1
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From 2 in Lemma B.7.1, ||A£+1Bn+1|| < Cy(1 +||G||) forany T > n > 0. Hence,

1 n
sup |lys(Mll = sup ||—= ) (A} —AT)uy, (3.22)
ref0,1] nelTl|[\/T ‘5
1 1 n n
3 sup |l—=—> [ T B: ) nu|| = op(D). (B.4)
nelT] ﬁ””“ =0 \i=t+1
where the last inequality uses Lemma 3.4.3. We then complete the proof. ]

B.3 Proof of Lemma 3.4.3

For the proof in the part, we will consider random variables (or matrices) in the complex
field C. Hence, we will introduce new notations for them. For a vector v € C (or a matrix
U € C™), we use vM (or UM) to denote its Hermitian transpose or conjugate transpose. For
any two vectors v, u € C, with a slight abuse of notation, we use (v, u) = v'lu to denote the

inner product in C. For simplicity, for a complex matrix U € C%*4

, we use ||U|| to denote
the its operator norm introduced by the complex inner product (-,-). When U € R?“, ||U||

is reduced to the spectrum norm.

Proof of Lemma 3.4.3. We provide the proof only for the asymptotic result; for the weak con-

vergence rate see Lemma D.2.2 and its proof. To simplify notation, we say a random sequence

1 1Yes
\/T te[O,I;“] Nev1
to show the defined {y, },>( is uniformly ignorable.

{¥:}1>0 18 uniformly ignorable if % 0when T — . Our target is equivalent

We are going to prove the lemma in two steps. In the first step, we prove a weaker version
in Lemma B.3.1 under an additional assumption that requires G is diagonalizable. The proof
of Lemma B.3.1 is deferred in Section B.4. Then, in the second step, we remove the added
assumption via a refined analysis that relies on induction to reduce the general Hurwitz case

to the established diagonalizable case by using the Jordan decomposition of G

Lemma B.3.1. Under the same condition of Lemma 3.4.3, if we additionally assume G is

diagonalizable, then

Lemma B.3.2 serves a bridge to connect the general Hurwitz case with the diagonalizable

case. Its proof is provided in Section B.6.
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Lemma B.3.2. Let {1, },5( be the step size satisfying Assumption 3.2.5 and A € C be a complex

number with positive real part Re(A) > 0. Let {®, },5( € C be a sequence of random variables
p

L sup " %0 as T — oo. Consider the sequence

VT ietor) ™

{2;}50 defined recursively as following: z, = 0 and

taking value in the complex field and

Zey) = Zp — AN Z4 + Mo,

Then when T — oo, we have {z,},5 is also uniformly ignorable, i.e.,

1 1Zep1 ] p
—— sup — 0.
ﬁOSIST Ne+1

By viewing G € RY*? as a complex matrix, it has the Jordan decomposition with the
Jordan canonical form denoted by G = vIv-! = Vdiag{J, - ,J,}V_l, where V is the
non-singular matrix and {J;},;<, collects all Jordan blocks. Recall that {y,},5, is defined
in (3.24). Letj, = Vly, & = V!¢, be transformed vectors. Then the recursion for-

mula (3.24) becomes

5’t+1 = —nd)y, +nkE,.

Without loss of generality, we assume that J consists of only one Jordan block, i.e.

J = (B.5)

with A € C and Re(4) > 0.

Let ( jit) . denote the k-th coordinate of the vector y, and so does (Et) .- Then, in order to
prove that {¥,},5 is uniformly ignorable, we only needs to prove that each of its coordinates
{ ( jf,) Ji>0(1 < k < d) is uniformly ignorable. Notice that the last coordinate process evolves
as (¥,41)q = A=n, (¥, +n,(€,),. Lemma B.3.1 implies that {(y,),},>, as a one-dimensional
process, is uniformly ignorable. We are going to finish the proof by induction. Suppose for
the coordinates k, k + 1, ---, d, we already have {(¥,), },>( 18 uniformly ignorable, now we are

going to prove {(¥,),_1 };>0 18 also uniformly ignorable.
Using the structure of J in (B.5), we have

Dir1)k—1 = X = A1 — mYx + 1€y - (B.6)
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To facilitate analysis, we construct a surrogate sequence {(¥,);_;} defined by

Vs k=1 = A = An)(P)r—1 + 1€ g—1- (B.7)

Again, by Lemma B.3.1, {(¥,),_1 };>0 1s uniformly ignorable. Let A, = )i — )i be
their difference. From (B.6) — (B.7), it follows that

&t+l =(1- lrlt)&t — (V)

Thanks to Lemma B.3.2 and our hypothesis, {A,} r>0 1s uniformly ignorable. Finally, putting

the pieces together, we have

L |(yt+1)k 1| 1 |(j’t+1)k—1 +&t+1|
\T te[OT] Mis1 \/_ te[OT] Met1
< L sup |(Yt+l)k 1| sup |Az+1| 0.

AT EloT) M \/_ 1€10,T] M1

B.4 Proof of Lemma B.3.1

Proof of Lemma B.3.1. The proof is divided into three steps.

Step one: Divide the time interval Given a positive integer n, we separate the time interval
[0, T'] uniformly into n portions with A, = [%(T + 1)] (k = 0,1,...,n) the k-th endpoint.
The choice of n is independent of T, which implies that lim;_,  h;, = oo for any k > 1. Let

1= ¢y exp(cny) with the constants c, ¢y defined in 1 in Lemma B.7.1. For any € > 0, we
> 6} . (B.8)
t

S
j=0

!
o
define an event & whose complement is

Yhy,

C
A 0<k<nst ——
M,

VT

We claim that lim sup P(/“) = 0. For one thing,

T->

t t

EN_| I (I-nG)|ne,

j=0 \i=j+1

) 2
Ellyall” = j+1"j€ JH

(B.9)
! (b)

@
< SupEle; I>-> 7 exp|—c Z n; | < supElle; 1> - e, < eomy,
j=0 1=j+1 Jj20
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where (a) follows from 4 in Lemma B.7.1 and (b) follows by setting ¢, = ¢; - sup;» E|l¢; 1%

For another thing, by the union bound and Markov’s inequality,

n C/ y c/2n y ()Cczn (b)602n+1

P <y P ||| > e 3(0)2 [ 2(02) Z_ Lz)
k=0 ﬁ Thy Tem 35 || Ter i3 nrTe

(B.10)

Here (a) uses the inequality (B.9) and (b) is because t7, - o0. So, when T" — o0, P(€) — 0

due to Tny — oo.

Using the notation in Lemma B.7.1, we denote X/} := H (I = n,G). Clearly X7’s are
i=j

- : - t o xT\-1yT
exchangeable since they are polynomials of the same matrix G. Hence, X 1= X)X 41

From (3.24), if t € [hy, hy,,) for some k € [n], we then have

_ 1
Vi1 = ZX/H”J J (Xt+l) ZXH”J €j

-1
t+1)_ [Z Xj+1nJ£J + Z XJ+1’71 J
Jj=hy
1

_ t
=X yhk+ZXj+an J
Jj=hy

When T is sufficiently large (T' > nj is sufficient with j, defined in 3 of Lemma B.7.1), we

P e sup ”yt+1 I > 21 ol
ﬁOSKT N1

— 1 [
Pl — sup ad >2e, 9
k Ie[l’lk,hk+1) ’1I+1

have

<
-0
. 1 1
t .
< T sup n—[Hthyhk ZX,H’?J j ]ZZ&W
k= t€[hy,hyy1) M+1 j=h,
Hn
< sup  —= ‘X;l —_= 25;&7)
k n
hy

sup > e

Te[hk his1) ’71‘+1

pl L
= ﬁ 1€l hyy) Mi+1
[ Z Xj+l’1} J

n—1
+2 P
k=
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-1
@ 1
SZ — ZXJ‘anf 2 &d
n—1 1 1 n—1
<) Pl—= swp -— menj ; =) %. (B.11)
oo\ VT t€thhn Tt |5 =0

Here (a) uses the following result. When k£ > 1, due to i, > [ (T'+1)], hy, could be arbitrarily

large with increasing T and fixed n. From 1 and 3 of Lemma B.7.1, when h;, > j,

t

t+1
up
— XZ < exp % Z Ml Co€Xp|—¢ Z ne | < ¢ expleny) = ¢,
’72+1 t=hk I=hk
S . Hny t ’ ; i Yhy is 1 i-
which implies SUPselh, hy , ) _— |X hy ‘ < ¢, forany k > 1. Notice V7 | > g 1S Impossi
ble on the event &/. We then have
fMh Yh ¢y || Yn
p| L sup —k‘X;l e L= > e o ) =o0.
ﬁ te[l’lk,l’lk+1) rlt+1 k nhk ﬁ nhk

When k = 0, the above probability is clearly zero since y, = 0.

Step two: Bound each %, The proof of Lemma B.4.1 can be found in Section B.5.

