W H: LazySVD: P ar R {E 7

firt
W A 2
COE= 1400010650
e A& HERFEFR
Lk %3t 2
527 1] : LS 5
£ - K E A

—O—NF=~H

LazySVD: il ay {5 720

S Gl
SIS A

2

FERXFR SO, AT EZH WS KAREUR 7 ZH R k-SVD. 4k, 31197
TR SR AR R KRR A 52 Y Shift-and-Tnverse HEZE, $RJ5 k (Al %
HEZRSRAR AR U 7 Z2 36 R R k MRFIER) B, X7 IEFR N LazySVD.

£ Shift-and-Inverse HEZEHT, AT B ME— 1 AE B B85 1A A SR e
PSR AR R S/ MEL T 0 75 12 P LA PR SR X . T2
AV T WE A RBENLOCA P 21 T EAER I ENE, TANRI SB2K A
Zh BRI R MER T RE AT, BIFTA194T T LazySVD fEAREEE T
HIE R

Ko : wrE M, U, BENULIL, Wik

LazySVD: Fast Singular Value Decomposition

Xiang Li (Statistic)
Directed by Prof. Zhihua Zhang

Abstract

In this paper, we aim to solve the k-SVD of the covariance matrix of collected
data. For that purpose, we introduce the Shift-and-Inverse framework which prod-
ucts the top eigenvector of the covariance matrix based on traditional power method
and then conduct it repeatedly for k times to output its first k& eigenvectors. This
seemingly most-intuitive approach is called LAZYSVD.

In the process of Shift-and-Inverse, the originally existing matrix inversion is
replaced by minimizing a specific convex function, which could be solved by var-
ious convex optimization at a faster calculating speed. For that sake, two group
optimization methods have been introduced, namely the deterministic optimization
and the stochastic optimization. In the end, we analyze the total computation com-
plexity of different algorithms to approximate the minimizer of that specific convex

function and then that to output k-eigenvectors in LAzYSVD.

Keywords: k-SVD, convex optimization, stochastic optimization, power method

I[ntroductiod

I%—jﬁ The Shift-and-Inverse Framework for 1-SV]j

|1.1 Introductionl

........

I%:Jﬁ The choice of optimization oraclel

|2.1 Definition of convexityl

|2.2 Optimization methodsl

|2.2.1 Accelerated Gradient Descent (AGD)l

|2.2.2 Stochastic Gradient Descent (SGD)l

|2.2.3 Stochastic Variance Reduced Gradient (SVRG)'

|2.2.4 Stochastic Average Gradient (SAG)l

I2.3 Katyusha XI

I%EE The LazySVD Framework for k-SV]j

I?).l High-level ideas about LazySVd

I3.2 Analysis of LAZYSVDl
I3.3 Main Results for k—SV]j

onclusio
Refference

11
11
12
13
14

16
17

21
21
21
24

25

30

|Acknowledgemend

Introduction

Principal component analysis (PCA), invented by Pearson[l] and then devel-
oped by Hotelling[2], is a statistical procedures aiming to finding a linear combina-
tion of observed data which has the largest variance in all possible combinations.
Usually an orthogonal transformation is used to convert a set of observations of
possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components. Principal components are widely utilized in feature
generation, data visualization.

For data given as a set of n vectors in R?, xy,2s,--- ,2,, denote X as the

h

matrix form data whose i row is the transpose of i*"* data point \/Lﬁxz and A as

the normalized covariance matrix A = X*X = 13" 227 The PCA find the
k-dimensional subspace where the projected data has largest variance. Formally,
denoting W € R¥* as the orthogonal projection matrix, we can formalize PCA as

the following optimization problem

a AW |2 1
WeRdg},I/I}/{TW:IH 17 (1)

where || - || is the Frobenius norm. This is a non-convex optimization even in the
case where k = 1.

PCA can be solved explicitly by the singular value decomposition (SVD) of
the data covariance matrix A. Generally speaking, for a rank-r matrix A € R"*¢
has such decomposition A = VXU?, where V € R™", U € R™9 are two col-
umn orthonormal matrices and ¥ = diag{oy,--- ,0,} is a diagonal matrix with

non-negative entries decreasing listed on its diagonal. By Eckart—Young—Mirsky

JEHOR AR A Bk i 3L

theorem, the solution of problem (m) is
F =WV A=VEU!

where Vi, Uy are the first k columns of V and U, ¥ = diag{o1, -+ ,0%}.

Traditional algorithms to compute SVD essentially run in time O(nd min{d, n}),
which is a quite expensive under big data scenario. Allen-Zhu [3] summaries the
performance among different recent methods solving k-SVD. We list them in Table
1. The first gap-free running-time result is obtained by Musco and Musco[4] by sub-
space PM and block Krylov. The first stochastic running-time result is achieved by
Shamir [5]. But his method not only depends on eigenvalue gaps, but also requires
a very accurate warm-start, which would take a long time to compute.

In this paper, we give other based on the algorithmic framework in[3] to solve
k-SVD. It not only improves the aforementioned breakthroughs, but also relies only
on simple convex analysis. The remainder of the paper is organized as follows. In
Chapter 1, we introduce and analyze the Shift-and-Inverse framework for solving
1-SVD. In Chapter 2, we introduce two groups of optimization methods namely the
deterministic optimization and the stochastic optimization. Specifically, we detail
the recent accelerated stochastic momentum optimization method Katyusha X°.
In Chapter 3, we give a framework of LazySV D and analyze the total complex-
ity in cases where different optimization referred in Chapter 2 are applied in its

optimization oracle.

