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摘要

在这篇论文中，我们主要目的是求解数据协方差矩阵的 k-SVD.为此，我们介

绍了基于幂法求解矩阵最大特征向量的 Shift-and-Inverse 框架，然后 k 次使用该

框架求解数据协方差矩阵的前 k 个特征向量，这种方法称为 LazySVD。

在 Shift-and-Inverse 框架中，原本需要求解一个矩阵的逆与向量的乘积被转

化成求解一个凸函数的最小值，通过凸优化方法可以更快地求解这个问题。于是，

我们介绍了确定性优化和随机优化两类的主要代表性算法，比较了不同算法求解

该凸函数的近似最小值的计算复杂度，最后我们分析了 LazySVD 在不同算法下

的复杂度。

关键词：奇异值分解，凸优化，随机优化，幂法





LazySVD: Fast Singular Value Decomposition
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Abstract

In this paper, we aim to solve the k-SVD of the covariance matrix of collected

data. For that purpose, we introduce the Shift-and-Inverse framework which prod-

ucts the top eigenvector of the covariance matrix based on traditional power method

and then conduct it repeatedly for k times to output its first k eigenvectors. This

seemingly most-intuitive approach is called LazySVD.

In the process of Shift-and-Inverse, the originally existing matrix inversion is

replaced by minimizing a specific convex function, which could be solved by var-

ious convex optimization at a faster calculating speed. For that sake, two group

optimization methods have been introduced, namely the deterministic optimization

and the stochastic optimization. In the end, we analyze the total computation com-

plexity of different algorithms to approximate the minimizer of that specific convex

function and then that to output k-eigenvectors in LazySVD.

Keywords: k-SVD, convex optimization, stochastic optimization, power method
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Introduction

Principal component analysis (PCA), invented by Pearson[1] and then devel-

oped by Hotelling[2], is a statistical procedures aiming to finding a linear combina-

tion of observed data which has the largest variance in all possible combinations.

Usually an orthogonal transformation is used to convert a set of observations of

possibly correlated variables into a set of values of linearly uncorrelated variables

called principal components. Principal components are widely utilized in feature

generation, data visualization.

For data given as a set of n vectors in Rd, x1, x2, · · · , xn, denote X as the

matrix form data whose ith row is the transpose of ith data point 1√
n
xi and A as

the normalized covariance matrix A = XTX = 1
n

∑n
i=1 xix

T
i . The PCA find the

k-dimensional subspace where the projected data has largest variance. Formally,

denoting W ∈ Rd×k as the orthogonal projection matrix, we can formalize PCA as

the following optimization problem

max
W∈Rd×k,WTW=I

∥AW∥2F (1)

where ∥ · ∥F is the Frobenius norm. This is a non-convex optimization even in the

case where k = 1.

PCA can be solved explicitly by the singular value decomposition (SVD) of

the data covariance matrix A. Generally speaking, for a rank-r matrix A ∈ Rn×d

has such decomposition A = V ΣUT , where V ∈ Rn×r, U ∈ Rr×d are two col-

umn orthonormal matrices and Σ = diag{σ1, · · · , σr} is a diagonal matrix with

non-negative entries decreasing listed on its diagonal. By Eckart–Young–Mirsky
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theorem, the solution of problem (1) is

A∗
k = VkV

T
k A = VkΣkU

T
k

where Vk, Uk are the first k columns of V and U , Σk = diag{σ1, · · · , σk}.

Traditional algorithms to compute SVD essentially run in time O(ndmin{d, n}),

which is a quite expensive under big data scenario. Allen-Zhu [3] summaries the

performance among different recent methods solving k-SVD. We list them in Table

1. The first gap-free running-time result is obtained by Musco and Musco[4] by sub-

space PM and block Krylov. The first stochastic running-time result is achieved by

Shamir [5]. But his method not only depends on eigenvalue gaps, but also requires

a very accurate warm-start, which would take a long time to compute.

In this paper, we give other based on the algorithmic framework in[3] to solve

k-SVD. It not only improves the aforementioned breakthroughs, but also relies only

on simple convex analysis. The remainder of the paper is organized as follows. In

Chapter 1, we introduce and analyze the Shift-and-Inverse framework for solving

1-SVD. In Chapter 2, we introduce two groups of optimization methods namely the

deterministic optimization and the stochastic optimization. Specifically, we detail

the recent accelerated stochastic momentum optimization method Katyusha Xs.

In Chapter 3, we give a framework of LazySV D and analyze the total complex-

ity in cases where different optimization referred in Chapter 2 are applied in its

optimization oracle.

– 2 –
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Algorithms Running Time GF Running Time

subspace PM [4] Õ(k·nnz(A)
gap

+ k2d
gap

) Õ(k·nnz(A)
ϵ

+ k2d
ϵ
)

block Krylov [4] Õ(k·nnz(A)

gap1/2
+ k2d

gap
+ k3

gap3/2
) Õ(k·nnz(A)

ϵ1/2
+ k2d

ϵ
+ k3

ϵ3/2
)

Shamir [5] Õ(knd+ k4

σ4
kgap

1/2 ) -

+ FGD Õ
(

k·nnz(A)
gap

+ k2d
gap

)
Õ
(

k·nnz(A)
ϵ

+ k2d
ϵ

)
+ AGD [3] Õ

(
k·nnz(A)

gap1/2
+ k2d

gap1/2

)
Õ
(

k·nnz(A)