Lemma B.4.1. Assume T > n. For each k € [n],

Z XJ+1’7/ J

> VTe|<pCl-n2e

‘@k :=
te[hk hk+l) ’11‘+1 j= h
where C; is a positive constant depending on the step sizes, G,d and sup,so {/E||€,||P. In
short, C3 has nothing to do with p.
Step three: Put pieces together Therefore,
P 1 sup 1o >2 | <P L sup e >2e;9 |+ P(AC)
ﬁ 0<t<T M1 ﬁ 0<t<T Myl
-1 2
(a) ey (e (n+1) B »
< gk+0—25 Cé’g—lﬂn Byl M 5
py nrTe nrTe

where (a) uses (B.11) and (B.10) and (b) uses Lemma B.4.1. As a result, for any € > 0
<L sup —”ytH” > 26) < p”Cé’e"”n_g“'l.

limsup P
ﬁ 0<t<T  Mi+1

T—-
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Since p > 2 and the probability of the left-hand side has nothing to do with #, letting n — oo

concludes the proof. [

B.5 Proof of Lemma B.4.1

Proof of Lemma B.4.1. Readers should keep in mind that we only have p > 2 in this part.
Without loss of generality, we fix k € [n].

Step one: Diagonalization Since G is diagonalizable, there exist two non-singular matrices
U,D € C% that satisfy G = UDU ! and D is a diagonal matrix with each entry the
eigenvalue of GO Further, D = diag({4,(G)},c4) and Re4;(G) > 0. Therefore, denote

t
X; =11 (I —n;D) and thus we have
i=j
t i ¢
- Z XJ+1'7/ J Z H (I —ﬂiD) n,-U_lfj = Z X3‘+171jU_lej.
Jj=hy j=h \i=j+1 j=h,

& =P sup 1 ZXJ+1’7// Zﬁs

te[l’lk,hk+1) ’71-{-1 j hk
VTe
Ul

<P sup 1 ZXJH”JU £l =
te[hk,th) ’7[+l j= hk

—~
Q
~

IA
< 1M

t
1 -1 E
P sup — ZXJH’?/U gl ||U||
te[l’lk,]’lk+1) ’71-}-1 ]=hk

iz sup L Z(Xj-i-l)llnj U £j);| 2 ||U||\/7 Z‘@k”

t€[hy,hyi 1) Ni+1 j=hy

where (a) uses the notation (v); denotes the i-th coordinate of the vector v and | - | denotes
the norm for complex numbers and (b) uses the fact that G is a diagonal matrix. The above

analysis shows we only need to focus on each coordinate thanks to diagonalization.

Step two: Establish tail probability bound for each coordinate Without loss of generality,
we fix any coordinate i € [d]. Let 4 := 4,(G) denotes the i-th eigenvalue for short (only in

(D In this proof, with a slight abuse of notation, we use U to denote a non-singular complex matrix. Readers should distinguish
it from the bivariate function U (x, ¢) defined in Lemma 3.2.2.
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. . . . ! —
this part). With a little abuse of notation, we set X;‘+1 1= (Xjp1)i and e, =U 1£J-)i, both
t
complex numbers and X j’ 1= II (I-mn4). Hence, &, < Zf’zl %,.; where

i=j+1
1 |« [T
P, =Pl sup — X' e > ——1/%
! t€lhy hyry) Mi1 JZ; ATV =IOV d
1 _ e T
=P sup — ) n.e;| > —
te[hk,hk+1)’7z+1 t+l Z JHVIE ||U|| d
(a) e T
=P sup —|X )" nig;| 2 —
t€lhy g p) it | r+ ’H ] TR
(b) 1
=P sup 117J il \/7
t€lhihyrr) |;1,+1Xz+1| pry 2 0]
4 p
=P sup Z /+1'7] il = £ T , (B.12)
tE[/’lk hk+1) |nt+1XT+l j= l’l ||U|| d
where (a) follows from |ab| = |a| - |b| for any a, b € C; and (b) follows from |a~'| - |a| = 1

forany a #0 € C.

Lemma B.5.1 (Chow’s inequalityl' 1), Ler {Y;}>0 € R be a sub-martingale and {b,}, be

a non-increasing sequence. Denote Yt+ = max(0, Y,). Then for any € > 0, we have

T-1
e-P| sup bY,>e | <D (b — b, DEY + brEY;
0<t<T =0

Lemma B.5.2 (Burkholder’s inequalitiest!7?). Fix any p > 2. For C-valued martingale dif-

ference X, -+, Xy, each with finite LP-norm, one has

)4
2

E

T P T
ZXI < BjE Z|Xt|2
=1 t=1

where B, = max {p -1, zﬁ } is a universal constant depending only on p. It together with
Jensen's inequality implies
p

E < BT Z E|X,|". (B.13)

T
2 X
=1

Based on (B.12), we will use Chow’s inequality to bound each &% ;’s. We first check (B.12)

152



Appendix B Omitted Proofs for Theorem 3.3.1

satisfies the conditions in Lemma B.5.1. First, 7,4 |X ;T+1 | is non-decreasing for when ¢ is suf-

ficiently large. This is because
’1[|XT| - |1 _nt/1| ’12+1 |Xt+1| <’1t+1 |Xt+1 (B14)

for which we use

Mo |1 A = (o) (1~ nRed? + m(mA) = (o)1~ 2mRed +O) < 1.
+

when 7, is sufficiently small, or equivalently, ¢ is sufficiently large, say larger than t(’). Hence,
b, 1= |;1,+1Xt7;1 |_p is non-increasing. Second, let ¥, := |Z, —h, +1’71 ]‘p. It is easy to
check Y, is a sub-martingale satisfying E[Y;|#,_;] > Y,_;. What’s more, (B.13) implies EY, is
bounded by

-1 T
EY, < BY(t — hy + 1)? Z[E X, nje J|
Jj=hy

5-1 »
( ) Z‘ +1’7/| [E|£j|

J=hy
< (D) Z\ o —Cé’-(%)g_]if (B.15)

where C3 1= 2 - sup,5 ;e(q) V El€|? is a constant depending only on U and sup, {/E||€,]]?.

Hence, by Lemma B.5.1 and (B.15), it follows that

. T —p T\ 21 Miey1—2 t | hiy1—1 |
14
ki = (”U” E) ppC3 (;) Z (bt - bt+l> Z E +bhk+1_1 Z b_

1=hy J=hy j=hi
p p_q [ Pk+1-2 hk+1_2 ey =1
Vd||U|| p (T2 1
-\ = -ppC3 <n > Z Z t+1 + bhk+1—1 Z b.
\/?6 j= hk -/ = ]=hk J

(5 (2

which implies that for any k > 1,

p
. U

R <Y P <pPChaE <[/—”> '
ne

i€[d]

For k = 0, in order to establish (B.14), we can follow the same argument of bounding each
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9,.’s by noticing

A=p| s LY x> VT
t€lhgy,hy) ”t+l j=hy

ZXtH”’J €j

j=0

sup ZX/H”/ j ZO.Sﬁs

telt).hy) ’71+1 j=t

ZXJ+II7J J

j=0

>05\/_£

<Pl sup —
t€[0,1)) Hi+1

‘o
vp||x;

14
] + pPCy2P XO0

p
? ez (U]
\/r;e

where the last inequality redefines C3 by enlarging the original C; and T' > n. Note that the

P
<—— Ef sup —
T2ep te[0.1)) M+1

2 _
< pPCyn2e,

moment quantity in the first term, || X ' Il t , U || depends on G, {7, },5(. C5 is a quantity that

depends on G, d and sup, {/Ell€,]|?.
O

B.6 Proof of Lemma B.3.2

Proof of Lemma B.3.2. By definition, we have that

t t
zwr = 2| [T (0 = 4n) |,

j=0 \i=j+1
The last equation implies that

t

> H(l npmo;

Jj=0 i=j+1

|Zt+1| 1 1

1
\/_zes[l(l)T N \/_ze[OT] s
L up ZH%“ anjllo;|

\/_ t€l0, T] Mt Jj=0 i=j+1

= sup —Zn H [1— An wjl

t€10,71 Mt j=0 i=j+1 njﬁ

o, |
sup— n; |1 — An;| X sup ——
1€[0.T] My Z / ._]Hrl / v€l0.] 5_\/T

IA

IA
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1 1
1 ||
< sup—E 11]2” |1 — An;] ><<sup >

0TI M Ty T S wel0.T1 y_\/T

The fact that A has a positive real part implies when 7 is sufficiently large, we have

|1—4n,| = \/ (1 —Re(A)n,)? + Im(A)2p? = \/ 1 — 2Re(D), + |42} S 1-Re(A)y, < exp (—Re(Ayr,) .