AEHCRZE AR A Rl A8 3

Introduction

Algorithms Running Time

GF Running Time

subspace PM [4] O(M:sz(m + I;ZZ)

block Krylov [] O(kmmetd) 4 Kd 4 1)

O(Hat + 54+ 37

gapl/2 gap gap3/2

Shamir [5] O(knd + 4gap1/2) -

A [knnz(A) k2d A [knnz(A) k2d
+ FGD O (At 4 £4) O (Lt 4 £4)
+AGD [O (hmmstd) 1 2.) O (A 4 124)

~ d kd
+ SAG O (L) O (%)
+ SVRG O (k-nnz(A) + K+ J4) O (k- nnz(4) + k*d +)
+ accSVRG [3] 9] (knd + %) O (knd + 1611;:/?72)

+ KatyushaX?®

gap

nz(A) + k*d + 2222

1/2

9) <k: ‘nnz(A) + k*d + kﬁ—i?))

x£ 1:

(O'k—O'k+1)/O'k c [0, 1]

Performance comparison among direct methods.

Define gap =

GF means the running time if free of gap. We call a al-

gorithm means the gradient used for updating is a unbiased estimator of full gradi-

ent. Here LazySV D+ SAG,+SV RG, +accSV RG, + KatyushaX?® belongs to this

stochastic group. Stochastic results in this table are assuming ||z;[|2 < 1. We call a

algorithm accelerated if the dependence on gap or ¢ of its running time is gap~/? or

/2. Here block Krylov, LazySV D + AGD, +accSV RG, + KatyushaX® belong

to the accelerated group. The three five items are from previous work and the last

six items can be deduced from this work.

JEHOR AR A Bk i 3L

5 —2% The Shift-and-Inverse
Framework for 1-SVD

1.1 Introduction

Traditionally, the power method solves the top eigenvector of matrix A converge
in O(log(d/e)/gap) iterations, where gap = (A1 — A2)/\; and \; denotes the "
largest eigenvalue of A. We will use this notation till the end of the paper except
specifically stated in certain sections. It is quite unsatisfactory when the gap is

quite small.

In order to get free of eigenvalue gap, we aim to solve k-SVD by power method
modified by Shift-and-Inverse framework. The framework is a combination of tra-
ditional ideas, namely the shifted power method and the inverse iteration[G]. The
former applies power method to shifted covariance matrix A 4+ ol and the later
choose (A — oI)™! as the counterpart. Unlike these two methods, here we choose
(M — A)~L. If A > \;, we can see the top eigenvector of B is equal to that of A,
but the new gap has become % As long as A is sufficiently close to A;, there
will be constant gap such that power iteration only needs O(log(d/€)) to converge,
which is gap-free.

However, after we can get rid of gap dependency in the iteration, here comes

the problem — matrix inversion. Dan Garber[[7] proposes to solve the linear system

Max = b via convex optimization, i.e. to find the minimizer of the convex function

1.1 INTRODUCTION AR AR A Bl S

F(z) = %xTM x — bT'x instead of inversing matrix directly. Recent stochastic opti-
mizers could be applied to solve it, here we denote such algorithm as A. We will
discuss what kind of A need to be chosen in next chapter. Therefore, in order to
obtain the computation cost of a e-tolerated solution, we only need to figure out

how many times A has been called.

We list the pseudo code in Algorithm E], which is referenced from [3].

Algorithm 1 ApPxPCA(A, A, 4, ¢,p)

1: Input: A, an approximate matrix inversion method. A € R¥?¢ a covariance

matrix satisfying 0 < A < I; 9, a multiplicative error; e, numerical accuracy
parameter; p € (0, 1), failure probability parameters.

2: Setting parameters: my < TPM (8, 35, p), my <= TPM(2,5,p), & + 77
€ 5= (2)™.

3. Initialization: w0, < a random unit vector; s <= 0; A9 < 1 4+4.

4: repeat

5 s+ s+1

6: fort=1..m; do

7: Apply A to find by s.t. ||, — (AU — A) 7l || < &

8: end for

9 w4 IIZ—:iH

10 Apply A to find v s.t. [[v — (NI — A)~lw| < &

11: Update parameters: A(®) % p— o A6 N1 %

wlv—é

12: until A®) < %

13: f s

14: for t = 1...ms do

15: Apply A to find iy s.t. ||, — (ADT — A)~hd,_|| < &
16: end for

Wi

17: return wy < =
[|[my ||

Jbrik2e AR EE S 85— THE SHIFT-AND-INVERSE FRAMEWORK FOR 1-SVD

1.2 Analysis

Denote M, = (A\®=Y] — A)~! and when analyzed, the subscript s of M, will
be omitted for simplicity. The inner loop deals with finding the top eigenvector of
M. The classic power method to do that thing will first find a random initial unit
vector wy and then applies w; < H%Zﬁ iteratively. Lemma () states that

only TPM(k,e,p) iterations are needed to obtain an e-approximate solution with

probability at least 1 — p.

Lemma 1.2.1 (Exact Power Method). Assume M is a PSD matriz with non-
increasing eigenvalues \y > o > -+ > A\g and their corresponding eigenvectors
Uy, Us, -+ ,uq. Given an error tolerance ¢ > 0, approximation-control parameter

k > 1, and failure probability p > 0, let

T (5.c,) = Tgtog S5)]
Then, with probability at least 1 — p, it holds that as long as t > TP (k, ¢, p), we
have
Z (w]u;) < e and ththZ(l—%—e))\l
i€ld], A\ <(1—2)\

However, in order to avoid matrix inversion, exact power method would be
replaced by inexact power method, just like what we do in Algorithm El In each
inner loop, we only calculate a é-approximate of the product of inverted matrix
()\(5_1)[— A)7! and last result w, ;. After sufficient iterations, namely m;, we
normalize w,; and regard it as the approximate top eigenvector of ()\(5_1)[— AL
Lemma ([1.2.9) states how the accumulated error grows during inner iterations,

which we can utilize to control the ultimate error.