ϵ1/2
+ k2d

ϵ1/2

)
+ SAG Õ

(
kd
gap

)
Õ
(
kd
ϵ

)
+ SVRG Õ

(
k · nnz(A) + k2d+ kd

gap2

)
Õ
(
k · nnz(A) + k2d+ kd

ϵ2

)
+ accSVRG [3] Õ

(
knd+ kn3/4d

σ
1/4
k gap1/2

)
Õ

(
knd+ kn3/4d

σ
1/4
k ϵ1/2

)
+ KatyushaXs Õ

(
k · nnz(A) + k2d+ kn3/4

gap1/2
)
)

Õ
(
k · nnz(A) + k2d+ kn3/4

ϵ1/2
)
)

表 1: Performance comparison among direct methods. Define gap =

(σk−σk+1)/σk ∈ [0, 1]. GF means the running time if free of gap. We call a al-

gorithm means the gradient used for updating is a unbiased estimator of full gradi-

ent. Here LazySV D+SAG,+SV RG,+accSV RG, + KatyushaXs belongs to this

stochastic group. Stochastic results in this table are assuming ∥xi∥2 ≤ 1. We call a

algorithm accelerated if the dependence on gap or ϵ of its running time is gap−1/2 or

ϵ−1/2. Here block Krylov, LazySV D + AGD,+accSV RG, + KatyushaXs belong

to the accelerated group. The three five items are from previous work and the last

six items can be deduced from this work.

– 3 –
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第一章 The Shift-and-Inverse

Framework for 1-SVD

1.1 Introduction

Traditionally, the power method solves the top eigenvector of matrix A converge

in O(log(d/ϵ)/gap) iterations, where gap = (λ1 − λ2)/λ1 and λi denotes the ith

largest eigenvalue of A. We will use this notation till the end of the paper except

specifically stated in certain sections. It is quite unsatisfactory when the gap is

quite small.

In order to get free of eigenvalue gap, we aim to solve k-SVD by power method

modified by Shift-and-Inverse framework. The framework is a combination of tra-

ditional ideas, namely the shifted power method and the inverse iteration[6]. The

former applies power method to shifted covariance matrix A + σI and the later

choose (A − σI)−1 as the counterpart. Unlike these two methods, here we choose

(λI − A)−1. If λ > λ1, we can see the top eigenvector of B is equal to that of A,

but the new gap has become λ1−λ2

λ−λ2
. As long as λ is sufficiently close to λ1, there

will be constant gap such that power iteration only needs O(log(d/ϵ)) to converge,

which is gap-free.

However, after we can get rid of gap dependency in the iteration, here comes

the problem – matrix inversion. Dan Garber[7] proposes to solve the linear system

Mx = b via convex optimization, i.e. to find the minimizer of the convex function
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F (x) = 1
2
xTMx − bTx instead of inversing matrix directly. Recent stochastic opti-

mizers could be applied to solve it, here we denote such algorithm as A. We will

discuss what kind of A need to be chosen in next chapter. Therefore, in order to

obtain the computation cost of a ϵ-tolerated solution, we only need to figure out

how many times A has been called.

We list the pseudo code in Algorithm 1, which is referenced from [3].

Algorithm 1 AppxPCA(A, A, δ, ϵ, p)
1: Input: A, an approximate matrix inversion method. A ∈ Rd×d, a covariance

matrix satisfying 0 ≺ A ≺ I; δ, a multiplicative error; ϵ, numerical accuracy

parameter; p ∈ (0, 1), failure probability parameters.

2: Setting parameters: m1 ← T PM(8, 1
32
, p), m2 ← T PM(2, ϵ

4
, p), ϵ̃1 ← 1

64m1
( δ
6
)m1 ,

ϵ̃2 ← 1
8m2

( δ
6
)m2 .

3: Initialization: ŵ0 ← a random unit vector; s← 0; λ(0) ← 1 + δ.

4: repeat

5: s← s+ 1

6: for t = 1...m1 do

7: Apply A to find ŵt s.t. ∥ŵt − (λ(s−1)I − A)−1ŵt−1∥ ≤ ϵ̃1

8: end for

9: w ← ŵm1

∥ŵm1∥

10: Apply A to find v s.t. ∥v − (λ(s−1)I − A)−1w∥ ≤ ϵ̃1

11: Update parameters: ∆(s) ← 1
2
· 1
wT v−ϵ̃1

; λ(s) ← λ(s−1) − ∆(s)

2
.

12: until ∆(s) ≤ δλ(s)

3

13: f ← s

14: for t = 1...m2 do

15: Apply A to find ŵt s.t. ∥ŵt − (λ(f)I − A)−1ŵt−1∥ ≤ ϵ̃2

16: end for

17: return wf ←
ŵm2

∥ŵm2∥

– 6 –
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1.2 Analysis

Denote Ms = (λ(s−1)I − A)−1, and when analyzed, the subscript s of Ms will

be omitted for simplicity. The inner loop deals with finding the top eigenvector of

Ms. The classic power method to do that thing will first find a random initial unit

vector ŵ0 and then applies wt ← Mwt−1

∥Mwt−1∥ iteratively. Lemma (1.2.1) states that

only T PM(κ, ϵ, p) iterations are needed to obtain an ϵ-approximate solution with

probability at least 1− p.