By 4 in Lemma B.7.1, there exists ¢; > 0 such that

1 t
1
sup —ZVIJ2 H [T = n;| < ey
€01 M 52y 7 D
As a result, we have

t t
z 0] )
L sup lt+1|§ sup lan H [1—An: || x| sup i <c; x| sup | .
/ / t€l0.T] /T

\/T relor) 1 €011 2 i t€l0.T1 /T

We complete the proof by using the condition that - sup ol % hasT - ooand =My =
VT iejo.)

n,0(n,). =

B.7 Properties of Recursion Matrices

Lemma B.7.1. Recall that B; := I — n;G and —G is Hurwitz (i.e., ReA,(G) > 0 for all
i € [d]). Foranyn > j, define X? and A;.’ as

n
x7:=]]B (B.16)
=
n n t
A=) X =) | ] Bi|n; (B.17)
t=j 1=j \i=j+1
When {n,},>( satisfies Assumption 3.2.5, it follows that
1. There exist constant cy, ¢ > 0 such that for any n > j > 0,

n
IX?)| < cpexp|—c > n,|-
t=j

2. There exist Cy such that A? is uniformly bounded with respect to both j and n for
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0<j<ki(e, ||A;.’|| < Cyforanyn> j>0), and

n
%ZHA;’—G_IH — 0asn— oo.
j=0

3. For the c given in 1, there exists j, > 0 such that any n > j > j,
’1/ 1
— <exp| = Z nl.

"y S

4. Let c be a positive constant, then there exists another constant c| such that for any

n>1,

n n
D_mexpf e} n | < ey
j=1 =)

Proof of Lemma B.7.1. 1. The proof can be found in the proof of Lemma 3.1.1 in[!73].
2. The proof can be found in the proof of Lemma 3.4.1 in!!73],
3. Dueto '7’;]1—__1”’ = o(n,_y), it follows that
" n—l n—1 n—1
e H(l +o(1),) < exp o(l)Ejjm < exp o(l)Xij ,

where o(1) denotes a magnitude that tends to zero as j — oo and the last inequality

follows from s, — 0. We then find j, > O such that any n > j > j,, we have

”’—;1 <exp (% Do nt> with ¢ given in 1.

4. Lemma 3.3.2 in!'” implies that for any ¢ > 0, >>"_, n;_y exp (—¢ Y_[_; #,) is uni-
formly bounded for n > 1. When n — oo, as a result of ny,, > oo, we have ¢ >, 1, +
Inx, — oo and thus 7, ' exp (—c 31 111,) — 0. Therefore, we can find ny,c; > 0
such that any n > ny we have ZJO ) ;1] | €Xp (—c Zfzj r]t) < c31,. Then as long as

n > max{ jy, ng}, it follows that

n n n
D M exp|=e > n Zﬂ, 1 ©xP CZ'% DI S ot
j=1 1=j 1=J

J=Jo

c
=c3n, +1, Z Nj—1 €Xp —3 an <,
J=Jo 1=j

For n < max{jj, ny}, since there is only a finite number of cases, we can enlarge c; in

order to coverall n > 1.
O
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Appendix C Omitted Proofs for Theorem 3.3.2

C.1 Proof of Lemma 3.4.5

Proof of Lemma 3.4.5. * Under Assumption 3.2.5, we have n, | Oand t5, T co ast — 0.

Hence, for any fixed m > 0, we have t5, > m for sufficiently large ¢. Then,

a, = [log, :—;] = [logi %1 < [log% %’d] = a, = O(log?).
* Since a, = O(log?), for sufficiently large 7, there exists u > 0 such that a, < plogt and
thus
u log2 t

logz(t — ulogt)

a4y _q, logt < ,ulogzt My plogr = M plogt logz(t — ulogt) = o(1),

where we use 7, log? t = o(1) when ¢ goes to infinity due to Assumption 3.2.5.

* It follows that
Mia -1 ” -1 -1

= 1] = [ a+om) <explot) > n, | <explo(Damn,_,)=0(1).

(U T=t—a, M1 T=t—a, T=t—a,

* By 1,41 = n,(1 + o(n,)), it follow that

ox(l1+o
log; ~— = log1 gell +ola)) logi Z5 +logi (1 + o(,) = logs Z5 + o(n,).
r M1 P ny p Ny P r My
For sufficiently large ¢, we will have o(s,) < 0.5 and thus
a1 = [logl ﬂ—‘ < [logl %] +1=a,+1.
p Myt o My

It is clearly that we have a, < a,, due to#, | 0.

C.2 Proof of Lemma 3.4.6

Proof of Lemma 3.4.6. The conclusion is obvious if ¢, = 0. Without loss of generality, we
assume p > 0 and g, > 1. Recall that the update rule is x,, | = x, —n,H(x,, ). Hence, under

Assumption 3.3.2,

eyt I = 1A < Mgy = %0l = m [ H(xp, EDI < Mgg(llx, 1| + 8(60),
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which implies that

o, 1 Il < (1 + Mu)|lx, || + Mn,g(&,).

For simplicity, we denote , , := ZLS nyis s < t otherwise n, := 0 for s > 1. Iterating the

last inequality yields foranyt —a, — 1 <7 <t—1witht > K,

Il < JT 0+ Mu)llx,_, I+ M D e [ 1+ My

s=t—a, s=t—a, I=5+1

T
<exp (M m_a,,f) 1%, Il + M >~ g€ exp (Mg, ;)

s=t—a,

() ’
< exp (Ma,n,_at> %, Il + M Z 158(5)

s=t—a,

()
<2 <||xt—a,” + Matnt—atgt—l) ’

where (a) uses 1,_, . < a;n,_, by definition and (b) uses Lemma 3.4.5 and the definition of
g in (3.36).

As a result,

t—1 t—1

1% = X 1 < D Xy =% < > M (x| + g(,)
T=t—a; T=t—a,
t—1

< Z Mnr(zllxt—a, Il + 2Mat’7t—a,gt—1) + M”t—at,t—lgt—l

T=t—a,

S 2M’7[—at,t—l(|lxt—at ” + gt—l) S 2Matnt—at(”xt—at ” + gt—]),

where the last inequality uses Lemma 3.4.5 and Ma;n,_, <log2 <

0| =

Therefore, using log2 < %, we have

2
”xz_xz—at” < 2Maz’7t—at(”xt—at_xt”+”xz||+gt—1) < 5”xt—at_xt”+2Mat’71—a,(”xz||+gt—1),

which implies

”xt - xt—a,” < 6Mat771—at(”xt” + gt—l) < 2(”xt” + gt—l)-
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C.3 Proof of Lemma 3.4.7

Proof of Lemma 3.4.7. Our target is to prove

=N

t—a,<r<t-1 t—a,<t<t-—1

E sup Ig(éf)IS<[E sup Ig(éf)ﬁ) = 0(ay).

The left inequality follows from Jensen’s inequality. We then focus on the right equality.
2

2 2
The fact p > 2 implies % < 1. Then (x + y)» < x» + y» for any x, y > 0. Therefore,

2 2
<[E sup |g<§r>|§> <|E Y e

t—a;<r<t-1 t—a,<r<t—1
2

> (Elee?) <a- sup <[E|g(§,)|;—’>5 < ay.

t—a,<r<t-1

IA

C.4 Proof of Lemma 3.4.8

Proof of Lemma 3.4.8. By homogeneity, we only need to prove for the case of A = 1.

« When a € (0,1], we let f(x) = 1 + (1 + a)x + |x|'T% — (1 + x)!** and its derivative
is f'(x) = (1 + @) (1 + |x|“sign(x) = (1 + x)*). When 1 > a > 0, we have (I + x)* <
x*+1forx>0and 1 < (1 —x)*+ x* for x € [0, 1]. It implies that f'(x) > 0 for
x >0and f'(x) <0 for —1 < x < 0. Hence, f(x) > f(0) =0 for any x > —1.

« When a € [1,00), welet f(x) =1+ (1+a)x + @xz + e, x| — (1 + x)te
and its derivative is f'(x) = (1 + &) [1 4 ¢, (x + |x|*sign(x)) — (1 + x)*]. Similarly,
we are going to show f'(x) > 0 for x > 0 and f'(x) < 0 for —1 < x < 0. These two
conditions is equivalent to

x+x%

1-(1-x)*
X+x*

Cq 2

()il BT 0<x<o0;
if0<x< 1.
The last inequality is satisfied when we set

) 1+x)*-1
=sup ——.
x>0 X+ x“

Ca

We explain the reason in the following. Since (1—x)" > 1—rx forany x € [0, 1]and r >

1—-(1—x)* xa o _
1, we have sup, <9 1 e < €y < SUPye(0.1] e = Ca S SUPxe(0,1] TiyaT = @ Let
h(x) = %, then ¢, = sup,¢[o.00) 2(x). One can easily show that, on the interval
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(0, ), h(x) is a continuous function with lim,_, o+ A(x) = @ and min, _, _ A(x) = 1. As
a result, we know that SUP[0,00) h(x) is finite and no smaller than A(0) := «.
We complete the proof by showing ¢, <% in the following. If x > 1, we have

((1+x)“—1>és<(1+x)“>és1+x<2.

X+ x% x“ x

IfO<x<1,using (1 +x)*—1<ax(l+ x)*~!, we have that for any a > 1,

a é a—1 & 1
<(1+x) —1> < (a(1+x) ) S(a2a_1)5$3.

X + x® 1+ xo-!

C.5 Proof of Lemma 3.4.9

Proof of Lemma 3.4.9. The main idea is to decompose EM (x, — x*)*§, into three terms and

then bound each term respectively. It follows that

EM(x, —x*)*6, = EM (x, — x*)*(VM (x, — x*), PH(x,,&_;) — PH(Xx*,&_)))
+EM(x, — x*)(VM(x, — x*), PH(x*,&,_))) (C.1)

p—1)A
B w CEM(x, — x| Hx, £)I12.