Lemma 1.2.2. Denote the sequence of iterations in Exact Power Method as w},
Mwi_,

Nk and the sequence of iterations in Inexact
t—1

which satisfies wi = wo, w; =

-7 -

1.2 ANALYSIS AR AR A Bl S

Power Method as w; = H’w‘:’—ZH, ||wy — Mwy_1]| < €. Then define

> [t if A =1

DM, t)=—1{
))\2)\1_1])
Lo M A

it satisfies that
[we —wi]| <€ -T(M,1)

Based on lemma (), we can get a similar converge result in Inexact Power

Method case, we list it in theorem . The proof of theorem and lemma

see [3] and the proof of lemma sees [[7].

Theorem 1.2.3 (Inexact Power Method). Assume M is a PSD matriz with non-
increasing eigenvalues A\y > Ay > -+ > Ag and their corresponding eigenvectors
Uy, Us, -+ ,uq. Given an error tolerance € > 0, approximation-control parameter
k > 1, and failure probability p > 0, then, with probability at least 1 — p, it holds
that for every e € (0,1) and every t > T"M(k, <, p), if wy is generated by Inezact

Power Method with per-iteration error € = O then

1
Z (w]u;) < e and wi Mw, > (1 — = —e)\
i€ld], X\ <(1—2)x :

Now we have figured out how error each inner loop will bring. Let’s focus on
the outer loop. In each outer loop, after calculating an approximate top eigenvector

of (AN — A)~! we then calculate A®) and shrink A() based on it, since A®

measure the how far A~V is away from ;. By carefully choosing the parameters

in Algorithm m, 6 < 32F((/\(S,1)17M)_1’m1) for each s and é; < 4= e which

1
(A —M)=tm
guarantees that w; generated by Inexact Power Method is with per-iteration error .
The way A®) computed satisfies 0 < % < AB) < \6=D _)| for each s, which
results A¥) — \; couldn’t lie out of [%)\(f), dA1] when setting s = f. Putting all the

results together, we can give analysis about how accurate the output of Algorithm

m in theorem is.

-8 —

Jbrik2e AR EE S 85— THE SHIFT-AND-INVERSE FRAMEWORK FOR 1-SVD

Theorem 1.2.4 (Approximation under Shift-and-Inverse framework). Let A is a
PSD matrix with non-increasing eitgenvalues \y > Ao > -+ > \g and their corre-
sponding etgenvectors uy, us, - -+ ,uq. Given an error tolerance € > 0, a multiplicative
error 0, and failure probability p > 0, then with probability at least 1 — p, the output
w produced by Algom'thm@ satisfies

Z (whu;)?* <e and w'Aw > (1 —0)(1 —)\
i€ld],\i<(1-0)A\1

Furthermore, the total number of oracle calls to A if O (log(%)ml + m2) and each

12

. M) 12 1
time we call A, we have < == and M A S

/\min(/\(s>]_A) -9

In theorem , conclusions about A rather that M are given, since this
theorem is produced after the whole framework is analyzed. If 0 < § < ’“A;K‘Q, then
lwTwl|> = 1=3" i a<asn (WTw)? > 1—¢, indicating w is a good approximator.
Therefore, the result that w? Aw is not far away from \; is easily deduced.

In order to analyze the arithmetic complexity of Algorithm EI using a specific
implementation for the optimization oracle A, it is not only important to bound
the number of calls to A (as done in Theorem), but to also bound impor-
tant parameters of the optimization problem that naturally arise when considering
the arithmetic complexity of different implementations for A. For this issue, we
should next introduce the concept of convexity and smoothness and then various

optimization methods.

1.2 ANALYSIS

JEHOR AR A Bk i 3L

— 10 —

% % The choice of optimization

oracle

2.1 Definition of convexity

Often the complexity of A outputting w; has some dependency on conditional
number . To give the definition of conditional number, the smoothness and strong

convexity of the loss function should first be defined[g].

Definition 2.1.1. Function f(x) is said to convez, if for all z,y € R? and Vo €
[0, 1], it holds that

flar + (1 - a)y) < af(r) +af(y)

Definition 2.1.2. Function f(z) is said to be L-smooth, if f(x) is derivable and
for for all z,y € RY, it holds that

Vf(x) =V (y) < Lz -y

Definition 2.1.3. Function f(x) is said to be o-strong convexz, if for all z,y € R?,

it holds that
F) = F) + (VF)x =)+ Zlle =yl

If a loss function f is both L-smooth and o-strong-convex, then its conditional
number is defined as k = é Therefore, when we decide to choose the Algorithm A,

its running cost should have less dependency on k.

2.2 OPTIMIZATION METHODS AR AR A Bl S

Lemma 2.1.1. Let A\, w be such that during the run of Algorithm B, the optimization

oracle A is applied to the minimization of the function
L o T
Fua(z) = 57 M —A)z—w 2.

Then, under the conditions stated in Theorem it holds that F,\(z) is (A —
A1) = Q(d)-strongly convex and for all i € [n] it holds that the function f;(z) =

22PN — zzl)z — w2 is 14 6 = O(1)-smooth.

2.2 Optimization methods

In our case, inverting a matrix is equivalent to minimizing a convex function
Fy(+). Various stochastic optimization techniques can be applied to solve it. In
this chapter, we want to approximate matrix inverse by convex optimization. We
first give the definition of our problem, and then introduce some classic or famous
algorithms. These algorithms could be categoried into two groups, one being the
deterministic optimization and one being the stochastic optimization. In the former
group, the full gradient descent (FGD) and accelerated gradient descent (AGD) will
be introduced, and in the later group, stochastic gradient descent (SGD), stochastic
variance reduced gradient (SVRG) and stochastic average gradient (SAG) will be
detailed.

Problem Given a d x d matrix M > 0 satisfying A\l — M > ul for some constant

A and p > 0, one can minimize the quadratic
Fu(x) =27 (M — M)z — w", (2.1)

in order to invert (A —M)~1b, i.e. to find a solution x such that ||z — (A —M)~1b| <
e for some prescribed €. Our problem is how to find a ’good’ algorithm to give such

x.