Lemma 1.2.1 (Exact Power Method). Assume M is a PSD matrix with non-

increasing eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and their corresponding eigenvectors

u1, u2, · · · , ud. Given an error tolerance ϵ > 0, approximation-control parameter

κ ≥ 1, and failure probability p > 0, let

T PM(κ, ϵ, p) = ⌈κ
2
log

(
9d

p2ϵ

)
⌉

Then, with probability at least 1 − p, it holds that as long as t ≥ T PM(κ, ϵ, p), we

have ∑
i∈[d],λi≤(1− 1

κ
)λ1

(wT
t ui) ≤ ϵ and wT

t Mwt ≥ (1− 1

κ
− ϵ)λ1

However, in order to avoid matrix inversion, exact power method would be

replaced by inexact power method, just like what we do in Algorithm 1. In each

inner loop, we only calculate a ϵ̃1-approximate of the product of inverted matrix

(λ(s−1)I − A)−1 and last result ŵs−1. After sufficient iterations, namely m1, we

normalize ŵt and regard it as the approximate top eigenvector of (λ(s−1)I − A)−1.

Lemma (1.2.2) states how the accumulated error grows during inner iterations,

which we can utilize to control the ultimate error.

Lemma 1.2.2. Denote the sequence of iterations in Exact Power Method as w∗
i ,

which satisfies w∗
0 = w0, w

∗
t =

Mw∗
t−1

∥Mw∗
t−1∥

, and the sequence of iterations in Inexact

– 7 –
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Power Method as wt =
ŵt

∥ŵt∥ , ∥ŵt −Mŵt−1∥ ≤ ϵ̃. Then define

Γ(M, t) =
2

λt
d


t if λ1 = 1

λt
1 − 1

λ1 − 1
if λ1 ̸= 1

,

it satisfies that

∥wt − w∗
t ∥ ≤ ϵ̃ · Γ(M, t)

Based on lemma (1.2.2), we can get a similar converge result in Inexact Power

Method case, we list it in theorem 1.2.3. The proof of theorem 1.2.3 and lemma

1.2.1 see [3] and the proof of lemma 1.2.2 sees [7].

Theorem 1.2.3 (Inexact Power Method). Assume M is a PSD matrix with non-

increasing eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and their corresponding eigenvectors

u1, u2, · · · , ud. Given an error tolerance ϵ > 0, approximation-control parameter

κ ≥ 1, and failure probability p > 0, then, with probability at least 1 − p, it holds

that for every ϵ ∈ (0, 1) and every t ≥ T PM(κ, ϵ
4
, p), if wt is generated by Inexact

Power Method with per-iteration error ϵ̃ = ϵ
4Γ(M,t)

, then

∑
i∈[d],λi≤(1− 1

κ
)λ1

(wT
t ui) ≤ ϵ and wT

t Mwt ≥ (1− 1

κ
− ϵ)λ1

Now we have figured out how error each inner loop will bring. Let’s focus on

the outer loop. In each outer loop, after calculating an approximate top eigenvector

of (λ(s−1)I − A)−1, we then calculate ∆(s) and shrink λ(s) based on it, since ∆(s)

measure the how far λ(s−1) is away from λ1. By carefully choosing the parameters

in Algorithm 1, ϵ̃1 ≤ 1
32Γ((λ(s−1)−M)−1,m1)

for each s and ϵ̃2 ≤ 1
4Γ((λ(f)−M)−1,m2)

, which

guarantees that wt generated by Inexact Power Method is with per-iteration error ϵ.

The way ∆(s) computed satisfies 0 ≤ λ(s−1)−λ1

2
≤ ∆(s) ≤ λ(s−1)−λ1 for each s, which

results λ(f) − λ1 couldn’t lie out of [ δ
12
λ(f), δλ1] when setting s = f . Putting all the

results together, we can give analysis about how accurate the output of Algorithm

1 in theorem 1.2.4 is.

– 8 –
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Theorem 1.2.4 (Approximation under Shift-and-Inverse framework). Let A is a

PSD matrix with non-increasing eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and their corre-

sponding eigenvectors u1, u2, · · · , ud. Given an error tolerance ϵ > 0, a multiplicative

error δ, and failure probability p > 0, then with probability at least 1− p, the output

w produced by Algorithm 1 satisfies∑
i∈[d],λi≤(1−δ)λ1

(wTui)
2 ≤ ϵ and wTAw ≥ (1− δ)(1− ϵ)λ1

Furthermore, the total number of oracle calls to A if O
(
log(1

δ
)m1 +m2

)
and each

time we call A, we have λ(s)

λmin(λ(s)I−A)
≤ 12

δ
and 1

λmin(λ(s)I−A)
≤ 12

δλ1
.

In theorem 1.2.4, conclusions about A rather that M are given, since this

theorem is produced after the whole framework is analyzed. If 0 < δ < λ1−λ2

λ1
, then

∥wTui∥2 = 1−
∑

i∈[d],λi≤(1−δ)λ1
(wTui)

2 ≥ 1−ϵ, indicating w is a good approximator.

Therefore, the result that wTAw is not far away from λ1 is easily deduced.

In order to analyze the arithmetic complexity of Algorithm 1 using a specific

implementation for the optimization oracle A, it is not only important to bound

the number of calls to A (as done in Theorem 1.2.4), but to also bound impor-

tant parameters of the optimization problem that naturally arise when considering

the arithmetic complexity of different implementations for A. For this issue, we

should next introduce the concept of convexity and smoothness and then various

optimization methods.