For the first term From (3.30) and (3.31), it follows that

(VM (x, - x*), PH(x, &) — PH(x*, &) = AsM(x, — x™). (C.2)

For the second term Similar to (3.33), we have
|[EM (x, — x*)*(VM (x, — x*)), PH(x*,&,_,))|
< JEM (x, = x*)* (VM (x, — x*)) = VM (x,_, — x™)), PH(x*,&,_)))|
+EM (x,_, — X*)(VM(x,_, — x*), P H&* &, )
+E (M(x, — Xt = M (%, — x*)“) (VM (x,_, — x*), PH&*, &)
= Tl + T2 + T3.
We are going to analyze the three terms separately. By (3.37), we have

|<VM(xt - x*) - VM(xt—ar - x*)’ @H(x*’ ét—l))l
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<60M(p—1usd-an,_, ((1 + %) M(x, —x*)+ [|x*|| + g, + 1> ,
5
which implies the first term 7 satisfies
Ty 3 am_o (EM(x, — x*)'** + EM(x, — x*)*(1 + g,_)))

(@) P2

S @yt (EM (o, — %)+ (1 + (Bg DIEM (x, - x*)+) 7o)
(b) .
s a,r],_at(IEM(x, - x*)1+“ +a, - (EM(x, — x*)1+a)m),
2 2
where (a) uses Holder’s inequality and 2(1+a) = p for simplicity and (b) uses (Eh )7 < logt
due to Lemma 3.4.7. By (a) in (3.38), we have

(VM (x;_,, — x*), PUH (x*, T—
< (B = Dugh - ||x,_g, — x*|

l1,—q, = x* 11> + 1
<m(p = Dugh - ———

<m(p- i ((1 + 112) M(x,_, —x*)+ 1> :
p

which implies the second term 75, satisfies

T, I m(EM(x,_, — x4 EM(x,_, — x*)%)

,s l’lt([EM(xt_at — x*)1+(1 + ([EM(xz—ar _ x*)l—Hx)l-;-La)'
Finally, as for the third term T, by a similar argument of the last inequality, we have

(VM (x,_y = x*), PHG* & ) < 0(p— Dzl - [1x,_,, — x*]I.

On the other hand, noticing that |||x||%ﬁ; - IIyII%&I < 2allx = yllay - max{|lx|lpr ¥l ar 2%
we have

a 2a—1
|M(xt - x*)zx - M(xt—at - x*)al < 2a—1 ”xt - xt—a,”M : max{”xt - x*”M’ ”xt—at - x*”M} * .

As a result, we have

2a—1
Ty S Ellx,_q, — x* I, = X, 1 pr - max{llx, — x* | prs 2,_g — %10}
2a—1
SEN%,_g, — %" lall, = %o I - max{lle, = x* [ pr. [1%,_g, — %%l
2a—1
5 atnz—a,[E(”xz” + gz—l)”xt—a, - x*”M : max{llx, - x*”M’ ”xt—a, - x*”M} *

2
S ity EQ Iyy + &) - max{ e, — x* [y, 1x,_g = x* 113}
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2
< g Emax{[1x, — x* g 1%, = x* Mg} + &y - max{l1x, — x* g 1,y — x* 113}

2 2
< g Emax{[1x, — x* [z 1%, — x* Mg} + gy + D) - max {1, — x* [l g, — x*[13 )2

@ 2(1+
S am_ o EG} + g + Db Sam,_, [[Ebt( D+ E(g,_, + )b

(b) 22 a
2(1 = 2(1 —_—
< am_,, [[Eb,( 4 (14 (Eg )7)(ED +“))1+al

() a
2(1+ 2(14+a)\ —
S ay_g, <[Ebt( 4 a - ([Ebz( a))Ha)

(d) =
<a d +a,-d"™
N Mg, \ Gy T 4~ 4y ,

where (a) follows the notation b, = max{||x, — x*|| 5/, llx;—q, — x|l ), (b) uses Holder’s

22
inequality and 2(1 + a) = p, (c¢) uses ([Ehtz_l)P < a, due to Lemma 3.4.7, and (d) uses the

notation d, := max,_, <., EM(x, - x*)!*% and d, > [Ebtz(Ha) by definition.

Combing the bounds for T}, T, and T3, we have

[EM (x, — x*)(VM (x, - x*), PH* &) S am,_, <d, +a, - d,“_“> . (C3)

For the last term Finally, we analyze the last term of (C.1). It follows from Holder’s in-

equality that
EM(x, — x*)* | H(x,, £)I2 < EM (x, — x*) )5 (E|| H(x,, £)]121) e
< (EM(x, — x*) )5 (B || H (x,, &) |20+
< EM(x, — )3 EP | H (x, &) IP) .

By Assumption 3.2.3 and 3.2.2, we have

EPIH (x,, & )IP S EPNH (x;, &) — HX, & DI + EPIH (x*,&_DIIP
SEPIH(x, &) — Hx™, & DI + Sup EILH (x*, &P
=

SEllx, —x*[|P+ 1 SEM(x, — x*)! 7% + 1. (C.4)

Using (x + I)HLa < xHLa + 1 for x > 0, we have
EM(x, — x*) | H(x,, &2 S EM(x, — x*)* + (EM (x, — x*) ) Tra., (C.5)
Plugging (C.2), (C.3) and (C.5) into (C.1), we complete the proof. [
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C.6 Proof of Lemma 3.4.10

Proof of Lemma 3.4.10. By the definition of 6, it follows that

2(1+a)

El5,|'"* S ENVM (x, — x*), H(x,, E)' + 1/ ™ E H(x,, &)l

For one thing, by Holder’s inequality, we have

EI(VM (x, — x*), H(x,, E))'* < ENVM (x, — x*)I|17 - [ H (x,. €)1

2(1 2(1
SENIVM G, — x0)I2 + B Hx, &)1

Since M (x) is smooth w.r.t. the norm || - ||13 (due to 1 in Lemma 3.4.4) and VM (0) = 0, we

have
2(1
ENNVM G, —x*) 13 = ENVM e, =x)I12 3 Ellx=x*[12 3 Ellx—x*[I?” 3 EM (x,—x*)'*,

where the last inequality uses the fact || - || is equivalent to || - || 5, up to constant factors and

M(x) = %llxll%u. For another thing,
2(1
EILH G E)15 S EIH (3, £)1P = EP| H(x,. 8, )

SEM(x, — x*)* 4+ 1,

where the last inequality follows from (C.4).

Putting two pieces together, we have

[E|6t|1+a 5 [EM(xt _ x*)l+a + rltl+(l'

C.7 Proof of Lemma 3.4.11

Proof of Lemma 3.4.11. By definition of 6, in (3.41), it follows that

(5 - 1)*2%n?
2

by which, EM (x, — x*)*~!|8,|* can be further divided into two terms

16,1 < 2V M (x, — x*), H(x,,&))|* + |1 H (x,, £)II3,

EM(x, — x*)*!|6,1* <2EM (x, — x*)* ' (VM (x, — x*), H(x,,&))|?

(5 — 1)*4%n? _
+ #EM(-’C; - x*)a lllH(xt’ fz)llé
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For the first term We first note that by a similar argument of (a) in (3.38), we have
(VM (x, — x*), H(x,, E))| < (5 — Duzallx, — x*|| - [1H(x,, &)I.
Second, we have

E[H(x,, EN*|F_i] = P H (x,, &I
<2 [PIH, &) - H*E_DI? + PIHGES, E_)I]

< 217 lIx, — x*||* + 22| H(x*, & _II?
(b
< 2L 1%, = x* P + 4M(Ix* |17 + Pg(E-)),
where (a) uses Assumption 3.2.3 and (b) uses Assumption 3.3.2. As a result
EM (x, — x*)* ' (VM (x, — x*), H(x,, &)
SEM (x, — x*)* " [ll, = x*|” - | H(x,. €)1
= EM (x, — x*)*lx, — x*[|> - EL|[ H (x,, )N F,-1]

SEM(x, — x*)* M, — x* |17 - [lle, — x* 17 + "7 + Peg?(E)]

@
< EM(x, — x*) + EM(x, — x*)* + EM(x, — x*)*g2(£)

®) et
< [EM(x, _ x*)a+l + [EM(x, _ x*)a + ([EM(xt _ x*)1+a>a+1 ,

where (a) uses 2 in Lemma 3.4.4 and (b) uses the following inequality (proved by Holder’s
inequality) and p = 2(1 + a),

EM(x, — x*)7g*(&) < ([EM(xt - x*)“pf2> ) ([E|g(§t)|p)p < (EM(x, - x*)1+a)ﬁ _
Therefore,
EM(x, — x*)* 1 (VM (x, — x*), H(x,,&))|?
5 [EM(xt _ x*)a’-l-l + [EM(X, _ x*)a + (lEM(xt _ x*)1+a)ai+l

<SEM(x, — x*)* 4 (EM(x, — x*)1+@) o,

For the second term It follows from Holder’s inequality that

_ 2(1
EM(x, — x| Hix, £)I13 < (EM(x, — x*) ™) 5 E| H(x, £)] X ) e

S (EM(x, — x )““)H—aaEnH(xt, f:t>||2“+“>)1+—a
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a—1 2
S (EM(x, — ™)) 1% (EP| H (x,, &_)||) T+e.
1 1
By (C.4), we have E2||H (x,,&_)II” S EM(x, — x*)'*® 4+ 1. Using (x 4+ 1)Tre < xT+a + 1
for x > 0, we again have

a—1
EM (x, — x*)* || H(x,, I3 S EM(x, — x*)* 4 (EM (x, — x*)'F)rt. (C.5)

Combing these two parts, we complete the proof. [

165






Appendix D Omitted Proofs for Theorem 3.3.5

Appendix D Omitted Proofs for Theorem 3.3.5

D.1 Proof of Corollary 3.3.3

Proof of Corollary 3.3.3. We proceed with the proof by discussing two scenarios.