— 12 —

bR AR E RS % THE CHOICE OF OPTIMIZATION ORACLE

2.2.1 Accelerated Gradient Descent (AGD)

Full gradient decent (FGD) is a classic first-order optimization method. For the
function F, »(z) to optimize, FGD updates the parameter by moving the parameter

towards the steepest direction on the empirical loss surface, i.e.
Ty 4= T — NV Fya(2421) (2.2)

where 7 is the learning rate. Classic convex optimization[8] shows that in our u-
strong convex case, FGD finds an e-approxiated minimizer of (@) in O(ﬁlog%)
iteration, each requiring O(d) time plus the time needed to multiply M with a

vector. We could regard % as the condition number of function @

Lemma 2.2.1. FGD produces such an output in O(%log%) iterations, each re-

quiring O(d) time plus the time needed to multiply M with a vector, i.e.

9) ((d + nnz(M)) %log%)

Nesterov accelerate scheme, which we call Accelerated Gradient Decent, could

reduce the needed iteration number to O(i‘;—glogﬁ), which has better dependency

on condition number. AGD updates parameters in the next fashion

1
Yt < Tg—1 — XVFw,A(x)
(2.3)

T = (L= Y1)y + Ye-1Ye—1

where {7;}—o satisfies v, = b:—flt, and 6, =0, 6, =

TV v12+49§,1 following [9].

Further, we have the following lemma.

Lemma 2.2.2. AGD produces such an output z in O(iiglog%) iterations, each

requiring O(d) time plus the time needed to multiply M with a vector, i.e.

AN
O ((d + nnz(M)) mloga)

— 13 —

2.2 OPTIMIZATION METHODS AR AR A Bl S

2.2.2 Stochastic Gradient Descent (SGD)

If VF, x(x—1) is replaced by some subfunction V f;,(x;—1) at iteration ¢, where
i; is uniformly and independently drawn from [n] := {1,2,--- ,n}, we obtain the
most practical optimization method, stochastic gradient descent (SGD). Often gra-
dients estimated by only one subfunction will have large variance. One can take
the place of Vf;,(x;_1) by B% > icn, Vfi(xi-1) to lower the variance, where B is a
random set of b different number uniformly drawn from [n]. We call this kind of
SGD as minibatch SGD, which has been proved to enjoy linear convergence rate
just like FGD[10]. Specifically, for our problem, SGD will give an e-approxiated
minimizer of (El]) in O (ﬁlogﬁ + "TQd>, where o2 is the variance of the gradient

estimator.

Recently, there outbursts plenty of SGD variants aiming to adjust learning
rate 7 automatically. We list some famous here. AdaGrad[l1] pointwisely nor-
malizes learning rate by the square root of accumulative second moments, while
RMSProp[[12] dose the same thing by the moving average of the magnitudes of re-
cent gradients and accumulative ones. Adam[13] bases on adaptive estimates of first

and second order moments to obtain an unbiased estimator of gradient.

Another famous question is whether SGD could be accelerated in the way
FGD modified to AGD. Actually, existing results show AGD not robust to de-
terministic noise ([14], [15]), but is robust to random additive noise ([16], [17]).
Stochastic approximation falls between the above two cases. [18] introduces an ac-
celerated stochastic gradient method that provably achieves the minimax optimal
statistical risk faster than SGD, which gives an e-approxiated minimizer of (@) in

O (i—’\logﬁ + @), where & is the statistical condition number. As we could see,

A

as long as kK K kK = o acceleration is possible.

— 14 —

bR AR E RS % THE CHOICE OF OPTIMIZATION ORACLE

2.2.3 Stochastic Variance Reduced Gradient (SVRG)

SVRG maintains a full gradient each outer loop and computes a single random
gradient each inner loop to reduce the large noise and further reduce the variance
of gradients. Theorem 1 in [19] proves that SVRG enjoys a linear convergence rate

and theorem B.1 in [[7] further proves that when F), (-) is o-strong convex and f;()

1

is L-smooth, then when setting n = O(%), then only m = 6<W

) inner iterations

need to obtain a e-approximate solution. To say it formally, we have

Lemma 2.2.3. Givene,p € (0,1), there exists a choice of n, m, such that Algorithm
@ﬁnds with probability at least 1—p, an e-approxiated minimizer of) in overall
time

0 ((nnz(M) + dﬂ—f)mﬁ)

Algorithm 2 SVRG(A, %g,n,m)
1: Input: z initial x; 7, learning rate; m, iteration numbers.

2: for s=1,2,... do

3. Initialization: & <= Zs_1, i <= VF, A\ (Z), 20 < T
4: fort=1,2,...,mdo

5: Randomly pick i; € [n]

6: rp < 1 — 0 (Vi (vi1) = Vi, (%) + 1)

7. end for

8 Ty = Z’;Bl T

9: end for

Here we assume different f; has the same smoothness coefficient L which could
be attributed to the uniform sampling of index 7 in each inner loop. If 8 could be

varied, non-uniform sampling could be applied just as what [20] did. In [20], index

12
1 is drawn with probability p; = %, and the corresponding results have some
k=1 2

modification of the dependency on {L;} ;.