– 9 –
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第二章 The choice of optimization

oracle

2.1 Definition of convexity

Often the complexity of A outputting ŵt has some dependency on conditional

number κ. To give the definition of conditional number, the smoothness and strong

convexity of the loss function should first be defined[8].

Definition 2.1.1. Function f(x) is said to convex, if for all x, y ∈ Rd and ∀α ∈

[0, 1], it holds that

f(αx+ (1− α)y) ≤ αf(x) + αf(y)

Definition 2.1.2. Function f(x) is said to be L-smooth, if f(x) is derivable and

for for all x, y ∈ Rd, it holds that

|∇f(x)−∇f(y)| ≤ L|x− y|

Definition 2.1.3. Function f(x) is said to be σ-strong convex, if for all x, y ∈ Rd,

it holds that

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ σ

2
∥x− y∥2

If a loss function f is both L-smooth and σ-strong-convex, then its conditional

number is defined as κ = L
σ
. Therefore, when we decide to choose the Algorithm A,

its running cost should have less dependency on κ.
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Lemma 2.1.1. Let λ,w be such that during the run of Algorithm 1, the optimization

oracle A is applied to the minimization of the function

Fw,λ(z) =
1

2
zT (λI − A)z − wT z.

Then, under the conditions stated in Theorem 1.2.4 it holds that Fw,λ(z) is (λ −

λ1) = Ω(δ)-strongly convex and for all i ∈ [n] it holds that the function fi(z) =

1
2
zT (λI − xix

T
i )z − wT z is 1 + δ = O(1)-smooth.

2.2 Optimization methods

In our case, inverting a matrix is equivalent to minimizing a convex function

Fw,λ(·). Various stochastic optimization techniques can be applied to solve it. In

this chapter, we want to approximate matrix inverse by convex optimization. We

first give the definition of our problem, and then introduce some classic or famous

algorithms. These algorithms could be categoried into two groups, one being the

deterministic optimization and one being the stochastic optimization. In the former

group, the full gradient descent (FGD) and accelerated gradient descent (AGD) will

be introduced, and in the later group, stochastic gradient descent (SGD), stochastic

variance reduced gradient (SVRG) and stochastic average gradient (SAG) will be

detailed.

Problem Given a d× d matrix M ⪰ 0 satisfying λI −M ⪰ µI for some constant

λ and µ > 0, one can minimize the quadratic

Fw,λ(x) = xT (λI −M)x− wTx, (2.1)

in order to invert (λI−M)−1b, i.e. to find a solution x such that ∥x−(λI−M)−1b∥ ≤

ϵ for some prescribed ϵ. Our problem is how to find a ’good’ algorithm to give such

x.

– 12 –
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2.2.1 Accelerated Gradient Descent (AGD)

Full gradient decent (FGD) is a classic first-order optimization method. For the

function Fw,λ(x) to optimize, FGD updates the parameter by moving the parameter

towards the steepest direction on the empirical loss surface, i.e.

xt ← xt−1 − η∇Fw,λ(xt−1) (2.2)

where η is the learning rate. Classic convex optimization[8] shows that in our µ-

strong convex case, FGD finds an ϵ-approxiated minimizer of (2.1) in O(λ
µ
log λ

ϵµ
)

iteration, each requiring O(d) time plus the time needed to multiply M with a

vector. We could regard λ
µ

as the condition number of function 2.1.

Lemma 2.2.1. FGD produces such an output x in O(λ
µ
log λ

ϵµ
) iterations, each re-

quiring O(d) time plus the time needed to multiply M with a vector, i.e.

O

(
(d+ nnz(M))

λ

µ
log

λ

ϵµ

)
Nesterov accelerate scheme, which we call Accelerated Gradient Decent, could

reduce the needed iteration number to O(λ
1/2

µ1/2 log
λ
ϵµ
), which has better dependency

on condition number. AGD updates parameters in the next fashion

yt ← xt−1 −
1

λ
∇Fw,λ(x)

xt ← (1− γt−1)yt + γt−1yt−1

(2.3)

where {γt}t=0 satisfies γt = 1−θt
θt+1

, and θ0 =0, θt =
1+
√

1+4θ2t−1

2
following [9].

Further, we have the following lemma.

Lemma 2.2.2. AGD produces such an output x in O(λ
1/2

µ1/2 log
λ
ϵµ
) iterations, each

requiring O(d) time plus the time needed to multiply M with a vector, i.e.

O

(
(d+ nnz(M))

λ1/2

µ1/2
log

λ

ϵµ

)
– 13 –
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2.2.2 Stochastic Gradient Descent (SGD)

If ∇Fw,λ(xt−1) is replaced by some subfunction ∇fit(xt−1) at iteration t, where

it is uniformly and independently drawn from [n] := {1, 2, · · · , n}, we obtain the

most practical optimization method, stochastic gradient descent (SGD). Often gra-

dients estimated by only one subfunction will have large variance. One can take

the place of ∇fit(xt−1) by 1
Bt

∑
i∈Bt
∇fi(xt−1) to lower the variance, where Bt is a

random set of b different number uniformly drawn from [n]. We call this kind of

SGD as minibatch SGD, which has been proved to enjoy linear convergence rate

just like FGD[10]. Specifically, for our problem, SGD will give an ϵ-approxiated

minimizer of (2.1) in Õ
(

λ
µ
log λ

µϵ
+ σ2d

ϵ

)
, where σ2 is the variance of the gradient

estimator.