Linear SA with i.i.d. data We first consider a simple case that is linear SA with i.i.d. data.
In this case, t,;, = 0and ¢, = 0o that the second term in (3.14) disappear and the bound (3.14)

becomes
6 <T‘Jl(”’)+T (- “)[3+25 3] +t"’ T‘é> =0 (T™®),

mix

where J;(+) is defined in (3.60) and

hl(a):min{.f](a),(l—a)[3+625/\%]}. (D.1)

In the following, we maximize (D.1) by considering different values of 6. To ensure the

optimal a™ is achievable, we consider a € [0.5 + ¢, 1) for a very small € > 0. Note that J;(a)

s(1—a)

35 O the

strictly increases in a and has a unique intersection point with the straight line
interval [0, 1].

1. If 6 € (O ﬂ] we then have 0.5 + € < 5 6(1-a) a(1+6)}_

> 142e | 3425 ° 3426
One can show that, a;i;? intersect with (1 a) ata, .= 5 55 . which doesn’t lie in the

i i 1— 1-2
interval we consider. Hence, max hl )= max U=® _ dd-Z)
a€l0.5+¢,1) ae[o_5+g,1) 3426 6+46

1-2¢ L . o(l-a) a
2. Ifé6 € [1 > ,3] we then have s S < 0.5+ e. (D.1) becomes mln{ EYOT ,2+a}.

Denote the intersection point between =2 and 2%“ by a,. Direct calculation yields

3426
\/9(1+6)%+852-3(1+6)

a, = > and a, < 0.5 forall 6 < 3. Itimplies the two segments doesn’t

intersect at the given interval. Hence, max A (a) = max d-a) _ d-2¢)
a€l0.5+¢,1) a€[0.5+¢,1) 3+26 6+45

(D.1) becomes min {

3. If 6 € [3, ),(D.1) becomes mln{ I 3 2“ } Denote the intersection point between

— and by a3. Direct calculation yields a; = \/6 — 2 < 0.5. It implies the two

curves doesn t intersect at the given interval. So, max hj(@) = max e

a€[0.5+¢,1) a€[0.5+¢,1) 3
1-2¢
-
Putting pieces together, we have

ae[{)rg_’r_lg’l) dpP (9T¢T,9TW) =0 (T_f1(5)) ’
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where
)

6 + 45

£1(6) = [ A é] (1 - 2e). (D.2)

Other cases One can show that J;(a) > J,(a) for any a € (0.5, 1). Once ¢
the bound (3.14) becomes

mix > Oorc,. >0,

mix

5 = Cewl Al L

where J,(+) is defined in (3.61) and

hy(a) = min {Jz(a), (1-a) [3 fza A %] } . (D.3)

One can find that J,(a) and %
£ by (o) .= 48 +78% — 26 — 3. One can find that (1) £(o) strictly increases in 6 € (0.5, o)

and (i1) there exists a unique 6, € (0.5, 1) such that £(5,) = 0.

intersect at a unique point. Denote a polynomial function

In the following, we maximize (D.3) by considering different values of 6.

1. If 6 € (0, 8], denote the solution of d-a) _ (a — 0.5)% by a;. Direct calculation

3+26
. _ 45%495+3 1 . .
yields a; = FTINTTIvE One can show that 0.5 < a; < et The right-hand side
inequality is equivalent to £(6) := 46> + 76* — 26 — 3 < 0, which is true because
_ 5(28%+5643) _ 8(8+D)
0 < 69 Hence, ae‘{{f;fl)h2(“) T 23+426)362+7643)  2(362+76+3)"

6(l1-a) _ a—0.5

2. If 6 € [0y, 3], denote the solution of 55 = ot
> 0.5. Once can show that a, > 1

a0 = V(3+26)24+26(3+46)—(3+26)
2= 25 = 5+1°

the inequality is equivalent to £(5) := 48> + 76> — 26 — 3 > 0 which is true because

3446—1/(3426)2426(3+46)
5>6, H ho(a) = v .
2 6. Hence, max hy(@) 26+26)

by a,. Direct calculation yields

This is because

3. If § € [3, ), denote the solution of 1;—“ = aa_fis by as. Direct calculation yields
V19-3 d 1 5—4/19
= 1>a;>05>—.H , h =
a3 S— an a3 5 Hence aern(&&) »(@) 5

Putting pieces together, we have

.
min dp (9T¢T, OTq/) =0 ([(cr + i) 2P+ 1] . T—f2(5)> i

a€(0.5,1)
e 5(25%+58+3) .
2(3+28)(362+76+3) if 6 € (0, 51,
f(8) = 3+45—\/W i 6 € [5,,3], (D4
" if 5 € [3, 00).
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Appendix D Omitted Proofs for Theorem 3.3.5

D.2 Proof of Lemma 3.4.13

Proof of Lemma 3.4.13. We will analyze each term in (3.50) respectively. For simplicity, we
define

Cy x, = Ktmix - QLY 1%, — x*|| + 0).

For ¢ — ¢ Recall p=2(1+6)and let m € [0,26 + 1] such that 1 < 1 +m < p. It follows
that

[T7]
- (b)
(9T¢T,9T¢T) AS (‘I’T"I’T) = Zntg)U(xt’é:t 1)
\/f _—
1
© |77 m+1\ m+2
<|E sup Znt@U(xt,ft 1)
rel0.11 || /T =5
14+m m+r2
@ w4
<|T:E ?z_:"ItCU,xr
1
© [ "
5 ﬁ;;l an+l([E”xt _ x*”m+l + 6m+1)

1
f) mpl ML 2

5 @ Tm_+2 . tm+2 an-i-l ,

mix

where (a) uses Proposition 3.4.2, (b) follows from J)T(r) ¢r(r)—— Z LT(;J nPU(x;,8,_1)

and Proposition 3.4.1, (c¢) follows from Proposition 3.4.3, (d) uses the fact that [|2PU (x,,&,_1)|| <

Cux, from Lemma 3.2.2, (e) uses Jensen’s inequality, and (f) uses Assumption 3.2.6 .

For y, From Lemma B.7.1, we know that A? is uniformly bounded. Hence, as T — oo,

1 |Tr| 1
_ - A" B =0 — ).
llwolll sup llwo(r)l Jrm sup [ 0Aoll = (\/f)

Because y(-) is a deterministic process (given %), it’s easy to show that d(y,) = O(T

—1/2)

(by letting p — oo in Proposition 3.4.3).
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For y | Notice that y (r) = # ZILZT(;J A}TFJ r,. From the proof of Lemma 3.4.1, we

know there exists ¢, := max {LG, LH;—”G”} such that
G

2
Il < epllx, — X117 +1,Cy
2 2
S (Cr + Ktmix)”xt - x*” + nthmix(G + LH)

e 2
1= Cllx, — x|+ nCy-

Lemma B.7.1 implies that A;.’ is uniformly bounded by a universal constant C, in the sense
that ||A7|| < Cy forall j < n. Let A denote any positive number satisfying 0 < 4 < 6. By the
(L?, (1 +log t)\/n—t)-consistency assumption with p = 2 + 26, we upper bound the (1 + A)-th
moment of ||y ||, by Jensen’s inequality as following

17| 1+4

1
TZA}T”W

T t=0

[E|||‘I/1,1|||1+/1 =[E sup ||‘I/1,1(")||1+'1 =[E sup
0<r<1

0<r<1

T 1+4 T 1+4
1 1+4 1
SE|—=> Glirll| <T=CHE[ ) linl
ﬁ =0 =0
B T 1+4 1+4
1+ 1 1
I+AnA ] x14+4 * 112 1+4
<Tz Cyt2t et E ?an,—x I +Cp; ?Zm
=0 =0
- T T _
4 - 1 1
<T2 CO+/12/1 Crlﬂf Z [E||x, _ x*”2(1+/1) + CUJHIT Z”t +4
| =0 =0
+ | 1 ! 1 !
— 1+ | x1+4 1+4 1+4 1+4
<T72C,™"2 cﬁ?an C,log’ T + Cy TZH :

t
t=0 =0

As a result of Proposition 3.4.3 with p = 1 + 4, we get

1+4 1+4

T
a0 < Elly 9% = 6| (6 +.¢) 3 735 | LY

1+4 1+4

T
(C, + tmix>2+/1 . T22+D . %Zntlﬂ

Il
SN
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I Tr| 4T - L\
For y,, Recall that yr|,(r) = 7 Zttz(;J Azl rJvt. Note that % =1- <1 - t+—1> <

1- exp(—%) < % < an,. By the definition of v, in (3.18) and the inequality (B.2), we have

M1 — Wy

vl < Ly llxpyy — x|l + p
t

U.xyy

< Lyllxey = %Ml + axtyin, - QLY 1%y — x*|| + 0)
S (LU + aKtmiX) (lle_l - x,|| + I1,||xt+l — x*”) + 7’][ . (XK'O'tmiX (DS)

where L; = O(Ly(1 + kt,,;,)) 1s given in Lemma 3.2.2. Let 0 < m < 26 + 1 be any real

number.