— 15—

2.2 OPTIMIZATION METHODS AR AR A Bl S

What’s more, [21] proposed a universal framework to accelerate arbitrary gradi-
ent optimization in an almost black-box fashion, known as the Accelerated Proximal-
point algorithm. This method will use convex optimization to find an approximated

global minimizer of the modified function

~ 0 _
Fw,,\(:v) = Fw’)\($) + 5”.’13 — SL’H2 (24)
where 6 is the regulation parameter and z is the iterating result in previous loop.
By Theorem 3.1(rephrased by our needs) in [20], when fixing 6, there exist an accel-
eration scheme for Algorithm B that find an e-approximated minimizer of F, \(x)
after approximately minimizing 9) (, / "T’Le) instances of @ Therefore, we could

obtain an accelerated result

Lemma 2.2.4. Given e,p € (0,1), if p = 0(\/g), there exist an accelerated Algo-
rithm @ﬁnds with probability at least 1—p, an e-approxiated minimizer of @) n

overall time

M 3/4d1/4)\1/4 1
0 (nnz() log—>
Vi :
Sometimes 1 = o(\/g) is barely met. [22] gives an improved SVRG by replacing
the gradient descent with a proximal gradient. (line 6 in Algorithm a) Under mild

assumptions, it can achieve comparable results in the accelerated case.

Lemma 2.2.5. If M = A = 13" aTa; and |ja;|s < 1, then in expectation

there exists an accelerated version of SVRG (see for instance [24]) producing an

e-approxiated minimizer of @) in overall time

O A
@) (maa:{nd, T}log;)

2.2.4 Stochastic Average Gradient (SAG)

SAG[23] keeps maintaining a full gradient each iteration instead of computing

a new full gradient each outer loop like SVRG, which will reduce the computation

— 16 —

bR AR E RS % THE CHOICE OF OPTIMIZATION ORACLE

complexity. By incorporating a memory of previous gradient values, SAG method
also achieves a linear convergence rate[24]. However, the advantage of less compu-
tation is at the price of O(nd) space complexity, since for each data point should

maintain its current gradient.

Algorithm 3 SAG(A, zg,n,m)

1: Input: xg initial x; 7, learning rate; m, iteration numbers.

2: Initialization: fi <— 0,¢g; = 0 for Vi € [n].
3: fort=1,2,....m do

4. Randomly pick i; € [n]

5. i< i — Gy + Vi (2-1)

6: i, < Vfi,(x11)

T Ty T — Ll

8: end for

Applying the linear convergence rate in our problem, we have the following
lemma. In term of condition number, SAG fails to outperform AGD and SVRG,
where the power of Kk = ﬁ in the total complexity is no more than % However,
the case where the covariance matrix A is dense, i.e. nnz(A) is pretty large, would

favor SAG rather than others, since SAG is free of nnz(A).

Lemma 2.2.6. SAG produces such an output z in O(ﬁlogﬁ) iterations, each re-

0 (@logi)
poep

2.3 Katyusha X

quiring O(d), i.e.

From previous sections, we have seen that it seems hard to accelerate stochastic
algorithms, such as SGD. Though SVRG can outperform SGD in both convex and
strong convex case, how to accelerate it may not an easy task. Recently, Allen-

Zhu[25] proposes a new acclerated and stochastic method for minimizing (@) by

— 17 —

2.3 KATYUSHA X AR AR A Bl S

introducing a carefully-designed interpolation of gradient descent and mirror de-
scent. This method called Katyusha X. Actually this method can solve more
general problem, i.e. sum-of-nonconvex problem. Here we call a function sum-of-
nonconvex, if the function is actually a sum of nonconvex subfunctions but itself
still convex function. For example, function (@) belongs to that group, since each

fi(z) is smooth and non-convex, but their average %2?21 fi(x) is p-strong convex.

Algorithm 4 SV RGP (F, \, zo,b,n)

1: Input: F,n = = 3" | f;(x); starting vector zo; mini-batch size b € [n]; learning

rate n > 0.
2: Output: =™
3: for s=1,2,... do
4 Initialization: m < min{[%],2}; M ~ Geom(X); u < VF, \(x0)
5 fort=1,2,...M do

6: Let S; be b i.i.d uniform random indices from [n] with replacement
7. V¢ pu+ > ies, (Vi) — V fi(xo))
8: Tey1 4 argmingeza{ ||y — 2 + 277<6t7y>}

9. end for
10: Tt Thr+1

11: end for

To keep consistent with the notation in [25], we denote each f;(x) is L-smooth
(obviously here L = 1+ 6) and F,, \(z) is still g-strong convex. This method first
modifies proximal SVRG to SV RG' (Algorithm @, with some modification from
original version in [25]), and finds that up to a constant factor 2, the output of

SV RGP can be viewed as a fuull gradient descent with a virtual step length mm.

Specifically, if b € [n] is the mini-batch size and m = min{[7], 2} is the epoch
length of SV RGP, when n < min{%, QL%}, let 2+ = SV RG'P(F, , %o, b,n), then

— 18 —

bR AR E RS % THE CHOICE OF OPTIMIZATION ORACLE

for Vu € R?, we have

1 _ et
E [Fur(z?) — Fua(u)] < {—Ml\:ﬁ — xo]|? + <x0m77x ,To — U) — %Hm* — uHﬂ
Denoting G = %, then it satisfies that
m
E [Fun(@®) = Fua(@)] <[22I + (G0 —w) = Elle* —al?] 25)

In comparison, if a full proximal gradient descent with step length % is applied
yT « argmin,cga{L|ly — 2||> + (VFu,(y), 2)} and denote by G = L(y — y™) the

so-called gradient mapping, the classical theory[26] essentially tells us

2
By comparing (@) and (@), up to a constant factor 2, the output of SV RGP

B [Fur(y) — Fusl)] < |~ 1012+ =) = Bl —ulf] (26)

can be viewed as a fuull gradient descent with a virtual step length mn. We shall
later use SV RG' in a black-box way to obtain a gradient.

Then the Nesterov-kind interpolation could be applied to accelerate SV RG'P.
Specifically we want to apply

%yk + %Cl?k — (1= 7)yr
1471

(2.7)

Lh+1 =

as the new choice of momentum which is motivated by the linear-coupling analysis
of accelerated methods[27]. If one replaces the z; term on the right hand side of
(@) with yg, the original Nesterov’s momentum will be got. Such new momentum

is actually a special case of a general framework(@) of accelerated methods.