Recently, there outbursts plenty of SGD variants aiming to adjust learning

rate η automatically. We list some famous here. AdaGrad[11] pointwisely nor-

malizes learning rate by the square root of accumulative second moments, while

RMSProp[12] dose the same thing by the moving average of the magnitudes of re-

cent gradients and accumulative ones. Adam[13] bases on adaptive estimates of first

and second order moments to obtain an unbiased estimator of gradient.

Another famous question is whether SGD could be accelerated in the way

FGD modified to AGD. Actually, existing results show AGD not robust to de-

terministic noise ([14], [15]), but is robust to random additive noise ([16], [17]).

Stochastic approximation falls between the above two cases. [18] introduces an ac-

celerated stochastic gradient method that provably achieves the minimax optimal

statistical risk faster than SGD, which gives an ϵ-approxiated minimizer of (2.1) in

Õ
(√

κ̃λ
µ
log λ

µϵ
+ σ2d

ϵ

)
, where κ̃ is the statistical condition number. As we could see,

as long as κ̃≪ κ = λ
µ
, acceleration is possible.

– 14 –
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2.2.3 Stochastic Variance Reduced Gradient (SVRG)

SVRG maintains a full gradient each outer loop and computes a single random

gradient each inner loop to reduce the large noise and further reduce the variance

of gradients. Theorem 1 in [19] proves that SVRG enjoys a linear convergence rate

and theorem B.1 in [7] further proves that when Fw,λ(·) is σ-strong convex and fi(·)

is L-smooth, then when setting η = O( σ
L2 ), then only m = Õ( 1

η2L2 ) inner iterations

need to obtain a ϵ-approximate solution. To say it formally, we have

Lemma 2.2.3. Given ϵ, p ∈ (0, 1), there exists a choice of η,m, such that Algorithm

2 finds with probability at least 1−p, an ϵ-approxiated minimizer of (2.1) in overall

time

O

(
(nnz(M) +

dλ2

µ2
)log

λ

µϵ

)

Algorithm 2 SVRG(A, x̃0, η,m)
1: Input: x̃0 initial x; η, learning rate; m, iteration numbers.

2: for s = 1, 2, ... do

3: Initialization: x̃← x̃s−1, µ̃← ∇Fw,λ(x̃), x0 ← x̃

4: for t = 1, 2, ...,m do

5: Randomly pick it ∈ [n]

6: xt ← xt−1 − η (∇fit(xt−1)−∇fit(x̃) + µ̃)

7: end for

8: x̃s ← 1
m

∑m−1
t=0 xt

9: end for

Here we assume different fi has the same smoothness coefficient L which could

be attributed to the uniform sampling of index i in each inner loop. If β could be

varied, non-uniform sampling could be applied just as what [20] did. In [20], index

i is drawn with probability pi =
∥xi∥22∑n

k=1 ∥xk∥22
, and the corresponding results have some

modification of the dependency on {Li}ni=1.

– 15 –
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What’s more, [21] proposed a universal framework to accelerate arbitrary gradi-

ent optimization in an almost black-box fashion, known as the Accelerated Proximal-

point algorithm. This method will use convex optimization to find an approximated

global minimizer of the modified function

F̃w,λ(x) = Fw,λ(x) +
θ

2
∥x− x̃∥2 (2.4)

where θ is the regulation parameter and x̃ is the iterating result in previous loop.

By Theorem 3.1(rephrased by our needs) in [20], when fixing θ, there exist an accel-

eration scheme for Algorithm 2 that find an ϵ-approximated minimizer of Fw,λ(x)

after approximately minimizing Õ
(√

σ+θ
σ

)
instances of 2.4. Therefore, we could

obtain an accelerated result

Lemma 2.2.4. Given ϵ, p ∈ (0, 1), if µ = o(
√

d
n
), there exist an accelerated Algo-

rithm 2 finds with probability at least 1−p, an ϵ-approxiated minimizer of (2.1) in

overall time

O

(
nnz(M)3/4d1/4λ1/4

√
µ

log
1

ϵ

)
Sometimes µ = o(

√
d
n
) is barely met. [22] gives an improved SVRG by replacing

the gradient descent with a proximal gradient. (line 6 in Algorithm 2). Under mild

assumptions, it can achieve comparable results in the accelerated case.

Lemma 2.2.5. If M = A = 1
n

∑n
i=1 x

T
i xi and ∥ai∥2 ≤ 1, then in expectation

there exists an accelerated version of SVRG (see for instance [22]) producing an

ϵ-approxiated minimizer of (2.1) in overall time

O

(
max{nd, n

3/4dλ1/4

µ1/2
}log λ

ϵµ

)

2.2.4 Stochastic Average Gradient (SAG)

SAG[23] keeps maintaining a full gradient each iteration instead of computing

a new full gradient each outer loop like SVRG, which will reduce the computation

– 16 –



北京大学本科生毕业论文 第二章 THE CHOICE OF OPTIMIZATION ORACLE

complexity. By incorporating a memory of previous gradient values, SAG method

also achieves a linear convergence rate[24]. However, the advantage of less compu-

tation is at the price of O(nd) space complexity, since for each data point should

maintain its current gradient.

Algorithm 3 SAG(A, x0, η,m)
1: Input: x0 initial x; η, learning rate; m, iteration numbers.

2: Initialization: µ̃← 0, gi = 0 for ∀i ∈ [n].