We assert that there exists a positive constant C; , > 0 so that

14+m 1 1
E (11 = %M + 71l = 21) 7 3 C 3" (D.6)

We prove this statement in the following. First, from Assumption 3.3.3, x, —x* has uniformly
1
bounded p-th order moments and thus sup,o(E||x, — x*||”)» < 0. Second, it follows that

Ellx,y; — % )I'*" = 5/ *™E[| H(x,, &)||' "™ and
E|[H (x,, &)™ < 2™ [EIH (x,, &) — H(x*, &)™ + E H(x*, &)||]

(@)
< om [L};m[Ellxt — x*||"*" 4+ || H (x*, 5,)||1+’"]

1+m

(®) ’ Ln
<2m| L™ <SUOP[E||xt - x*|IP +sup (E[[Hx*,&)NIP) 7 |.
>

>0

where (a) uses Assumption 3.2.3, (b) uses Jensen’s inequality, and (c) uses Assumption 3.2.2.

Combing the last two points, we know that (D.6) with C; , depending on universal constants

1 1
as well as sup;so (EIIH(x*,&)II?)? ,supg (Ellx, — x*||?)7, and L.

Therefore,
1 1 1+m
[E||vt||1+m < 21+m(LU + aKtmiX)l"'mClzmnz gy (Zalcatmix . nz)
< 2C o(Ly + aktyi) + 2akcty )y
S (tmlx + 1)l+mC1-§mntl+m

L,

where the first inequality follows from applying Jensen’s inequality to (D.5) and plugging (D.6)

into it and the last inequality enlarges C , to C 3 to simplify notation. Using the last inequal-
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ity, we have
| \T7] 14+m
1+ T
Ellwiall ™ =€ sup lw i)™ =E sup |—=>" 4"y,
0<r<I 0<r<t | VT ‘S
| T 14+m
<E|—=>) Gl
VT %
T 14+m

L m 1

ST 2 CME| = ) vl
=0

1+ 1 T

<TG S Elly )
1=0

1+ 1 r

ST (1+ty )™ = > gt
=0
As a result of Proposition 3.4.3 with p = 1 + m, we get
T 2+m
7 I+ _ A e |1 1+m
dy ;) < Elly ollid™zn = 6] (1 + ;) 77 - T2 = Z”z

Fory, Noticethat} = 0*(AT — G™')u, is a martingale with the natural filtration %,. By
Doob’s inequality,

T
4 _
E sup [lyr()ll3 < = > EIA] = G Dl
rel0,1] =0

T
1 T 112
< 4supEllu,|? - = A, —G||5.

We then need to analyze the order of || A,T -G! |l,. To that end, we introduce another quantity

n J
Dj := Z Mj+1 H(I —n,G). (D.7)
=t it

Lemma D.2.1. There exists two constants c,cy > 0 such that for alln >t > 0,

n+1
ID} =Gy <n +coexpy—c Y ntlG7 M, and ||AL, - D}||, = 0¢*")

i=t

where we hide dependence a and other universal constant factors.
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The proof of Lemma D.2.1 is provided in Section D.3. By Lemma D.2.1 and triangular
inequality, we have

n+1
1A} =G, = 01" " +exp _02771‘

i=t
Therefore,

T+1

T

1 @(1)

I R W]
t=0

T
_ 1
=0|T?* 24+ — -nTZexp —ZCan-
Tnr =1 i=t
=0 <T2“‘2 o ) = o),
Tnr

where the last equation holds by the fact 5, ZIT= | €Xp { —2¢5°F imt41 Mi } — lasT - oo and
thus is uniformly bounded. One can prove it by using Stolz—Cesaro theorem. Thus, by setting

p = 2 in Proposition 3.4.3, we know that

_ -t
dwy) < Ellwal) 5 € sup Iyl =0 (T77).
rel0,

For y; In our previous asymptotic result, we establish Lemma B.3.1 to analyze the term
y5. In order to provide an quantitative result, we need to capture the exact convergence rate
in Lemma B.3.1, which is equivalent to analyze the moments of decomposed errors therein.
Thanks to our technique developed therein, it is possible to do that. In the following, we
will use the same notation in the proof of Lemma B.3.1 for the sake of consistency and quick

understanding.

Lemma D.2.2. Assume the same assumptions in Lemma 3.4.3 and let {y,} > be defined
in (3.24). If we set n, = t™%, then for any 0 <1 < 6 where p = 2 + 26, we have

I(d-a)

- y r
d (S’T) ((1 +1)-T 3+ > where  yr(r) = [(T+1)r]

ﬁﬂ [(T+1)r]

The proof of Lemma D.2.2 can be found in Section D.4. With Lemma D.2.2, we are ready
to bound d(y5). By (3.22), we have

n n
1 1
B. | nu
\/fn’”ltz(;(i::lt_-[l l> -
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Peking University PhD Thesis

where we define yr(r) = \/{L:L:TI)ZJ)J and Yoyl = Zz -0 (Hl =141 Bi) neu; in the last inequality.
+Dr

By the definition of d(-) and Lemma D.2.2,

- - ~ _ld-o
d(y;) = infe v P(|[|ys]| > &) s infe v P([|[37]| > ) = dGr) = 6 <(1 +1)-T 3 ) :

For y,, Letk by any real number satisfying 1 < k < 2+ 26. By Burkholder-Davis-Gundy
inequality, it follows that

p k2

Z

=0

(C3 k)k/2
- Tk2 E Z E [

=1

E sup
0<i<T

ki/2
(a) (C k)k/2

T
T
S B llx - x|
~ k2 !
T =1

(b) (03 )k/2

k

EY llxf = x|
t=1
T

Z n M2 108k T,
=1

(C) (c3k)k/2C

where (a) holds because E [“121 I%_l] < E|lx, — x*||? as a result of Assumption 3.2.3, (b)
follows from Jensen’s inequality, (¢) holds owing to the (L?, (1 + logt) \/n_[)—consistency that
implies E[|x* — x*||* < C]’c‘n,k/ 21og" T. The last inequality together with Proposition 3.4.3

implies that
1 1
|Tr) y T TR
d(y, ) <|E sup ZG Ui =0 \/ECk- _Z 1
0<i<T | \/T ‘S T =
For Recall [Tr] g7 G-1 i = * Ey— *
v4, Recallthaty,,(r) 1= \/_Z 0' G 'u,, withu,, = U(x™,&)-PU (X", &_))

and w(r) := 0'G~'S2W (r). We will apply Theorem 3.4.1 to bound the Lévy-Prokhorov
distance between them. Since Theorem 3.4.1 holds only for 0 < § < 3/2, we denote §' =
oA (% — o(1)) for very sufficiently small 0(1).®

First, the quadratic variation process of 4 , is given by

[TrJ [TrJ
(wi,(0), = Z[E[(OTG ", ) F ] ZOT “E[u,u],|F,_,1G7T6. (D.8)
t=0

(1) We can always set the term o(1) as small as expected, which is the reason we denote it by an infinitesimal o(1).

174



Appendix D Omitted Proofs for Theorem 3.3.5

Second, note that the partial-sum process y 4 , is cadlag (that is right continuous with left limits)
with all discontinuous points given by {#/T'},¢1;- Hence, its corresponding dual predictable
projection is the point measure in [0, 1] X R (similar to the definition of the Poisson point

process) and thus we can compute the following integral and obtain

1 T ,
2428" 0 _ 1 T ~—1 2426 2425 s’
[E/O /R|x| I"(ds, dx) = [Ezo:m 107G 'u,, <cHPT?, (DY)
1=
1
where Cy, = G~ - sup,zo([Ellu,,zllp)E < oo due to Assumption 3.2.2.

By Theorem 3.4.1, it follows that

' 3

~ __6
dp(0 w4, ,,0" ) =0T %% + |E sg)pl]|<w4,2(->>r—<w<->>,| : (D.10)
rell,

The second term in (D.10) is the expected supreme absolute difference between the quadratic
variation processes of w4, and y over the fraction r € [0,1]. We analyze that term in

Lemma D.2.3 whose proof is deferred in Section D.5.

Lemma D.2.3. Rewriting p = 2 + 26 with p given in Assumption 3.2.2. For simplicity, we
denote by

q_) =E[0TG u )| F_y|  with u,, =U*&) - PUGESE).

Under Assumption 3.3.3, Eq(§,) = 0'G'SGTO forallt > 0. Then

t
> (&) - E;q(&)}
i=0

o (Vi)

E sup
t<T
where O(-) hides factors depending on ||G™'||, Cy,k and supgcg P H(x*,&)|>.