General Framework

Starting from zg = yg = ¢, then in each iteration k =1,2,--- , K — 1,

o Tpi1 — Trzk + (1 — 7)yx for some 74, € [0, 1];

o Y1 = SVRGY¥(F, ., r1,b,m) and let Gy = L he the gradient

mn

mapping;

o zpn ¢ argminera{ =z — 2 P + (Grr, 2) + G2 — yen|*} for some

(077N} > 0.

— 19 —

2.3 KATYUSHA X AR AR A Bl S

In the general framework, the first line is to interpolate two kinds of gradients,
one from gradient descent y, and another from mirror descent z,. The updating
for y;..1 is to implement SV RG'® to z,,, as a virtual gradient descent, and the
gradient mapping Gy, is the byproduct. z,,.; can be viewed as mirror descent
product with quadratic function as the Bregman Divergence.

_ Vymnp no_

If we choose 7, = 7 := Y—5— and apy1 = TS—T = 277, the general framework is

turned into Katyusha X. Specifically, after plugging parameters and eliminating
the sequence {z; },, the updating rule becomes
Sye + sk — (1 —)y
1+7
Yp+1 = SVRGlep(Fw,)\a Lk+1, b? 77)

Th41 <

Theorem 2.3.1. To find the minimizer of the function @), which is p-strong

conver and each f;(x) is L-smooth, then KatyushaX* with n = min{5, 2]3{/5%} and
7 =min{%, YE™} outputs a point x with E [F,, 5(z) — Fux(z*)] < € with

VLbn n?*/L 1
O((”WWH NNV)logz)

. TL1/4
In our case, setting b = 1, then n = © (ﬁ) and 7 = {%, S} (ﬁﬁ)}’ then
KatyushaX?® will output a e-approximate minimizer in the sense of expectation in

total complexity of (since L =1+ < \)

n3/4\/X A
@) ((nnz(M) + N) loga>

— 20 —

Sty —=

% =% The LazySVD Framework
for k-SVD

3.1 High-level ideas about LazySVD

LazySVD(Algorithm E) performs 1-SVD repeatedly, k times in total. Set Ay =
A. Specifically, at s round, LazySVD will first compute the leading eigenvector
of current data covariance matrix A,_;, then project it into the complement of the
subspace spanned by computed s — 1 eigenvectors, and last normalized it denoted
by v,. After updating A, ; by left-projecting and the right-projecting I — v o7,

repeat such loop until s reaches k.

3.2 Analysis of LazySVD

We state the approximation and running time core theorems of LAZYSVD
below, and then provide corollaries to translate them into gap-dependent and gap-

free theorems on k-SVD.

Theorem 3.2.1 (Approximation of k-top eigenvectors). Let A € A% be a sym-
metric matriz with non-decreasing eigenvalues 1 > Ay > -+ > Ay > 0 and
their corresponding eigenvectors uy,us,--- ,uq. Let k € [d],d,p € (0,1). Then
with probability at least 1 — p, LazySVD outputs a column orthonormal matrix

Vi = (v1,02, -+ ,v) € R™F satisfying all of the following properties, as long as €pea

3.2 ANALYSIS OF LAZYSVD AR R AR A Bl S

Algorithm 5 LAzZYSVD(A, A, k,0, €pea, D)

1: Input: A, an approximate matrix inversion method. A € R¥?¢ a covariance

matrix satisfying 0 < A < I; k € [d], the desired rank; §, a multiplicative error;
€pea, NUMerical accuracy parameter; p € (0, 1), failure probability parameters.

2: Initialization: Ag < A, Vy « ||

3: fort=1to k do

4 v, + ApprPCA(A, A,_1, g, €pcar 1)

s v (1= Vi VIO /I (T = Ve VIO |

6: Vi< [Vio1, v

7. A+ (I — vzvs) A (I — v?vs)

8: end for

9: return Vj

satisfies corresponding conditions. Denote by Ay = (I — V;VIA(I — Vi, VL),

1. Approximate orthogonality guarantee: Ife,., < — 0% then IVIU| <

212k4(§l)2’

€, where U = (uj,- -+ ,uq) is the column orthonormal matriz and j is the small-

est index satisfying A\; < (1 —0)||Mg_1]|2-

. 56
2. Spectral norm guarantee: If €,,, < W’ then Apy1 < || Mygll2 <
Ak41
-6 -
3. Rayleigh quotient guarantee: If €,,, < ﬁ, then (1 —0)A, <
N1
v%iﬁlkvk f; f%%.
4. Schatten-q norm guarantee: For every q > 1, if €peq < %, then
M1

1Mylls, < (22)% (D00, AV,

1-46 1=k+1

Theorem gives theoretical guarantees of convergence of LAZYSVD from
four aspects, among which is of importance the first guarantee since it makes sure
that outputs produced by algorithm B approximately lie in the top-k eigenvector

space and other guarantees could be deduced from it. Detail proof sees [3].

— 9292 —

bR AR E RS =% THE LAZYSVD FRAMEWORK FOR K-SVD

Remarks The Schatten-q norm of arbitrary symmetric matrix B € R**? is de-
fined as || B|ls, = (L, A)Y4 where \; is the i largest eigenvalue of B. The
Schatten-q norm is reduced to the Frobenius norm when ¢ = 2 and reduced to
spectral norm when ¢ = co.

Below we state the running time of LAZYSVD.

Theorem 3.2.2 (Running time or computation complexity). Following the notation
in theorem) and setting A = %ZL zixl, LAZYSVD can be implemented to

run n time

O <%A)+’f2dlogi> if A is FGD;

O (Bt ion L) if Ais AGD;

O (Mlogs) if Ais SAG ;

O ((k-nnz(A) + k*d + 5) logs) if A is SVRG ;

@) <<k ~nnz(A) + k*d + kg/;)) logé) if A is KatyushaX®;

O ((k’nd~|— k2)) logé) if A is accelerated SVRG and ||zl < 1 for
S

)\i/451/2
Vi € [n].