3: for t = 1, 2, ...,m do

4: Randomly pick it ∈ [n]

5: µ̃← µ̃− git +∇fit(xt−1)

6: git ← ∇fit(xt−1)

7: xt ← xt−1 − η
n
µ̃

8: end for

Applying the linear convergence rate in our problem, we have the following

lemma. In term of condition number, SAG fails to outperform AGD and SVRG,

where the power of κ = λ
µ

in the total complexity is no more than 1
2
. However,

the case where the covariance matrix A is dense, i.e. nnz(A) is pretty large, would

favor SAG rather than others, since SAG is free of nnz(A).

Lemma 2.2.6. SAG produces such an output x in O(λ
µ
log λ

ϵµ
) iterations, each re-

quiring O(d), i.e.

O

(
dλ

µ
log

λ

ϵµ

)

2.3 Katyusha X

From previous sections, we have seen that it seems hard to accelerate stochastic

algorithms, such as SGD. Though SVRG can outperform SGD in both convex and

strong convex case, how to accelerate it may not an easy task. Recently, Allen-

Zhu[25] proposes a new acclerated and stochastic method for minimizing (2.1) by

– 17 –
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introducing a carefully-designed interpolation of gradient descent and mirror de-

scent. This method called Katyusha X. Actually this method can solve more

general problem, i.e. sum-of-nonconvex problem. Here we call a function sum-of-

nonconvex, if the function is actually a sum of nonconvex subfunctions but itself

still convex function. For example, function (2.1) belongs to that group, since each

fi(x) is smooth and non-convex, but their average 1
n

∑n
i=1 fi(x) is µ-strong convex.

Algorithm 4 SV RG1ep(Fw,λ, x0, b, η)
1: Input: Fw,λ = 1

n

∑n
i=1 fi(x); starting vector x0; mini-batch size b ∈ [n]; learning

rate η > 0.

2: Output: x+

3: for s = 1, 2, ... do

4: Initialization: m← min{⌈n
b
⌉, 2};M ∼ Geom( 1

m
);µ← ∇Fw,λ(x0)

5: for t = 1, 2, ...,M do

6: Let St be b i.i.d uniform random indices from [n] with replacement

7: ∇̃t ← µ+ 1
b

∑
i∈St

(∇fi(xt)−∇fi(x0))

8: xt+1 ← arg miny∈Rd{∥y − xt∥2 + 2η⟨∇̃t, y⟩}

9: end for

10: x+ ← xM+1

11: end for

To keep consistent with the notation in [25], we denote each fi(x) is L-smooth

(obviously here L = 1 + δ) and Fw,λ(x) is still µ-strong convex. This method first

modifies proximal SVRG to SV RG1ep (Algorithm 4, with some modification from

original version in [25]), and finds that up to a constant factor 2, the output of

SV RG1ep can be viewed as a fuull gradient descent with a virtual step length mη.

Specifically, if b ∈ [n] is the mini-batch size and m = min{⌈n
b
⌉, 2} is the epoch

length of SV RG1ep, when η ≤ min{ 1
L
,

√
b

2L
√
m
}, let x+ = SV RG1ep(Fw,λ, x0, b, η), then

– 18 –
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for ∀u ∈ Rd, we have

E
[
Fw,λ(x

+)− Fw,λ(u)
]
≤
[
− 1

4mη
∥x+ − x0∥2 + ⟨

x0 − x+

mη
, x0 − u⟩ − µ

4
∥x+ − u∥2

]
Denoting G = x0−x+

mη
, then it satisfies that

E
[
Fw,λ(x

+)− Fw,λ(u)
]
≤
[
−mη

4
∥G∥2 + ⟨G, x0 − u⟩ − µ

4
∥x+ − u∥2

]
(2.5)

In comparison, if a full proximal gradient descent with step length 1
L

is applied

y+ ← arg minz∈Rd{L
2
∥y − z∥2 + ⟨∇Fw,λ(y), z⟩} and denote by G = L(y − y+) the

so-called gradient mapping, the classical theory[26] essentially tells us

E
[
Fw,λ(y

+)− Fw,λ(u)
]
≤
[
− 1

2L
∥G∥2 + ⟨G, y − u⟩ − µ

2
∥y+ − u∥2

]
(2.6)

By comparing (2.5) and (2.6), up to a constant factor 2, the output of SV RG1ep

can be viewed as a fuull gradient descent with a virtual step length mη. We shall

later use SV RG1ep in a black-box way to obtain a gradient.

Then the Nesterov-kind interpolation could be applied to accelerate SV RG1ep.

Specifically we want to apply

xk+1 =
3
2
yk +

1
2
xk − (1− τ)yk−1

1 + τ
(2.7)

as the new choice of momentum which is motivated by the linear-coupling analysis

of accelerated methods[27]. If one replaces the xk term on the right hand side of

(2.7) with yk, the original Nesterov’s momentum will be got. Such new momentum

is actually a special case of a general framework(2.3) of accelerated methods.
General Framework

Starting from z0 = y0 = x0, then in each iteration k = 1, 2, · · · , K − 1,

• xk+1 ← τkzk + (1− τk)yk for some τk ∈ [0, 1];

• yk+1 = SV RG1ep(Fw,λ, xk+1, b, η) and let Gk+1 = xk+1yk+1

mη
be the gradient

mapping;

• zk+1 ← arg minz∈Rd{ 1
αk+1
∥z − zzk∥2 + ⟨Gk+1, z⟩ + µ

4
∥z − yk+1∥2} for some

αk+1 > 0.
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In the general framework, the first line is to interpolate two kinds of gradients,

one from gradient descent yk and another from mirror descent zk. The updating

for yk+1 is to implement SV RG1ep to xk+1 as a virtual gradient descent, and the

gradient mapping Gk+1 is the byproduct. zk+1 can be viewed as mirror descent

product with quadratic function as the Bregman Divergence.