Using the notation in Lemma D.2.3, we denote g(&,_;) :=E [(OTG_lu,’z)zlff,_l]. Then

the quadratic variation of 4 , can be expressed in terms of g(&,_;)’s as what follows

|T] [Tr]
1 _ 1
(w420)), = <_ﬁ z(; 0TG 1":,2> = > aE ).
1= r

=1

By Lemma D.2.3, we have Eq(&,_;) = 0'G'SGTOforallt > 1. Therefore,

1 n
Esup [{yaa0)), = (WON| <F sup ; {a-» - [Eq(é‘t_l)}‘
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+ sup

T
(l rl —r> 0TG- 'sGTo
rel0,1]

=0 tmix
T .

O
D.3 Proof of Lemma D.2.1
Proof of Lemma D.2.1. For the first part, it follows that
n+1 n Jj n+1
GD!+[[U-n@=> n [[d-n6+]][d-n6)
i=t Jj=t i=t i=t
n—1 Jj n
= i [ [ =06+ T =1,41G +1,., O [ [T - 1,6
j=t i=t i=t
n—1 Jj n
=> [ [T -G +[[d -9,6)
j:t i=t i=t
n
=G0 +[[d -n,6)
i=t
=G — 141G+ —n,G)U —n,,,G)
=1 -1G.
Rearranging the last equation gives
n+1
D! -G ' =—I-G'[]U-46.
i=t
n+1
It follows from 1 in Lemma B.7.1 that there exist two constant ¢y, ¢ > Osothat || [[( — n,G)|| <
i=t
2

n+1
o EXp {—c don } for all n >t > 0. We then complete the proof by triangular inequality.
i=t

For the second part, we bound the difference between A} | and Dj' as following

n J
ma L+ ey =) [ [T = 1,G)

”A?—l - D?”z =
j=t i=t o)
n j+1 J
<o+ i —m || [d -n6)
j=t i=t i=t 2
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(@) 2 e d

< 71;4"‘722’71' H(I_’LG)
j=t i=t i=t )

(b) 2cha

St Ta Z”IﬁlZﬂ,eXP —CZ'L

9o (n_y +1°71) = 60"

J
H(I - n,G)

where (a) uses ;_;—#n; < i_il-n,-_l < 20511,-_1% forn; = i""andi > 1, (b) uses |] t
1=

<
2

J n J J
Coexp{—cth} and ;. > n,for j+1>t,and (c) uses Y7, anexp{—czni} <
i=t i=t

=t i=t
fooo mexp(—cm)dm < co.

Finally, we comment that here we use polynomial step sizes that t~* with % <a <1 for

simplicity. It is possible to extend to general step sizes using a similar but more complicate

argument. [

D.4 Proof of Lemma D.2.2

Proof of Lemma D.2.2. The proof canbe viewed as a quantitative version of that of Lemma B.3.1.

We suggest readers should be familiar with the notation and proof idea therein before diving
into the details of this proof. At the beginning, we choose any p, € [2, p].

We first assume G is further diagonalizable. Recall the definition of &/ in (B.8). Similar
to (B.9), one can show that E|| Yh, [P0 < pop0cp 0 nh - By Markov’s inequality, it follows that
. < (e &

P(l®) < kz:% P <ﬁ > e) < ; E

1 i p°C3y  p"Cyyn
T T 2gb0 S ’722/2 = (Typ)Po/2epo”

Yhy,

Un

Po
Yhy

Un

where C3 | := ¢ - ¢, for short. On the other hand, by Lemma B.4.1, we know that for any

ke [n]ork=0,
D
popo Cé’o D OPo C3 ’02

(D.11)

T pPol2gpo T ppol2gpo’
where C3, 1= max{C; ;, C3} and C; is defined in Lemma B.4.1. We comment that though the
bound in Lemma B.4.1 depends on p rather than p,, one can repeat the proof therein to derive

the inequality (D.11). A shortcut argument can be used is to assume the noise defined therein
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has py-th order moments rather than p-th ones. Then (D.11) directly follows by replacing p

with py in Lemma B.4.1.

Putting these bounds together, we have that for any € > 0,

d (yr) < |]3’< sup .| > 25) Vv 2e

Osi<T ﬁ”t

<aevip( sup PN oo o) 4P
OsisT ﬁ’?t

n—1
<2V P+ P(A)
k=0

.y np"CsY [ L]

Since the last inequality holds for any » and €, we will carefully set » and € to make the bound
1

as small as possible. First, we set n = T~ so that = T 1)p0/2 as aresult of np = T77.
T

P02
Therefore,
- Po"Cs%
d(yr) 3ev T-®(e2-Dgpy
_(po2=1)(1-a) PO+l potl
Then, we lete = pyCs, - T "7 which ensures that € = T(lf@T%. As aresult,

_ (po2-DHd-a) I(1-a)

d(yr) $poCsn-T W S(1+1)-T 341,

where the last inequality is because we rewrite py = 2(1 + /) with0 </ < 6 and p = 2 + 26.

We then consider the case where G is not diagonalizable. The idea is similar to what we
did in Section B.3. Let its Jordan decomposition be G = VJV~! = Vdiag{J,,---,J,}V 1,
where V is the non-singular matrix and {J; } | ;< collects all Jordan blocks. Recall that {y, },
is defined in (3.24). Let , = V~ly,, & = V!¢, be transformed vectors. Then the recursion

formula (3.24) becomes

Vipr = —n D)y, + nE,.

Let (¥,), denote the k-th coordinate of the vector y, and so does (£, ), . The associated process

is denoted by
B (T+1)r P

ﬁn[(T+l)r |

178

Yr)e(r) = for r € [0, 1].



Appendix D Omitted Proofs for Theorem 3.3.5

Then it follows that

l3-lll =

~ d
||yz+1|| ||yz+1|| |(yt+1)k|
sup Z su
O ! T \/—”I +1 O<t§T ﬁ”hﬂ k=1 SS \/—’7t+1 k=1

which implies

U

d
dyr)=eVP(||yr]| 2e) sev) P (|||(§'T)k||| > 2) <d-Y _d((r)).

k=1 k=1
In the following, we will focus on each coordinate supreme |||(§T) K ||| Without loss of gener-
ality, we assume G is a matrix of Jordan canonical form, that is, J consists of only one Jordan
block (B.5).

Note that the last coordinate process evolves as (¥,,1); = (1 —=n,4)(¥,),+n,(€,),. By what
has been established early in this subsection, we have d p)y) SA+D-T™ (31+21) We are going
to finish the proof by induction. Suppose that we already have d((¥7);) S (1 +1) - T_l(3]+;201l) for
the coordinates i = k, k + 1, ---, d, we will show d ((J7)k—1) is also bounded by that quantity.
Using the structure of J in (B.5), we have

G )i—1 = A= An)(Fi—1 = 1(F) + 1€y (B.6)

To facilitate analysis, we construct a surrogate sequence {(y,);_;} defined by y, = 0 and

s Di—1 = A = An)(Fi—1 + 1€ je—y- (B.7)
Again, we have

L _l0-a) _ (y )
G S A+ - T~ 500 with Gp)e(r) = — DK o e [0, 17.

ﬁ”l L(T+1)r|

LetA, := W1 =3ket e their normalized difference. From (B.6) — (B.7), it follows that

"y

- L=dnym, . nf (3
i, _ A= dndm 2 M Ok

i1 M1 ur

There exists an ¢, such that |m| <1-0.54y, for any t > ¢,. In this case, for any ¢ > 1,

A

ur

A1 <A =054y, - |A,| + 27,

b

by which one can show the following inequality by induction

~ 4
sup A, ] < - -m {|A |,
to<t<T t0<t<T
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One can also show that there exists a constant C3 3 > 0 depending on #y, 4 and {#,}<<, such

that 3
(yt)k
no|

sup |A, | <Cs3- sup
0<r<ty 0<r<ty

As a result, we know that
1

— sup |A| 3 —
\/_0<t<T " \/T 0si<T

(S’t)k
; '

which implies

oE o R VN (s P

dAr) Sd((r)) SA+1)-T 3+2 with (Ap)(r) = r e [0,1].
T

Finally, we complete the induction by noting

I(0-a)

dGp)iy) < 2dGpy) + dA) S A +1) - T 521 .

D.5 Proof of Lemma D.2.3

Proof of Lemma D.2.3. Let M = sup;cx \/9’ | H (x*, &)||2. From Assumption 3.3.3, we have
M < oo. By Lemma 3.2.2, it follows that

U(x*,&) = H(x*,&) + PUX*, &) and sup ||PU(x*,&)| < Cy.

EeE

Therefore, we have

sup P||U(x*, )| < sup2 [P H(x*, )| + | PUx*, &)|I?] < 2(M* + Cp).