Proof. We call k times AppxPCA, M, | = (I-V,_ VL)M(I-V,_1V.I'}) can be fed
implicitly into AppxPCA each time thus the time needed to multiply M, ; with
a d-dimensional vector is O(dk + nnz(M)) or O(dk + nnz(A)). Here, the O(dk)
overhead is due to the projection of a vector into V;-,. This proves the first five

running times using Lemma (b2ﬂ), (bQﬂ), (|22d), (|22j) and () respectively.

To obtain the last running time, when we compute M, from M,_;, we explicitly

project ;¢ (I—vw!)xz; for each vector z;, and feed the new z,--- ,z,, into Appx-
PCA. Now the running time follows from Lemma () together with the fact that
[Ms-1ll2 > [[My—1ll2 > A O

— 23 —

3.3 MAIN RESULTS FOR K-SVD AR AR A Bl S

3.3 Main Results for k-SVD

The combination of Theorem (B.2.1)) and Theorem () implies the following

corollaries.

Corollary 3.3.1 (Gap-dependent k-SVD). Let X € R"™? be a data matriz with

singular values 1 > o1 > --- > 04 > 0 and the corresponding left singular vectors
Uy, ,ug € R Let gap = a’“;—i’““ be the relative gap. For fized €,p > 0, consider
the output

Ve LamSVD (A XTX. k. aap. O [—E9%"
k y)) 7g D, k4(0'1/0'k)4 y P

Then, defining W = (ugs1,- -+ ,uq), we have with probability at least 1 — p:

Vi is a rank — k (column)orthonormalmatrizwith||VI W |y < e

gap'/? o/ gapl/2

The running time is 9) (MZ) for AGD and 9) (knd + M) for accel-
erated SVRG. More running times of algorithms see Theorem)

Corollary 3.3.2 (Gap-free k-SVD). Let X € R™? be a data matriz with singular
values 1 > o1 > -+ > a4 > 0 and the corresponding left singular vectorsuy,--- ,uq €

R?. Let gap = a’“;—i’c“ be the relative gap. For fixed e,p > 0, consider the output

€ €®
A =Vi & LazySVD | A, X" Xk, =, 0| ————— | .
Then, defining Xy, = ViV,' X, we have with probability at least 1 — p:
o Spectral norm guarantee: || X — Xilla < (14 €)[|X — X} |2,

o Frobenius norm guarantee: || X — Xgllr < (14 €)||X — X} ||r;

e Rayleigh quotient guarantee: Vi € [k], [l XT Xv; — 02| < ec?.

1/4
ol/4e1/2

The running time is 9] (%’W) for AGD and 0] (k‘nd 4 hnt/ld) for acceler-
ated SVRG. More running times of algorithms see Theorem)

— 924 —

Conclusion

In this paper, we introduce a framework of LazySV D and analyze the total
complexity in different cases where stochastic or non-stochastic optimization are ap-
plied in its optimization oracle. When the optimization oracle uses AGD, accSVRG
and Katyusha X*® for 1-SVD, the complexity matches the optimal dependence on
the gap or ¢, i.e. gap~/? or e /2, faster than block Krylov [4]. What’s more, when a
variance-reduction stochastic method is used for 1-SVD, the stochastic optimization
oracle doesn’t need an accurate initial warm-start, outperforming its counterpart in
[b].

Besides the running time advantages mentioned above, the analysis involved
is completely based on convex optimization, since 1-SVD is solvable using convex
techniques. LazySVD also works when k is not known to the algorithm, as opposed

to block methods which need to know k in advance.

JEHOR AR A Bk i 3L

— 26 —

1]

(6]

8]

275 3CHk

K. Person. On Lines and Planes of Closest Fit to Systems of Points in Space|J].
Philosophical Magazine. 2 (11): 559-572

Hotelling. Analysis of a complex of statistical variables into principal com-
ponents[J]. Journal of Educational Psychology. 24, 417-441, and 498 -
520

Zeyuan Allen Zhu, Yuanzhi Li. Even Faster SVD Decomposition Yet Without
Agonizing Pain[J]. CoRR. 2016, abs/1607.03463

Christopher Musco Cameron Musco. Randomized block krylov methods for
stronger and faster approximate singular value decomposition|[C]. Advances in

Neural Information Processing Systems. 2015, 1396-1404

Ohad Shamir. Fast stochastic algorithms for SVD and PCA: Convergence
properties and convexity[C]. International Conference on Machine Learning.

2016, 248256

Yousef Saad. Numerical methods for large eigenvalue problems|M], second .

Addison-Wesley, 2011

Dan Garber, Elad Hazan. Fast and Simple PCA via Convex Optimization|[J].
2015, abs/1509.05647

Yurii Nesterov. Introductory lectures on convex optimization: A basic

course[M], vol. 87. Springer Science & Business Media, 2013

275 3CHk JEHOR AR A Bk i 3L

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Yurii Nesterov. Introductory lectures on convex programming volume i: Basic

course[J]. Lecture notes. 1998

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron
Sidford. Parallelizing stochastic approximation through mini-batching and tail-

averaging[J]. arXiv preprint arXiv:161003774. 2016

John Duchi, Elad Hazan, Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization[J]. Journal of Machine Learning

Research. 2011, 12(Jul):2121-2159

T Tieleman, G Hinton. Lecture 6.5—RmsProp: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 2012[J]. Google Scholar

Diederik P Kingma, Jimmy Ba. Adam: A method for stochastic optimiza-
tion[J]. arXiv preprint arXiv:14126980. 2014

Alexandre d’Aspremont. Smooth optimization with approximate gradient|[J].