If we choose τk = τ :=
√
mnµ

2
and αk+1 = mη

2τ
= 2τ

µ
, the general framework is

turned into Katyusha X. Specifically, after plugging parameters and eliminating

the sequence {zk}Kk=0, the updating rule becomes

xk+1 ←
3
2
yk +

1
2
xk − (1− τ)yk−1

1 + τ

yk+1 = SV RG1ep(Fw,λ, xk+1, b, η)

Theorem 2.3.1. To find the minimizer of the function (2.1), which is µ-strong

convex and each fi(x) is L-smooth, then KatyushaXs with η = min{ 1
2L
,

√
b

2L
√
m
} and

τ = min{1
2
,
√
µmη

2
} outputs a point x with E [Fw,λ(x)− Fw,λ(x

∗)] ≤ ϵ with

O

((
nnz(M) +

√
Lbn
√
µ

+
n3/4
√
L

√
µ

)
log

1

ϵ

)

In our case, setting b = 1, then η = Θ
(

1√
nL

)
and τ = {1

2
,Θ
(

n1/4√µ√
L

)
}, then

KatyushaXs will output a ϵ-approximate minimizer in the sense of expectation in

total complexity of (since L = 1 + δ ≤ λ)

O

((
nnz(M) +

n3/4
√
λ

√
µ

)
log

λ

ϵµ

)
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第三章 The LazySVD Framework

for k-SVD

3.1 High-level ideas about LazySVD

LazySVD(Algorithm 5) performs 1-SVD repeatedly, k times in total. Set A0 =

A. Specifically, at sth round, LazySVD will first compute the leading eigenvector

of current data covariance matrix As−1, then project it into the complement of the

subspace spanned by computed s − 1 eigenvectors, and last normalized it denoted

by vs. After updating As−1 by left-projecting and the right-projecting I − vsv
T
s ,

repeat such loop until s reaches k.

3.2 Analysis of LazySVD

We state the approximation and running time core theorems of LazySVD

below, and then provide corollaries to translate them into gap-dependent and gap-

free theorems on k-SVD.

Theorem 3.2.1 (Approximation of k-top eigenvectors). Let A ∈ Ad×d be a sym-

metric matrix with non-decreasing eigenvalues 1 ≥ λ1 ≥ · · · ≥ λd ≥ 0 and

their corresponding eigenvectors u1, u2, · · · , ud. Let k ∈ [d], δ, p ∈ (0, 1). Then

with probability at least 1 − p, LazySVD outputs a column orthonormal matrix

Vk = (v1, v2, · · · , vk) ∈ Rd×k satisfying all of the following properties, as long as ϵpca
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Algorithm 5 LazySVD(A, A, k, δ, ϵpca, p)
1: Input: A, an approximate matrix inversion method. A ∈ Rd×d, a covariance

matrix satisfying 0 ≺ A ≺ I; k ∈ [d], the desired rank; δ, a multiplicative error;

ϵpca, numerical accuracy parameter; p ∈ (0, 1), failure probability parameters.

2: Initialization: A0 ← A, V0 ← []

3: for t = 1 to k do

4: v
′
s ← AppxPCA(A, As−1,

δ
2
, ϵpca,

p
k
)

5: vs ←
(
(I − Vs−1V

T
s−1)v

′
s

)
/∥
(
(I − Vs−1V

T
s−1)v

′
s

)
∥

6: Vs ← [Vs−1, vs]

7: As ←
(
I − vTs vs

)
As−1

(
I − vTs vs

)
8: end for

9: return Vk

satisfies corresponding conditions. Denote by Ak = (I − VkV
T
k )A(I − VkV

T
k ).

1. Approximate orthogonality guarantee: If ϵpca ≤ ϵ4δ2

212k4(
λ1
λk

)2
, then ∥V T

k U∥ ≤

ϵ, where U = (uj, · · · , ud) is the column orthonormal matrix and j is the small-

est index satisfying λj ≤ (1− δ)∥Mk−1∥2.

2. Spectral norm guarantee: If ϵpca ≤ δ6

228k4(
λ1

λk+1
)6

, then λk+1 ≤ ∥Mk∥2 ≤
λk+1

1−δ
.

3. Rayleigh quotient guarantee: If ϵpca ≤ δ6

228k4(
λ1

λk+1
)6

, then (1 − δ)λk ≤

vTk Mkvk ≤ λk

1−δ
.

4. Schatten-q norm guarantee: For every q ≥ 1, if ϵpca ≤ δ6

228k4(
λ1

λk+1
)6

, then

∥Mk∥Sq ≤
(
1+δ
1−δ

)2
(
∑d

i=k+1 λ
q
i )

1/q.

Theorem 3.2.1 gives theoretical guarantees of convergence of LazySVD from

four aspects, among which is of importance the first guarantee since it makes sure

that outputs produced by algorithm 5 approximately lie in the top-k eigenvector

space and other guarantees could be deduced from it. Detail proof sees [3].
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Remarks The Schatten-q norm of arbitrary symmetric matrix B ∈ Rd×d is de-

fined as ∥B∥Sq = (
∑d

i=1 λ
q
i )

1/q, where λi is the ith largest eigenvalue of B. The

Schatten-q norm is reduced to the Frobenius norm when q = 2 and reduced to

spectral norm when q =∞.