ée= ée=

The last equation implies

Elllu, 1’1 F_ i1 = E[IU(x*, &) — PU (x>, &_DII*|F,_i]
<ENUGH EIPF] = PIUGS E_DI* <2M?* +CF)

is uniformly bounded. As a result,
q¢_) :=E [(0TG u, »)*|F 1] <20011Z11G P (M + C}) (D.12)

is uniformly bounded and thus has any /-th order moment where / > 0. For simplicity, we set

X; = q(&). From (D.12), we know that the sequence { X, — EX,},5( has uniform bounded
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1 + [-th order moments for any / > 0. We denote its centralized L, ;-norm by
M . EIX. —FEX 1+ IL-H _ E —F 1+/ IL-H
141 -= Sup(E|X, T = sup(E|g(&,) — Eq(E)1 )+
>0 10
On the other hand, since we assume &, ~ =, then &, ~ 7 and thus

Eq() = Ezoperopes[(0T G (U*. &) - PUE*.£))*1=0"G'SGT0.

For simplicity, we denote ¢* = T G~'SG~T6. Our target quanitity is

Z(X ~EX,)|,

where the expectation E(-) is taken with respect to all randomness. To that end, we will make

E sup
1<T

Z{q(é) [Eq(é‘)}‘ = Esup

use of moment inequalities for fast mixing random variables in Lemma D.5.1. Before starting
the analysis, we first introduce additional notations and preliminaries. We denote a given one-
dimensional random variable X € R by O x(-) as the quantile function of | X|. It is the inverse

of the function x — P(|X| > x), defined by O y(u) = inf{x : P(|X| > x) < u}. We present

a useful tail bound for Q(u) := sup;»o Qx _gx, () which mainly follows from the Markov
inequality.
1 1+/ 1
O < | —supElq(¢) - Eq(&) W | =M u" ™ forany!>0. (D.13)
Ur>0

For a sequence of real numbers {a, },5(, we define by the function a~(u) the counting function

on the indexes #’s on which a is larger then a given input u, that is, () := Yoo Ly <a,-

Definition D.5.1 (a-mixing coefficients). Given two o-field o and B, the strong mixing co-
efficient between them is defined by

a(el, B) :=2sup{Cov(ly,1p): A€ 4,B € RB}

where 1 4 is the indicator function of the event A and similar is 1.

Definition D.5.2 (Strong mixing coefficients!!’#)). Ler { X,},., be a sequence of real-valued
random variables. Set 3‘7]1 =o({X;};<x) and 3‘71“ = o({X;};>))- The strong mixing coefficients

of { X, };s¢ are denoted by {a,},5( with definition as what follows

971 o u

Frs) Jorany 121

ay=12 and a, = Zlelp a(

Lemma D.5.1 (Theorem 6.3 in Rio [!7?1). Let {X,},. be a sequence of real-valued and cen-
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tered random variables and {a,} 5 be the corresponding strong mixing coefficients. Suppose

that, for some p > 2, sup,so E| X;|? < co. Then with S = Zle X;, we have

b
2

n n 1
[E( sup |Sk|”> <a, ZZ |Cov (X, X)] +nbp/ [oc_l(u)/\n]p_1 O”(w)du,
0

Isksn i=1 j=1
where

Q :=suwpQy. a,=pd*'(p+ 1" and b,= ﬁwl(p + 1L
>0 -

Lemma D.5.1 replies on the concept of strong mixing coefficients which we introduce in
Definition D.5.2. By Lemma D.5.2, we know that the the strong mixing coefficients of {£, },
is mixing exponentially fast. With this result, we can compute the bounds in Lemma D.5.1 as

follows.

Lemma D.5.2 (Fast mixing). Under Assumption 3.2.4, the strong mixing coefficients of { &, },5
vanishes exponentially fast, that is, o, < kp' with k > 0 and p € [0,1) given in Assump-
tion 3.2.4.

We first compute that for any i < j,

(@)

= E [(X; - EX)E[X; — [Ele.%]]
b ..
2 EX, - EX)(P/7 X, —EX)
=E[(X; - EX)) (/7' X; — q*)]
(© - .
< E|X; - EX;| - xp’/ Slg}plq(f)—q |
< KMlMoopj_i’

where (a) uses the law of total expectation and the notation & = o({¢;},;), (b) uses the

equality E[X ;| %] = PI7IX; due to the Markov property, and (c) follows from Lemma 3.2.1.

Therefore,
T T T
D ) ICov(X, Xl =) EIX; —EX,[*+2 > |Cov(X,, X))
i=1 j=1 i=1 1<i<j<n

STM; +2pcM My, > p/
1<i<j<T
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T-1T-i-1
—TM2+2pKM1 002 Z o~
i=1 k=0
2pk M| M

<T <M22 + ) <T (M;+2cM Mt,). (D.14)

I=p
Now, we apply Lemma D.5.1 with p = 2 and obtain
2y2

E sup

t<T

<< Esup
t<T

Z{X —EX,) Z{X EX;)

2

Z Z |Cov(X;, X +T / a” WOw)*du

i=1 j=1

1 (o]
T (M7 +2xkM Mty ) +T /0 Y luca, | Q@) du
Jj=0

T (M2 +2cM 1y, ) + TZ / Qw)*du

A
INS

1
00 3
s{ 242k M Myt ) + 1+l 1+1TZ 1+’

= 1+1\? :
KTH 5 +
T (M2 + 2k MM tmlx)+mM1+,<T) T}

1
1 2 =, 14+1\2 2
< T2 {M2 + tix | KM M + T M2, (m)

(d) (e)
=< \/T(Mz2 + KT ik (MlMoo + Mozo)) 3 \/T(l + Inix) < \/Ttmix’

where (a) holds due to the bound (D.14) for the sum of covariance, and (b) holds due to the
-1

6—1
inequality (D.13), and (c¢) uses Lemma D.5.2 and the inequality that (1 - pm> < ﬁ%,
(d) follows by setting | — oo, and (e) uses the fact that7_;, > 1 whent;, > 0. [l

In the end, we provide the proof for Lemma D.5.2.

Proof of Lemma D.5.2. From Section 3 inl!7®l, we know that if {£,},., is a (not necessarily

stationary) Markov chain, then by the Markov property and an elementary argument,

a; = sup (X(O’(-’:k), 6(§k+t))~
keN
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By Definition D.5.1, it follows that
a(o(&y), 0(&y,) = 2sup {Cov(lfkeA, le ep): both A, B measurable} .

In the following, we fix k € N and two measurable sets A, B. For simplicity, we denote

Cov(lgens e, e) = ER(EDN(Shr) = ELA (SB[ (Ehi )| F ]
= E[h, (&) P hy(E)]

= E[h E)(P hy(E) — Bz ha@D] + ERy (&) - Ec_phy(&)
© ELh, ()P hy(E) — Eporha(ED)]
(b)
< ElR (D] - 1P hy(&) — Eenho(O)] < ElRy(EDI - kp" < K7,

where (a) uses Eh(§;) = 0 and (b) uses Lemma 3.2.1 and the fact that both A;(-) and h,(-)
are uniformly bounded by 1. Taking maximum over all k € N and measurable sets A, B, we

conclude that a, < kp'. O

D.6 Additional Experimental Details

Further details for Table 3.2 Each time we initialize x,, as a zero vector, set#, = d~0-2¢7090%,

and always abandon the first 5% iterates for a warm up. We set d = 10 and p, = 0.9 in all
experiments. The bootstrap method discards the first 400 samples as a warm up. According
to Ramprasad, Li, Yang, Wang, Sun, Cheng 431 we set the step size as n, = 0.75 - 17975 and
use B € {10, 100,200}.

Details bout Figure 3.3 The random MDP is generated in a similar way as/*!]

. In particular,
for each (s, a) pair, the random reward R(s, a) ~ /4 (r(s, a), 1) is normally distributed with the
mean r(s, a) sampled from [0, 1] uniformly initially and the transition probability P(s’|s,a) =
u(s’) Y, u(s), where u(s) H 2 (0,1). We choose the MDP size to be |§| = |&/| = 5 and
y = 0.6. More iterations are required to conduct statistical inference in larger MDPs with
larger y. We choose a zero initial Q-value function. We abandon the first 4000 iterates as a
warm up and use the following 50000 iterates to conduct statistical inference. We repeat the
process for 200 times and use the polynomial step size n, = (¢ + 1)7%°! and zero initial point

each time.
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Details bout Figure 3.4 We abandon the first 3000 iterates as a warm-up and use the fol-
lowing 40000 iterates to conduct statistical inference. Here we set d = 5. Both a and x
are initialized as zero vectors. Larger d requires more iterations and more carefully parameter
tuning to produce comparable performance. We set the step size as n, = 17039 for all the
experiments in this figure. The target parameter is @' x* where 8 = (1, ---, 1)/ \/E e R? and

x*’s coordinates evenly spread in the interval [0, 1].

Details bout Figure 3.5 The problem dimensionisd = 5 where both a(, and x, are initialized
as zero vectors. The target parameter is ' x* where @ = (1,---, 1)/ \/E € RY and x*’s
coordinates evenly spread in the interval [0, 1]. For experiments in the first row, we abandon
the first 3000 iterates as a warm-up and use the following 50000 iterates to conduct statistical
inference. The step size n, = t~%. For experiments in the second row, we again abandon
the first 3000 iterates as a warm-up and use the following 50000 iterates to conduct statistical

= p0501

inference. The step size 7, . For experiments in the last row, we again abandon

the first N iterates as a warm-up and use the following 50000 iterates to conduct statistical

inference. The step size 7, = t~-201.
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