SIAM Journal on Optimization. 2008, 19(3):1171-1183

Olivier Devolder, Frangois Glineur, Yurii Nesterov. First-order methods of
smooth convex optimization with inexact oracle[J]. Mathematical Program-

ming. 2014, 146(1-2):37-75

Saeed Ghadimi, Guanghui Lan. Optimal stochastic approximation algorithms
for strongly convex stochastic composite optimization I: A generic algorithmic

framework[J]. SIAM Journal on Optimization. 2012, 22(4):1469-1492

Aymeric Dieuleveut, Francis Bach, et al. Nonparametric stochastic approxima-

tion with large step-sizes[J]. The Annals of Statistics. 2016, 44(4):1363-1399

— 28 —

AEHCRZE AR A Rl A8 3 27 3CHk

[18]

[19]

[20]

[21]

[22]

[25]

[26]

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron
Sidford. Accelerating Stochastic Gradient Descent[J]. arXiv preprint
arXiv:170408227. 2017

Rie Johnson, Tong Zhang. Accelerating stochastic gradient descent using pre-
dictive variance reduction|[C]. Advances in neural information processing sys-

tems. 2013, 315-323

Dan Garber, Elad Hazan, Chi Jin, Cameron Musco, Praneeth Netrapalli, Aaron
Sidford, et al. Faster eigenvector computation via shift-and-invert precondition-

ing[C]. International Conference on Machine Learning. 2016, 2626-2634

Hongzhou Lin, Julien Mairal, Zaid Harchaoui. A universal catalyst for first-
order optimization[C]. Advances in Neural Information Processing Systems.

2015, 3384-3392

Zeyuan Allen-Zhu, Yang Yuan. Improved SVRG for non-strongly-convex or
sum-of-non-convex objectives[C]. International conference on machine learning.

2016, 1080-1089

Mark Schmidt, Nicolas Le Roux, Francis Bach. Minimizing finite sums with
the stochastic average gradient[J]. Mathematical Programming. 2017, 162(1-
2):83-112

Nicolas L. Roux, Mark Schmidt, Francis R Bach. A stochastic gradient method
with an exponential convergence _rate for finite training sets[C]. Advances in

Neural Information Processing Systems. 2012, 2663-2671

Zeyuan Allen-Zhu. Katyusha X: Practical Momentum Method for Stochastic
Sum-of-Nonconvex Optimization[J]. arXiv preprint arXiv:180203866. 2018

Lin Xiao, Tong Zhang. A proximal stochastic gradient method with progressive

variance reduction[J]. STAM Journal on Optimization. 2014, 24(4):2057-2075

— 29 —

275 3CHk JEHOR AR A Bk i 3L

[27] Zeyuan Allen-Zhu, Lorenzo Orecchia. Linear coupling: An ultimate unification

of gradient and mirror descent[J]. arXiv preprint arXiv:14071537. 2014

— 30 —

Acknowledgement

I could not have finished my undergraduate thesis without a lot of persons’
help. First the deepest gratitude goes first and foremost to my director Prof. Zhihua
Zhuang for his constant encouragement and guidance. He provides me a platform
to meet other genius guys and helps me find out where my interest lies. Second,
my thanks would go to my beloved family for their loving considerations and great
confidence in me all through these years. Third, thanks to my senior fellow, Haishan
Ye, who grants me this problem discussed in the paper and offers some inspiring
insights. Last but not least, I also owe my sincere gratitudes to my colleagues in
the Deep Learning laboratory in BIBDR and friends in SMS. They gave me their
help and time in listening to me and helping me work out my problems during the
difficult course of the thesis. They includes Deqing Jiang, Dachao Lin, Wenhao
Yang, Guangzeng Xie, Long Chen, Chengzhuo Ni, Yitan Wang and Naixin Guo.

At the end of the undergraduate study, I appreciate the unforgettable four-year
college experience in SMS but I also look forward to my future further studying and
research. Chuangtse has well said, ”Alas, my life is limited, while knowledge is
limitless” (&4t AE, MMAHICHE). T will step into my academic journey with
heart-full humility, quiet determination and steely resolve in the pursuit of truth to

diligently practice that philosophy.

AL IR EAZAAL I SR G 7 BAASE FH 45245035 B

JR Gl B

ANIEFY]: fr s B2A e S0, B A NAE SIS S T, MAZBE Tt 5t
TAERT USRI R . BRICH EATEM S RN RSN, AR SO S AR AL A8l
TR B LR LB G T RIVE SR e X ARSCRIWFE i 2 TTmk Ay A AFIEEAA,
B EAESCR LA SR o AR B RSE AL R AR &

WIEEZEA: H - £ A H

LS A AR B

(TR T AEFR A AL B B A A ETR A%
ANFER TR AR TR (/A7 BHAAESCRIME ., JI:

o FEIRSEARESRER ST AL SR B R A AT A 5

o PRARURAFAAESCRYENRIAFI R 7, FRse it H ot R SR IR . 42
A2 el _E S AAEAR 55

o FRATLCRARZEL 4D Hrr e e T BUR IR

o DRIREARR R S5 R BB AR KA 22 AV E SCHL i, $30Ree A O —4 /O BaLE /
O = LURAEAR 9 _E 3R AT -

(PRETE SRR JE B ST L ALE)

ISR SITAES B®: % A H

	Introduction
	The Shift-and-Inverse Framework for 1-SVD
	Introduction
	Analysis

	The choice of optimization oracle
	Definition of convexity
	Optimization methods
	Accelerated Gradient Descent (AGD)
	Stochastic Gradient Descent (SGD)
	Stochastic Variance Reduced Gradient (SVRG)
	Stochastic Average Gradient (SAG)

	Katyusha X

	The LazySVD Framework for k-SVD
	High-level ideas about LazySVD
	Analysis of LazySVD
	Main Results for k-SVD

	Conclusion
	Refference
	 Acknowledgement