Below we state the running time of LazySVD.

Theorem 3.2.2 (Running time or computation complexity). Following the notation

in theorem (3.2.1) and setting A = 1
n

∑n
i=1 xix

T
i , LazySVD can be implemented to

run in time

• O
(

k·nnz(A)+k2d
δ

log 1
δϵ

)
if A is FGD;

• O
(

k·nnz(A)+k2d

δ1/2
log 1

δϵ

)
if A is AGD;

• O
(
kd
δ
log 1

δϵ

)
if A is SAG ;

• O
((
k · nnz(A) + k2d+ kd

δ2

)
log 1

δϵ

)
if A is SVRG ;

• O
((

k · nnz(A) + k2d+ kn3/4

δ1/2
)
)
log 1

δϵ

)
if A is KatyushaXs;

• O

((
knd+ kn3/4d

λ
1/4
k δ1/2

)

)
log 1

δϵ

)
if A is accelerated SVRG and ∥xi∥2 ≤ 1 for

∀i ∈ [n].

Proof. We call k times AppxPCA, Ms−1 = (I−Vs−1V
T
s−1)M(I−Vs−1V

T
s−1) can be fed

implicitly into AppxPCA each time thus the time needed to multiply Ms−1 with

a d-dimensional vector is O(dk + nnz(M)) or O(dk + nnz(A)). Here, the O(dk)

overhead is due to the projection of a vector into V ⊥
s−1. This proves the first five

running times using Lemma (2.2.1), (2.2.2), (2.2.6), (2.2.3) and (2.3.1) respectively.

To obtain the last running time, when we compute Ms from Ms−1, we explicitly

project x
′
i←(I−vsv

T
s )xi for each vector xi, and feed the new x

′
1, · · · , x

′
n into Appx-

PCA. Now the running time follows from Lemma (2.2.5) together with the fact that

∥Ms−1∥2 ≥ ∥Mk−1∥2 ≥ λk. □
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3.3 Main Results for k-SVD

The combination of Theorem (3.2.1) and Theorem (3.2.2) implies the following

corollaries.

Corollary 3.3.1 (Gap-dependent k-SVD). Let X ∈ Rn×d be a data matrix with

singular values 1 ≥ σ1 ≥ · · · ≥ σd ≥ 0 and the corresponding left singular vectors

u1, · · · , ud ∈ Rd. Let gap = σk−σk+1

σk
be the relative gap. For fixed ϵ, p > 0, consider

the output

Vk ← LazySVD
(
A, XTX, k, gap, O

(
ϵ4gap2

k4(σ1/σk)4

)
, p

)
Then, defining W = (uk+1, · · · , ud), we have with probability at least 1− p:

Vk is a rank − k (column)orthonormalmatrixwith∥V T
k W∥2 ≤ ϵ

The running time is Õ
(

k·nnz(A)+k2d

gap1/2

)
for AGD and Õ

(
knd+ kn3/4d

σ
1/4
k gap1/2

)
for accel-

erated SVRG. More running times of algorithms see Theorem (3.2.2).

Corollary 3.3.2 (Gap-free k-SVD). Let X ∈ Rn×d be a data matrix with singular

values 1 ≥ σ1 ≥ · · · ≥ σd ≥ 0 and the corresponding left singular vectors u1, · · · , ud ∈

Rd. Let gap = σk−σk+1

σk
be the relative gap. For fixed ϵ, p > 0, consider the output

(v1, · · · , vk) = Vk ← LazySVD
(
A, XTX, k,

ϵ

3
, O

(
ϵ6

k4d4(σ1/σk)12

)
, p

)
Then, defining Xk = VkV

T
k X, we have with probability at least 1− p:

• Spectral norm guarantee: ∥X −Xk∥2 ≤ (1 + ϵ)∥X −X∗
k∥2;

• Frobenius norm guarantee: ∥X −Xk∥F ≤ (1 + ϵ)∥X −X∗
k∥F ;

• Rayleigh quotient guarantee: ∀i ∈ [k], |vTi XTXvi − σ2
i | ≤ ϵσ2

i .

The running time is Õ
(

k·nnz(A)+k2d

ϵ1/2

)
for AGD and Õ

(
knd+ kn3/4d

σ
1/4
k ϵ1/2

)
for acceler-

ated SVRG. More running times of algorithms see Theorem (3.2.2).
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Conclusion

In this paper, we introduce a framework of LazySV D and analyze the total

complexity in different cases where stochastic or non-stochastic optimization are ap-

plied in its optimization oracle. When the optimization oracle uses AGD, accSVRG

and Katyusha Xs for 1-SVD, the complexity matches the optimal dependence on

the gap or ϵ, i.e. gap−1/2 or ϵ−1/2, faster than block Krylov [4]. What’s more, when a

variance-reduction stochastic method is used for 1-SVD, the stochastic optimization

oracle doesn’t need an accurate initial warm-start, outperforming its counterpart in

[5].

Besides the running time advantages mentioned above, the analysis involved

is completely based on convex optimization, since 1-SVD is solvable using convex

techniques. LazySVD also works when k is not known to the algorithm, as opposed

to block methods which need to know k in advance.
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